Relaxation Schemes for low-Mach Problems

F. Bouchut ${ }^{3}$, D. Coulette ${ }^{4}$, E. Franck 12, P.Helluy ${ }^{12}$, L. Navoret ${ }^{12}$

Workshop Cloture ANR MOHYCON, Pornichet,
9-11 mars 2022

[^0]
Outline

Physical and mathematical context

Full-Implicit relaxation method

Semi-Implicit relaxation method

Well-balanced extension for Ripa model

Physical and mathematical context

Gas dynamic: Euler equations

■ Context: Plasma simulation with Euler/MHD equations.

- Euler equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p l_{d}\right)=0 \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u}+p \boldsymbol{u})=0
\end{array}\right.
$$

- with $\rho(t, \mathbf{x})>0$ the density, $\boldsymbol{u}(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x})>0$ the total energy.
- The pressure p is defined by $p=\rho T$ (perfect gas law) with T the temperature.
- Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: ($\boldsymbol{u}, \mathbf{n}$) and $(\boldsymbol{u}, \mathbf{n}) \pm c$ with the sound speed $c^{2}=\gamma \frac{p}{\rho}$.

Gas dynamic: Euler equations

- Context: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$
\left\{\begin{array} { l }
{ \partial _ { t } \rho + \nabla \cdot (\rho \boldsymbol { u }) = 0 } \\
{ \partial _ { t } (\rho \boldsymbol { u }) + \nabla \cdot (\rho \boldsymbol { u } \otimes \boldsymbol { u } + p l _ { d }) = 0 } \\
{ \partial _ { t } E + \nabla \cdot (E \boldsymbol { u } + p \boldsymbol { u }) = 0 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\frac{1}{M^{2}} \nabla p=0 \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u}+p \boldsymbol{u})=0
\end{array}\right.\right.
$$

- with $\rho(t, \mathbf{x})>0$ the density, $\boldsymbol{u}(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x})>0$ the total energy.
- The pressure p is defined by $p=\rho T$ (perfect gas law) with T the temperature.
- Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: ($\boldsymbol{u}, \mathbf{n}$) and $(\boldsymbol{u}, \mathbf{n}) \pm c$ with the sound speed $c^{2}=\gamma \frac{\rho}{\rho}$.

Physic interpretation:

- Two important velocity scales: u and c and the ratio (Mach number) $M=\frac{|u|}{c}$.
- When M tends to zero, we obtain incompressible Euler equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\boldsymbol{u} \cdot \nabla \rho=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p_{2}=0 \\
\nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

In 1D we have just advection of ρ.

- Aim: construct an scheme (AP) valid at the limit with a uniform cost.

Numerical difficulties in space: VF in 1D

- Second method: Finite volume and DG method
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\frac{S \Delta x}{2} \partial_{x x} \rho \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\frac{1}{M^{2}} \partial_{x} p=\frac{S \Delta x}{2} \partial_{x x}(\rho u) \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=\frac{S \Delta x}{2} \partial_{x x} E
\end{array}\right.
$$

\square Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1$ and $u=0.1$.
- Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

- Rusanov scheme:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{S \Delta x}{2} \partial_{x x} \rho
$$

with $S>u_{0}+c \approx 1.5$

- Upwind scheme for limit:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{u_{0} \Delta x}{2} \partial_{x x} \rho
$$

- Rusanov scheme $T_{f}=2 u_{0}=0.05$ and 1000 cells

Numerical difficulties in space: VF in 1D

- Second method: Finite volume and DG method
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\frac{S \Delta x}{2} \partial_{x x} \rho \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\frac{1}{M^{2}} \partial_{x} p=\frac{S \Delta x}{2} \partial_{x x}(\rho u) \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=\frac{S \Delta x}{2} \partial_{x x} E
\end{array}\right.
$$

\square Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1$ and $u=0.1$.
- Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

- Rusanov scheme:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{S \Delta x}{2} \partial_{x x} \rho
$$

with $S>u_{0}+c \approx 1.5$

- Upwind scheme for limit:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{u_{0} \Delta x}{2} \partial_{x x} \rho
$$

- Rusanov scheme $T_{f}=5 u_{0}=0.02$ and 1000 cells

Numerical difficulties in space: VF in 1D

- Second method: Finite volume and DG method
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\frac{S \Delta x}{2} \partial_{x x} \rho \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\frac{1}{M^{2}} \partial_{x} p=\frac{S \Delta x}{2} \partial_{x x}(\rho u) \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=\frac{S \Delta x}{2} \partial_{x x} E
\end{array}\right.
$$

\square Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1$ and $u=0.1$.
- Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

- Rusanov scheme:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{S \Delta x}{2} \partial_{x x} \rho
$$

with $S>u_{0}+c \approx 1.5$

- Upwind scheme for limit:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{u_{0} \Delta x}{2} \partial_{x x} \rho
$$

- Lagrange+remap scheme $T_{f}=2$ $u_{0}=0.05$ and 1000 cells

Numerical difficulties in space: VF in 1D

- Second method: Finite volume and DG method
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\frac{S \Delta x}{2} \partial_{x x} \rho \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\frac{1}{M^{2}} \partial_{x} p=\frac{S \Delta x}{2} \partial_{x x}(\rho u) \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=\frac{S \Delta x}{2} \partial_{x x} E
\end{array}\right.
$$

