Relaxation Schemes for low-Mach Problems

F. Bouchut³, D. Coulette⁴, <u>E. Franck¹²</u>, P.Helluy¹², L. Navoret¹²

Workshop Cloture ANR MOHYCON, Pornichet, 9 - 11 mars 2022

¹Inria Nancy Grand Est, France ²IRMA, Strasbourg university, France ³Marne la Vallée, university, France ⁴ENS Lyon, France

1/30

Outline

Physical and mathematical context

Full-Implicit relaxation method

Semi-Implicit relaxation method

Well-balanced extension for Ripa model

Physical and mathematical context

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho l_d) = 0\\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

- with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.
- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{a}$.

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho I_d) = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases} \longrightarrow \begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.

- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{\rho}$.

Physic interpretation:

Two important velocity scales: u and c and the ratio (Mach number) M = |u|/c.
 When M tends to zero, we obtain incompressible Euler equation:

$$\begin{cases} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0\\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p}_2 = 0\\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$

In 1D we have just advection of ρ .

Aim: construct an scheme (AP) valid at the limit with a uniform cost.

Second method: Finite volume and DG method

 \Box VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \frac{S\Delta x}{2} \partial_{xx} \rho \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \frac{1}{M^2} \partial_x p = \frac{S\Delta x}{2} \partial_{xx} (\rho u) \\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = \frac{S\Delta x}{2} \partial_{xx} E \end{cases}$$

Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Rusanov scheme $T_f = 2 \ u_0 = 0.05$ and 1000 cells

Second method: Finite volume and DG method

 \Box VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \frac{S\Delta x}{2} \partial_{xx} \rho \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \frac{1}{M^2} \partial_x p = \frac{S\Delta x}{2} \partial_{xx} (\rho u) \\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = \frac{S\Delta x}{2} \partial_{xx} E \end{cases}$$

Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Rusanov scheme $T_f = 5 \ u_0 = 0.02$ and 1000 cells

Inría

Second method: Finite volume and DG method

 \Box VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \frac{S\Delta x}{2} \partial_{xx} \rho \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \frac{1}{M^2} \partial_x p = \frac{S\Delta x}{2} \partial_{xx} (\rho u) \\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = \frac{S\Delta x}{2} \partial_{xx} E \end{cases}$$

Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Lagrange+remap scheme $T_f = 2$ $u_0 = 0.05$ and 1000 cells

Second method: Finite volume and DG method

 \Box VF method + Rusanov flux. Equivalent equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \frac{S\Delta x}{2} \partial_{xx} \rho \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \frac{1}{M^2} \partial_x p = \frac{S\Delta x}{2} \partial_{xx} (\rho u) \\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = \frac{S\Delta x}{2} \partial_{xx} E \end{cases}$$

Problem: S must be larger than $\frac{1}{M}$ for stability. Huge diffusion.

- Example: isolated contact p = 1 and u = 0.1.
- Exact. solution:

$$\partial_t \rho + u_0 \partial_x \rho = 0$$

Rusanov scheme:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{S\Delta x}{2} \partial_{xx} \rho$$

with $S > u_0 + c \approx 1.5$

Upwind scheme for limit:

$$\partial_t \rho + u_0 \partial_x \rho = \frac{u_0 \Delta x}{2} \partial_{xx} \rho$$

Lagrange+remap scheme $T_f = 5$ $u_0 = 0.02$ and 1000 cells

- Same analysis in 2D.
 - □ VF method + Rusanov flux. Equivalent equation:

۷

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \frac{S\Delta x}{2} \Delta \rho \\ \partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \frac{1}{M^2} \nabla p = \frac{S\Delta x}{2} \Delta (\rho \boldsymbol{u}) \\ \partial_t E + \nabla \cdot (E \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u}) = \frac{S\Delta x}{2} \Delta E \end{cases}$$

Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.

Example: isolated contact p = 1, $\nabla \cdot \boldsymbol{u}_0 = 0$ and \boldsymbol{u}_0 constant in time.

Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

- Same analysis in 2D.
 - □ VF method + Rusanov flux. Equivalent equation:

$$\begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \frac{S\Delta x}{2} \Delta \rho \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \frac{1}{M^2} \nabla \rho = \frac{S\Delta x}{\Delta} \Delta \boldsymbol{u} \\ \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho + \gamma \rho \nabla \cdot \boldsymbol{u} = \frac{S\Delta x}{2} \nabla \rho \end{array}$$

Problem: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.

Example: isolated contact p = 1, $\nabla \cdot \boldsymbol{u}_0 = 0$ and \boldsymbol{u}_0 constant in time.

Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

Numerical problem I: time discretization.