\square Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1$ and $u=0.1$.
- Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

- Rusanov scheme:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{S \Delta x}{2} \partial_{x x} \rho
$$

with $S>u_{0}+c \approx 1.5$

- Upwind scheme for limit:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=\frac{u_{0} \Delta x}{2} \partial_{x x} \rho
$$

- Lagrange+remap scheme $T_{f}=5$ $u_{0}=0.02$ and 1000 cells

Numerical difficulties in space: VF in 2D

- Same analysis in 2D.
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=\frac{S \Delta x}{2} \Delta \rho \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\frac{1}{M^{2}} \nabla p=\frac{S \Delta x}{2} \Delta(\rho \boldsymbol{u}) \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u})+\nabla \cdot(p \boldsymbol{u})=\frac{S \Delta x}{2} \Delta E
\end{array}\right.
$$

\square Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1, \nabla \cdot \boldsymbol{u}_{0}=0$ and \boldsymbol{u}_{0} constant in time.
- Rusanov scheme $T_{f}=2\left|\boldsymbol{u}_{0}\right| \approx 0.001$ and $100^{*} 100$ cells.

- Red: exact solution, Blue: numerical solution.

Numerical difficulties in space: VF in 2D

- Same analysis in 2D.
\square VF method + Rusanov flux. Equivalent equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=\frac{S \Delta x}{2} \Delta \rho \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\frac{1}{M^{2}} \nabla p=\frac{S \Delta x}{2} \Delta \boldsymbol{u} \\
\partial_{t} p+\boldsymbol{u} \cdot \nabla p+\gamma p \nabla \cdot \boldsymbol{u}=\frac{S \Delta x}{2} \nabla p
\end{array}\right.
$$

\square Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact $p=1, \nabla \cdot \boldsymbol{u}_{0}=0$ and \boldsymbol{u}_{0} constant in time.
- Rusanov scheme $T_{f}=2\left|\boldsymbol{u}_{0}\right| \approx 0.001$ and $100^{*} 100$ cells.

- Red: exact solution, Blue: numerical solution.

Numerical problem I: time discretization.

- Explicit scheme: the CFL condition for low mach flow:
\square The fast phenomena: acoustic waves at velocity c
\square The important phenomena: transport at velocity u
\square Expected CFL: $\Delta t<\frac{\Delta x}{|u|}$, CFL in practice $\Delta t<\frac{\Delta x}{|c|}$
\square At the end, we use a Δt divided by M compared to the expected Δt

First solution

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to "filter" the fast acoustic waves which are not useful in the low-Mach regime.

- Implicit time scheme:

$$
M_{i} \boldsymbol{U}^{n+1}=\left(I_{d}+\Delta t A\left(I_{d}\right)\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}
$$

■ We must solve a nonlinear system and after linearization solve some linear systems.

Problem

- Direct solver too costly. Approximative conditioning for the iterative solvers:

$$
k\left(M_{i}\right) \approx 1+O\left(\frac{\Delta t}{\Delta x^{p} M}\right)
$$

- We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.

Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{\times} p^{n+1}+R h s_{u} \\
E^{n+1}=E^{n}-\Delta t \partial_{\times}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
E^{n+1}-\Delta t^{2} \partial_{x}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{x} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho\right)
$$

- Matrix-vector product to compute u^{n+1}.

Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{\times} p^{n+1}+R h s_{u} \\
\frac{\rho^{n+1}}{\gamma-1}+\frac{1}{2} \rho^{n} u^{n}=E^{n}-\Delta t \partial_{\times}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
\frac{p^{n+1}}{\gamma-1}-\Delta t^{2} \partial_{x}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{x} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho^{n}\right)
$$

- Matrix-vector product to compute u^{n+1}.

Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{x} p^{n+1}+R h s_{u} \\
\frac{\rho^{n+1}}{\gamma-1}+\frac{1}{2} \rho^{n} u^{n}=E^{n}-\Delta t \partial_{x}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
\frac{p^{n+1}}{\gamma-1}-\Delta t^{2} \partial_{x}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{x} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho^{n}\right)
$$

- Matrix-vector product to compute u^{n+1}.

Conclusion

- Semi implicit: only one scale in the implicit symmetric positive operator.
- Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
- Nonlinear solver can have bad convergence for if $\Delta t \gg 1$ and $\partial_{x} p$ not so small.

Relaxation method

■ Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations. Used to design new schemes.

- Idea: Approximate the model

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \mathbf{F}(\boldsymbol{U})=0, \text { by } \quad \partial_{t} \mathbf{f}+\mathbf{A}(\mathbf{f})=\frac{1}{\varepsilon}(Q(\mathbf{f})-\mathbf{f})
$$

- At the limit and taking $P \mathbf{f}=\boldsymbol{U}$ we obtain

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \mathbf{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)+O\left(\varepsilon^{2}\right)
$$

- Time scheme:
\square we solve

$$
\frac{\mathbf{f}^{*}-\mathbf{f}^{n}}{\Delta t}+\mathbf{A}\left(\mathbf{f}^{*, n}\right)=0
$$

\square and after we approximate the stiff source term by

$$
\mathbf{f}^{n+1}=\mathbf{f}^{*}+\omega\left(Q\left(\mathbf{f}^{*}\right)-\mathbf{f}^{*}\right)
$$

with $\omega \in] 0,2]$.

Why?

- In general, we construct \mathbf{A} with a simpler structure than \mathbf{F} to design numerical flux in FV.
- Here, we construct \mathbf{A} with a simpler structure to design simple implicit scheme.

Full-Implicit relaxation method

Xin-Jin relaxation method

- We consider the following nonlinear hyperbolic system

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0
$$

- with \boldsymbol{U} a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume community) [JX95]-[Nat96]-[ADN00].

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{V}=0 \\
\partial_{t} \boldsymbol{V}+\lambda^{2} \partial_{x} \boldsymbol{U}=\frac{1}{\varepsilon}(\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V})
\end{array}\right.
$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(\left(\lambda^{2}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+o\left(\varepsilon^{2}\right)
$$

\square with $A(\boldsymbol{U})$ the Jacobian of $\boldsymbol{F}(\boldsymbol{U})$.

- Conclusion: the relaxation system is an approximation of the original hyperbolic system (error in ε).

Xin-Jin implicit scheme

Main property

\rightarrow Relaxation system: "the nonlinearity is local and the non-locality is linear".
\rightarrow Main idea: splitting scheme between implicit transport and implicit relaxation.
\rightarrow Key point: the $\partial_{t} \boldsymbol{U}=0$ during the relaxation step. Therefore $\boldsymbol{F}(\boldsymbol{U})$ is explicit.

- Relaxation step:

$$
\left\{\begin{array}{l}
\boldsymbol{U}^{n+1}=\boldsymbol{U}^{n} \\
\boldsymbol{V}^{n+1}=\theta \frac{\Delta t}{\varepsilon}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n+1}\right)-\boldsymbol{V}^{N+1}\right)+(1-\theta) \frac{\Delta t}{\varepsilon}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{V}^{n}\right)
\end{array}\right.
$$

- Transport step (order 1):

$$
I_{d}+\left(\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right) \partial_{x}\binom{\boldsymbol{U}^{n+1}}{\boldsymbol{V}^{n+1}}=\binom{\boldsymbol{U}^{n}}{\boldsymbol{V}^{n}}
$$

\square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U}.
\square We obtain the implicit part:

$$
\left(I_{d}-\Delta t^{2} \lambda^{2} \partial_{x x}\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}-\Delta t \partial_{x} \boldsymbol{V}^{n}
$$

\square We apply a matrix-vector product

$$
\boldsymbol{V}^{n+1}=-\Delta t \lambda^{2} \partial_{x} \boldsymbol{U}^{n+1}
$$

- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Xin-Jin implicit scheme

Main property

\rightarrow Relaxation system: "the nonlinearity is local and the non-locality is linear".
\rightarrow Main idea: splitting scheme between implicit transport and implicit relaxation.
\rightarrow Key point: the $\partial_{t} \boldsymbol{U}=0$ during the relaxation step. Therefore $\boldsymbol{F}(\boldsymbol{U})$ is explicit.

- Relaxation step:

$$
\left\{\begin{array}{l}
\boldsymbol{U}^{n+1}=\boldsymbol{U}^{n} \\
\boldsymbol{V}^{n+1}=\theta \frac{\Delta t}{\varepsilon}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{V}^{N+1}\right)+(1-\theta) \frac{\Delta t}{\varepsilon}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{V}^{n}\right)
\end{array}\right.
$$

- Transport step (order 1):

$$
I_{d}+\left(\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right) \partial_{x}\binom{\boldsymbol{U}^{n+1}}{\boldsymbol{V}^{n+1}}=\binom{\boldsymbol{U}^{n}}{\boldsymbol{V}^{n}}
$$

\square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U}.
\square We obtain the implicit part:

$$
\left(I_{d}-\Delta t^{2} \lambda^{2} \partial_{x x}\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}-\Delta t \partial_{x} \boldsymbol{V}^{n}
$$

\square We apply a matrix-vector product

$$
\boldsymbol{V}^{n+1}=-\Delta t \lambda^{2} \partial_{x} \boldsymbol{U}^{n+1}
$$

- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Xin-Jin implicit scheme

Main property

\rightarrow Relaxation system: "the nonlinearity is local and the non-locality is linear".
\rightarrow Main idea: splitting scheme between implicit transport and implicit relaxation.
\rightarrow Key point: the $\partial_{t} \boldsymbol{U}=0$ during the relaxation step. Therefore $\boldsymbol{F}(\boldsymbol{U})$ is explicit.

- Relaxation step:

$$
\left\{\begin{array}{l}
\boldsymbol{U}^{n+1}=\boldsymbol{U}^{n} \\
\left(I_{d}+\theta \frac{\Delta t}{\varepsilon}\right) \boldsymbol{V}^{n+1}=\theta \frac{\Delta t}{\varepsilon} \boldsymbol{F}\left(\boldsymbol{U}^{n}\right)+(1-\theta) \frac{\Delta t}{\varepsilon}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{V}^{n}\right)
\end{array}\right.
$$

- Transport step (order 1):

$$
I_{d}+\left(\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right) \partial_{\times}\binom{\boldsymbol{U}^{n+1}}{\boldsymbol{V}^{n+1}}=\binom{\boldsymbol{U}^{n}}{\boldsymbol{V}^{n}}
$$

\square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U}.
\square We obtain the implicit part:

$$
\left(I_{d}-\Delta t^{2} \lambda^{2} \partial_{x x}\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}-\Delta t \partial_{x} \boldsymbol{V}^{n}
$$

\square We apply a matrix-vector product

$$
\boldsymbol{V}^{n+1}=-\Delta t \lambda^{2} \partial_{x} \boldsymbol{U}^{n+1}
$$

- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Xin-Jin implicit scheme

Main property

\rightarrow Relaxation system: "the nonlinearity is local and the non-locality is linear".
\rightarrow Main idea: splitting scheme between implicit transport and implicit relaxation.
\rightarrow Key point: the $\partial_{t} \boldsymbol{U}=0$ during the relaxation step. Therefore $\boldsymbol{F}(\boldsymbol{U})$ is explicit.

- Relaxation step:

$$
\left\{\begin{array}{l}
\boldsymbol{U}^{n+1}=\boldsymbol{U}^{n} \\
\boldsymbol{V}^{n+1}=\boldsymbol{V}^{n}+\underbrace{\frac{\Delta t}{\varepsilon+\theta \Delta t}}_{\omega}\left(\boldsymbol{F}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{V}^{n}\right)
\end{array}\right.
$$

- Transport step (order 1):

$$
I_{d}+\left(\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right) \partial_{x}\binom{\boldsymbol{U}^{n+1}}{\boldsymbol{V}^{n+1}}=\binom{\boldsymbol{U}^{n}}{\boldsymbol{V}^{n}}
$$

\square We plug the equation on \boldsymbol{V} in the equation on \boldsymbol{U}.
\square We obtain the implicit part:

$$
\left(I_{d}-\Delta t^{2} \lambda^{2} \partial_{x x}\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}-\Delta t \partial_{x} \boldsymbol{V}^{n}
$$

\square We apply a matrix-vector product

$$
\boldsymbol{V}^{n+1}=-\Delta t \lambda^{2} \partial_{x} \boldsymbol{U}^{n+1}
$$

- Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Advantages and defauts

Advantages

- If we have N equations, we obtain N independent wave systems.
- Each substep can be solved implicitly with one inversion of constant elliptic problem and one matrix-vector product.
- Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

- Error for the first order splitting scheme:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\Delta t\left(\frac{2-\omega}{\omega}\right) \partial_{x}\left(\left(\lambda^{2} I_{d}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\Delta t^{2}\right)
$$

- In Low Mach regime $\partial_{x} u \approx M, \partial_{x} p \approx M$ and $c \approx \frac{1}{M}$ consequently

$$
\partial_{t} \rho+\partial_{x}(\rho u) \approx \Delta t\left(\frac{2-\omega}{\omega}\right)\left(\partial_{\times}\left(c^{2}-u^{2}\right) \partial_{\times} \rho\right)+O\left(\Delta t^{2}\right)
$$

- Conclusion: Huge diffusion for the contact wave.
- In a 2D case:

$$
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p \approx\left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2 M^{2}}|\mathbf{u}|^{2} \Delta \mathbf{u}+O\left(\Delta t^{2}\right)
$$

Advantages and defauts

Advantages

- If we have N equations, we obtain N independent wave systems.
- Each substep can be solved implicitly with one inversion of constant elliptic problem and one matrix-vector product.
- Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

- Error for the first order splitting scheme:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\Delta t\left(\frac{2-\omega}{\omega}\right) \partial_{x}\left(\left(\lambda^{2} I_{d}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\Delta t^{2}\right)
$$

- In Low Mach regime $\partial_{x} u \approx M, \partial_{x} p \approx M$ and $c \approx \frac{1}{M}$ consequently

$$
\partial_{t} \rho+\partial_{x}(\rho u) \approx \Delta t\left(\frac{2-\omega}{\omega}\right) u^{2}\left(\partial_{x}\left(\frac{1}{M^{2}}-1\right) \partial_{x} \rho\right)+o\left(\Delta t^{2}\right)
$$

- Conclusion: Huge diffusion for the contact wave.
- In a 2D case:

$$
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p \approx\left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2 M^{2}}|\mathbf{u}|^{2} \Delta \mathbf{u}+O\left(\Delta t^{2}\right)
$$

Results: low Mach regime for Euler isothermal

- Gresho vortex: The initial data are given by $\rho(t=0, \mathbf{x})=1+M^{2} \rho_{2}(\mathbf{x})$,

$$
\mathbf{u}(t=0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x}), \quad \text { with } \nabla \cdot \mathbf{u}_{0}=0
$$

$\left\|\mathbf{u}_{0}\right\| \approx 1$ and $\rho(t, \mathbf{x})=\rho_{0}+M^{2} \rho_{2}(\mathbf{x})$ and $p(t, \mathbf{x})=\frac{1}{\gamma M^{2}}$.

Figure: Norm of the spatial Mach number for the first order implicit Xin-Jin relaxation scheme. Top: $M=0.9$, middle: $M=0.5$, bottom: $M=0.1$.

Results: AP correction for isothermal case

- Error:

$$
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p \approx \Delta t\left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2 M^{2}} \Delta \mathbf{u}+O\left(\Delta t^{2}\right)
$$

- Idea: take $\omega=2-M^{2}$

Figure: Norm of the spatial Mach number for the first order adaptive implicit Xin-Jin relaxation scheme. Top: $M=0.9$, middle top: $M=0.1$, middle bottom: $M=0.03$ bottom: $M=0.005$.

Results: AP correction for the full case

- This correction is sufficient ?
- Contact wave in 1D for $\omega=2$:
Vayring u0

Figure: Density given by second order implicit scheme varying u_{0} in the relaxation.

- Results for $u_{0}=0.1\left(M \approx \frac{1}{10}\right)$ and $u_{0}=0.05\left(M \approx \frac{1}{20}\right)$ are quite convincing.
- Not for smaller Mach number. Too much dispersive effects.
- Conclusion: The correction modify the diffusion to avoid the Mach number dependency but it is not the case in the dispersion (of the splitting and/or time scheme).

Semi-Implicit relaxation method

Suliciu-type Relaxation method

- Problem: the nonlinearity of the implicit acoustic step generates difficulties.
- Non-conservative form and acoustic term:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} p+u \partial_{x} p+\rho c^{2} \partial_{x} u=0 \\
\partial_{t} u+u \partial_{x} u+\frac{1}{\rho} \partial_{x} p=0
\end{array}\right.
$$

- Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \\
\partial_{t}(\rho u)+\partial_{x}(\rho u v+\Pi)=0 \\
\partial_{t} E+\partial_{x}(E v+\Pi v)=0 \\
\partial_{t} \Pi+v \partial_{x} \Pi+\phi \lambda^{2} \partial_{x} v=\frac{1}{\varepsilon}(p-\Pi) \\
\partial_{t} v+v \partial_{x} v+\frac{1}{\phi} \partial_{x} \Pi=\frac{1}{\varepsilon}(u-v)
\end{array}\right.
$$

- Limit:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\varepsilon \partial_{x}\left[A \partial_{x} p\right] \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+p\right)=\varepsilon \partial_{x}\left[\left(A u \partial_{x} p\right)+B \partial_{x} u\right] \\
\partial_{t} E+\partial_{x}(E u+p u)=\varepsilon \partial_{x}\left[A E \partial_{x} p+A \partial_{x} \frac{p^{2}}{2}+B \partial_{x} \frac{u^{2}}{2}\right]
\end{array}\right.
$$

- with $A=\frac{1}{\rho}\left(\frac{\rho}{\phi}-1\right)$ and $B=\left(\rho \phi \lambda^{2}-\rho^{2} c^{2}\right)$.
- Stability: $\phi \lambda>\rho c^{2}$ and $\rho>\phi$.

Avdantage

- We keep the conservative form for the original variables and obtain a fully linear acoustic.

Splitting

Dynamical splitting

- Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time depending for low-Mach [IDGH2018]
- For large acoustic waves (Mach number not small) we want capture to all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u v+\mathcal{M}^{2}(t) \Pi\right)=0 \\
\partial_{t} E+\partial_{x}\left(E v+\mathcal{M}^{2}(t) \Pi v\right)=0 \\
\partial_{t} \Pi+v \partial_{x} \Pi+\phi \lambda^{2} \partial_{x} v=0 \\
\partial_{t} v+v \partial_{x} v+\frac{\mathcal{M}^{2}(t)}{\phi} \partial_{x} \Pi=0
\end{array}, \quad\left\{\begin{array}{l}
\partial_{t} \rho=0 \\
\partial_{t}(\rho u)+\left(1-\mathcal{M}^{2}(t)\right) \partial_{x} \Pi=0 \\
\partial_{t} E+\left(1-\mathcal{M}^{2}(t)\right) \partial_{x}(\Pi v)=0 \\
\partial_{t} \Pi+\phi\left(1-\mathcal{M}^{2}(t)\right) \lambda_{a}^{2} \partial_{x} v=0 \\
\partial_{t} v+\left(1-\mathcal{M}^{2}(t)\right) \frac{1}{\phi} \partial_{x} \Pi=0
\end{array}\right.\right.
$$

with $\mathcal{M}(t) \approx \max \left(\mathcal{M}_{\text {min }}, \min \left(\max _{x} \frac{|u|}{c}, 1\right)\right)$
■ Eigenvalues of Explicit part: $v, v \pm \mathcal{M}(t) \underbrace{\lambda_{c}}_{\approx c}$. Implicit part $0, \pm\left(1-\mathcal{M}^{2}(t)\right) \underbrace{\lambda_{a}}_{\approx c}$

- At the end: we make the projection $\Pi=p$ and $v=u$ (can be viewed as a discretization of the stiff source term).

Implicit time scheme

- We introduce the implicit scheme for the "acoustic part":

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x} \Pi^{n+1}=(\rho u)^{n} \\
E^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x}(\Pi v)^{n+1}=E^{n} \\
\Pi^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \phi \lambda_{a}^{2} \partial_{x} v^{n+1}=\Pi^{n} \\
v^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \frac{1}{\phi} \partial_{x} \Pi^{n+1}=v^{n}
\end{array}\right.
$$

- We plug the equation on v in the equation on Π. We obtain the following algorithm:
\square Step 1: we solve

$$
\left(I_{d}-\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right)^{2} \Delta t^{2} \lambda_{a}^{2} \partial_{x x}\right) \Pi^{n+1}=\Pi^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \phi \lambda_{a}^{2} \partial_{x} v^{n}
$$

\square Step 2: we compute

$$
v^{n+1}=v^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \frac{1}{\phi} \partial_{x} \Pi^{n+1}
$$Step 3: we compute

$$
(\rho u)^{n+1}=(\rho u)^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x} \Pi^{n+1}
$$Step 4: we compute

$$
E^{n+1}=E^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x}\left(\Pi^{n+1} v^{n+1}\right)
$$

Advantage

- We solve only a constant Laplacian. We can assembly matrix once.
- No problem of conditioning, which comes from to the strong gradient of ρ

Spatial scheme in 1D

- Idea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
- Main problem of the explicit part: design numerical flux.
- First possibility: since the maximal eigenvalue is O (Mach) a Rusanov scheme.

■ Other solution: construct a Godunov scheme for the relaxation system. Principle:
\square eigenvalues: $v-\mathcal{E}(t) \lambda_{c}, v(x 3), v+\mathcal{E}(t) \lambda_{c}$
\square Strong invariants of external waves:

$$
\partial_{t}\left(v \pm \phi \lambda_{c} \pi\right)+\left(v \pm \mathcal{E}(t) \lambda_{c}\right) \partial_{x}\left(v \pm \phi \lambda_{c} \pi\right)=0
$$

\square Strong invariants of central waves:

$$
\begin{gathered}
\partial_{t}\left(\frac{1}{\rho}+\frac{\pi}{\rho \phi \lambda^{2}}\right)+v \partial_{x}\left(\frac{1}{\rho}+\frac{\pi}{\rho \phi \lambda^{2}}\right)=0 \\
\partial_{t}\left(u-\frac{\phi}{\rho} v\right)+v \partial_{x}\left(u-\frac{\phi}{\rho} v\right)=0 \\
\partial_{t}\left(\rho e+\frac{\pi^{2}}{2 \rho \phi \lambda_{c}^{2}}+\frac{(v-u)^{2}}{2\left(\frac{\rho}{\phi}-1\right)}\right)+v \partial_{x}\left(\rho e+\frac{\pi^{2}}{2 \rho \phi \lambda_{c}^{2}}+\frac{(v-u)^{2}}{2\left(\frac{\rho}{\phi}-1\right)}\right)=0
\end{gathered}
$$

\square Important: strong invariant are weak invariant (conserved) on the other waves. Exemple: (π, v) preserved on central wave.
\square We obtain all the intermediary states using these previous results.

Results 1D I: contact

- Smooth contact :

$$
\left\{\begin{array}{l}
\rho(t, x)=\chi_{x<x_{0}}+0.1 \chi_{x>x_{0}} \\
u(t, x)=0.01 \\
p(t, x)=1
\end{array}\right.
$$

- Error

cells	Ex Rusanov	Ex LR	Old relax Rusanov	Relax Rus	Relax PC-FVS
250	0.042	$3.6 E^{-4}$	$1.4 E^{-3}$	$7.8 E^{-4}$	$4.1 E^{-4}$
500	0.024	$1.8 E^{-4}$	$6.9 E^{-4}$	$3.9 E^{-4}$	$2.0 E^{-4}$
1000	0.013	$9.0 E^{-5}$	$3.4 E^{-4}$	$2.0 E^{-4}$	$1.0 E^{-5}$
2000	0.007	$4.5 E^{-5}$	$1.7 E^{-4}$	$9.8 E^{-5}$	$4.9 E^{-5}$

■ Old relax: other relaxation scheme where the implicit Laplacian is not constant and depend of ρ^{n}.

- Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max (\|u-c\|,\|u+c\|)$	$2.2 E^{-4}$
SI OId relax	$\left.\left.\max \left(\mid u-\mathcal{M}\left(t_{n}\right)\right) \frac{\lambda}{\rho}\|\| u+,\mathcal{M}\left(t_{n}\right)\right) \left.\frac{\lambda}{\rho} \right\rvert\,\right)$	0.0075
SI new relaxation	$\left.\left.\max \left(\mid v-\mathcal{M}\left(t_{n}\right)\right) \lambda\|\| v+,\mathcal{M}\left(t_{n}\right)\right) \lambda \mid\right)$	0.04

- Conditioning:

Schemes	Δt	conditioning
Si old relax	0.00757	3000
Si new relax	0.041	9800
Si new relax	0.0208	2400
si new relax	0.0075	320

Results in 2D: Gresho vortex

■ Gresho vortex: $\nabla \cdot \boldsymbol{u}=0$ and $p=\frac{1}{M^{2}}+p_{2}(\mathbf{x})$

- Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and final (blue) time . From left to right: $M_{0}=0.5\left(\Delta t=1.4 E^{-3}\right), M_{0}=0.1$ $\left(\Delta t=3.5 E^{-4}\right), M_{0}=0.01\left(\Delta t=3.5 E^{-5}\right), M_{0}=0.001\left(\Delta t=3.5 E^{-6}\right)$.

Results in 2D: Gresho vortex

- Gresho vortex: $\nabla \cdot \boldsymbol{u}=0$ and $p=\frac{1}{M^{2}}+p_{2}(\mathbf{x})$

- Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue) times. From left to right: $M=0.5, \Delta t=2.5 E^{-3}, M=0.1, \Delta t=2.5 E^{-3}$, $M=0.01, \Delta t=2.5 E^{-3}, M=0.001, \Delta t=2.5 E^{-3}$.

Results in 2D: Kelvin helmholtz

- Kelvin-Helmholtz instability. Density:

■ Density at time $T_{f}=3, k=1, M_{0}=0.1$. Explicit Lagrange-Remap scheme with 120×120 (left) and 360×360 cells (middle left), SI two-speed relaxation scheme ($\lambda_{c}=18, \lambda_{a}=15, \phi=0.98$) with 42×42 (middle right) and 120×120 cells (right).

Results in 2D: Kelvin helmholtz

- Kelvin-Helmholtz instability. Density:

- Density at time $T_{f}=3, k=2, M_{0}=0.01$ with SI two-speed relaxation scheme ($\left.\lambda_{c}=180, \lambda_{a}=150, \phi=0.98\right)$. Left: 120×120 cells. Right: 240×240 cells.

Well-balanced extension for Ripa model

Ripal model and steady states

- To finish we propose to see if the method can be combined with WB property to solve flow around equilibrium.
- Ripa equation:

$$
\left\{\begin{array}{l}
\partial_{t} h+\partial_{x}(h u)=0, \tag{1}\\
\partial_{t}(h u)+\partial_{x}\left(h u^{2}+\frac{p(h, \Theta))}{\mathcal{F}_{r}^{2}}=-\frac{g h}{\mathcal{F}_{r}^{2}} \Theta \partial_{x} z,\right. \\
\partial_{t}(h \Theta)+\partial_{x}(h \Theta u)=0,
\end{array}\right.
$$

- where $h(x, t)$ is the water height, $u(x, t)$ the velocity, $\Theta(x, t)$ the temperature and $z(x)$ the topography, the pressure law is given by: $p(h, \Theta)=g \Theta \frac{1}{2} h^{2}$ and the Froud number $\mathcal{F}_{r}=u / \sqrt{g h}$.
- Steady state:

$$
\left\{\begin{array} { l }
{ u = 0 , } \tag{2}\\
{ \Theta = C s t , } \\
{ h + z = C s t , }
\end{array} \quad \left\{\begin{array} { l }
{ u = 0 , } \\
{ z = C s t } \\
{ \Theta \frac { h ^ { 2 } } { 2 } = C s t , }
\end{array} \quad \left\{\begin{array}{l}
u=0, \\
h=C s t, \\
z+\frac{h}{2} \ln (\Theta)=C s t
\end{array}\right.\right.\right.
$$

- Aim: solve flows like

$$
\begin{equation*}
u=O\left(\mathcal{F}_{r}\right), \quad \Theta=C s t+O\left(\mathcal{F}_{r}\right), \quad h+z=C s t+O\left(\mathcal{F}_{r}\right) \tag{3}
\end{equation*}
$$

with $\mathcal{F}_{r} \ll 1$. In that case, the perturbation has a small amplitude but moves with a large propagation speed of order $O\left(1 / \mathcal{F}_{r}\right)$.

Splitting scheme

- Idea: use the same scheme as for Euler equation coupling with WB approach. Splitting:

$$
\begin{aligned}
& (C) \quad\left\{\begin{array}{l}
\partial_{t} h+\partial_{x}(h v)=0, \\
\partial_{t}(h u)+\partial_{x}\left(h u v+\mathcal{F}^{2} \Pi\right)=-\mathcal{F}^{2} g h \Theta \partial_{x} z, \\
\partial_{t}(h \Theta)+\partial_{x}(h \Theta v)=0, \\
\partial_{t} \Pi+v \partial_{x} \Pi+h_{m} \lambda^{2} \partial_{x} v=0 \\
\partial_{t} v+v \partial_{x} v+\frac{\mathcal{F}^{2}}{h_{m}} \partial_{x} \Pi=-\mathcal{F}^{2} \frac{h}{h_{m}} g \Theta \partial_{x} z
\end{array}\right. \\
& (W) \quad\left\{\begin{array}{l}
\partial_{t} h=0, \\
\partial_{t}(h u)+\left(1-\mathcal{F}^{2}\right)\left(\partial_{x} \Pi+h g \partial_{x} z\right)=0, \\
\partial_{t} h \Theta=0 \\
\partial_{t} \Pi+\left(1-\mathcal{F}^{2}\right) h_{m} \lambda^{2} \partial_{x} v=0 \\
\partial_{t} v+\frac{\left(1-\mathcal{F}^{2}\right)}{h_{m}}\left(\partial_{x} \Pi+h g \partial_{x} z\right)=0
\end{array}\right. \\
& (R) \quad\left\{\begin{array}{l}
\partial_{t} \Pi=\frac{1}{\varepsilon}(p(h, \Theta)-\Pi), \quad \partial_{t} v=\frac{1}{\varepsilon}(u-v),
\end{array}\right.
\end{aligned}
$$

where $\mathcal{F}=\max \left(\mathcal{F}_{\text {min }}, \min \left(\frac{u}{\sqrt{h \Theta g}}, 1\right)\right)$ and

$$
\left(\frac{h}{h_{m}}-1\right)>0, \quad \gamma=\left(h_{m} \lambda^{2}-h c^{2}\right)>0
$$

Well-balanced property

- Explicit part: we plug the source term into the flux (Jin Levermore technic).
- Specific discretization of the steady states at the interface: centered gradient for $\partial_{x} z$, average mean for h, entropic mean for Θ.
- Implicit part: The final algorithm writes:
\square Step 1: solve

$$
\begin{aligned}
& \left(\Pi_{j}^{n+1}-\left(1-\mathcal{F}^{2}\right)^{2} \Delta t^{2} \lambda^{2} \frac{\Pi_{j+1}^{n+1}-2 \Pi_{j}^{n+1}+\Pi_{j-1}^{n+1}}{\Delta x^{2}}\right)= \\
& \quad \Pi_{j}^{n}-\Delta t\left(1-\mathcal{F}^{2}\right) \lambda^{2} \frac{v_{j+1}^{n}-v_{j-1}^{n}}{2 \Delta x}+\left(1-\mathcal{F}^{2}\right)^{2} \Delta t^{2} \lambda^{2} \frac{1}{\Delta x}\left(S_{j+\frac{1}{2}}^{n}-S_{j-\frac{1}{2}}^{n}\right)
\end{aligned}
$$

with

$$
S_{j+\frac{1}{2}}^{n}=h_{j+\frac{1}{2}}^{n} \Theta_{j+\frac{1}{2}}^{n} \frac{z_{j+1}-z_{j}}{\Delta x},
$$

computed as for the explicit.
\square Step 2: compute

$$
\begin{aligned}
v_{j}^{n+1} & =v_{j}^{n}-\left(1-\mathcal{F}^{2}\right) \frac{\Delta t}{h_{m}} \frac{\Pi_{j+1}^{n+1}-\Pi_{j-1}^{n+1}}{2 \Delta x}-\left(1-\mathcal{F}^{2}\right) \frac{\Delta t}{h_{m}} \frac{g}{2}\left(S_{j+\frac{1}{2}}^{n}-S_{j-\frac{1}{2}}^{n}\right), \\
(h u)_{j}^{n+1} & =(h u)_{j}^{n}-\Delta t\left(1-\mathcal{F}^{2}\right) \frac{\Pi_{j+1}^{n+1}-\Pi_{j-1}^{n+1}}{2 \Delta x}-\frac{g \Delta t}{2}\left(1-\mathcal{F}^{2}\right)\left(S_{j+\frac{1}{2}}^{n}-S_{j-\frac{1}{2}}^{n}\right) .
\end{aligned}
$$

\square If the steady state is preserved at time n it still be preserved after an implicit step

Numerical results

WB property

$(S T 1)$	$z(x)=0.1+G_{x_{0}, \sigma}(x)$,	$h_{0}(x)=8.0-z(x)$,	$\Theta_{0}(x)=1$,
$(S T 2)$	$z(x)=1$,	$h_{0}(x)=1.0+0.2 G_{x_{0}, \sigma}(x)$,	$\Theta_{0}(x)=\frac{1}{g h_{0}(x)^{2}}$,
$(S T 3)$	$z(x)=x(1-x)$,	$h_{0}(x)=1$,	$\Theta_{0}(x)=2 e^{-x(1-x)}$.

$\Delta t /$ Error	Tests	Rusanov	SI WB Ex	SI two-speed WB Imp
ST1	Error h	$1.5 E^{-2}$	$1.5 E^{-17}$	$3.6 E^{-13}$
	Error u	$5.9 E^{-3}$	$1.5 E^{-15}$	$6.7 E^{-13}$
	Error Θ	0.0	0.0	0.0
	Δt	$8.1 E^{-4}$	$7.1 E^{-4}$	$1.42 E^{-1}$
	Error h	$9.3 E^{-2}$	0.0	$8.4 E^{-12}$
	Error u	$7.3 E^{-9}$	0.0	$1.3 E^{-13}$
	Error Θ	0.13	$1.8 E^{-17}$	$6.0 E^{-12}$
	Δt	$2.5 E^{-3}$	$2.3 E^{-3}$	$4.7 E^{-1}$
ST3	Error h	0.59	0.0	$1.38 E^{-12}$
	Error u	0.65	$1.6 E^{-15}$	$4.4 E^{-14}$
	Error Θ	0.19	0.0	$1.4 E^{-12}$
	Δt	$2.4 E^{-3}$	$1.8 E^{-3}$	0.49

Numerical results

Wave perturbation:

Figure: Left: explicit Rusanov scheme; In green the initial data. In red the solution on a semi-coarse grid (1200 cells), in blue the solution on a fine grid (12000 cells). Right: SI two-speed WB; in green the initial data. In red the solution on a coarse grid (600 cells), in blue the solution on a semi-coarse grid (4800 cells).

Conclusion

Resume

- Introducing Dynamic splitting scheme we separate the scales.
- Introducing implicit scheme for the acoustic wave we can filter these waves.
- Introducing relaxation we simplify at the maximum the implicit scheme.
- A well-adapted spatial scheme is also very important.
- At the end: we capture the incompressible limit.

Perspectives:

- To avoid some spurious mods: Use compatible discretization for the linear wave part (mimetic/staggered DF, compatible finite element).
- Extension to High Order, MUSCL firstly and after DG and HDG schemes.
- Extension to MHD (main goal). For MHD the relaxation it is ok but the splitting is less clear.

[^0]: ${ }^{1}$ Inria Nancy Grand Est, France
 ${ }^{2}$ IRMA, Strasbourg university, France
 ${ }^{3}$ Marne la Vallée, university, France
 ${ }^{4}$ ENS Lyon, France