Explicit scheme: the CFL condition for low mach flow:

- The fast phenomena: acoustic waves at velocity c
- The important phenomena: transport at velocity u
- \Box Expected CFL: $\Delta t < \frac{\Delta x}{|u|}$, CFL in practice $\Delta t < \frac{\Delta x}{|c|}$
- \Box At the end, we use a Δt divided by *M* compared to the expected Δt

First solution

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to "filter" the fast acoustic waves which are not useful in the low-Mach regime.

Implicit time scheme:

$$M_i \boldsymbol{U}^{n+1} = (I_d + \Delta t A(I_d)) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n$$

We must solve a nonlinear system and after linearization solve some linear systems.

Problem

Direct solver too costly. Approximative conditioning for the iterative solvers:

$$k(M_i) \approx 1 + O\left(\frac{\Delta t}{\Delta x^p M}\right)$$

• We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.

Numerical problem II: time discretization.

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (\rho u) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ E^{n+1} = E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$E^{n+1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho)$$

• Matrix-vector product to compute u^{n+1} .

Numerical problem II: time discretization.

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho_{i}^{p+1} = \rho^{n} \\ (\rho u)^{n+1} = \rho^{n} u^{n} - \Delta t \partial_{x} p^{n+1} + Rhs_{u} \\ \frac{p^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^{n} u^{n} = E^{n} - \Delta t \partial_{x} (p^{n+1} u^{n+1}) = Rhs_{E} \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

Matrix-vector product to compute uⁿ⁺¹.

Numerical problem II: time discretization.

۷

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (\rho u) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho^{h+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ \frac{p^{n+1}}{\gamma - 1} + \frac{1}{2}\rho^n u^n = E^n - \Delta t \partial_x (p^{n+1}u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

Matrix-vector product to compute uⁿ⁺¹.

Conclusion

- **Semi implicit**: only one scale in the implicit symmetric positive operator.
- Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
- Nonlinear solver can have bad convergence for if $\Delta t >> 1$ and $\partial_x p$ not so small.

/ 30

Relaxation method

- Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations. Used to design new schemes.
- Idea: Approximate the model

$$\partial_t \boldsymbol{U} + \partial_x \mathbf{F}(\boldsymbol{U}) = 0$$
, by $\partial_t \mathbf{f} + \mathbf{A}(\mathbf{f}) = \frac{1}{\varepsilon} (Q(\mathbf{f}) - \mathbf{f})$

At the limit and taking Pf = U we obtain

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{\mathsf{F}}(\boldsymbol{U}) = \varepsilon \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + O(\varepsilon^2)$$

Time scheme:

□ we solve

$$\frac{\mathbf{f}^* - \mathbf{f}^n}{\Delta t} + \mathbf{A}(\mathbf{f}^{*,n}) = 0$$

 $\hfill\square$ and after we approximate the stiff source term by

$$\mathbf{f}^{n+1} = \mathbf{f}^* + \omega(Q(\mathbf{f}^*) - \mathbf{f}^*)$$

with $\omega \in]0, 2]$.

Why?

In general, we construct \mathbf{A} with a simpler structure than \mathbf{F} to design numerical flux in FV.

Here, we construct **A** with a simpler structure to design simple implicit scheme.

Full-Implicit relaxation method

Xin-Jin relaxation method

We consider the following nonlinear hyperbolic system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0$$

- with U a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume community) [JX95]-[Nat96]-[ADN00].

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = 0\\ \partial_t \boldsymbol{V} + \lambda^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \partial_x ((\lambda^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + o(\varepsilon^2)$$

□ with A(U) the Jacobian of F(U).

Conclusion: the relaxation system is an approximation of the original hyperbolic system (error in ε).

Main property

- → Relaxation system: "the nonlinearity is local and the non-locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation.
- → Key point: the $\partial_t U = 0$ during the relaxation step. Therefore F(U) is explicit.
- Relaxation step:

$$\begin{cases} \boldsymbol{U}^{n+1} = \boldsymbol{U}^n \\ \boldsymbol{V}^{n+1} = \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^{n+1}) - \boldsymbol{V}^{N+1}) + (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^n) - \boldsymbol{V}^n) \end{cases}$$

Transport step (order 1) :

$$I_d + \begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix} \partial_x \begin{pmatrix} U^{n+1} \\ V^{n+1} \end{pmatrix} = \begin{pmatrix} U^n \\ V^n \end{pmatrix}$$

- \Box We plug the equation on **V** in the equation on **U**.
- □ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

We apply a matrix-vector product

$$\boldsymbol{V}^{n+1} = -\Delta t \lambda^2 \partial_x \boldsymbol{U}^{n+1}$$

Natural extension at the second order in time. In space: FV (used here) or DG/FE.

²/₃₀

Main property

- → Relaxation system: "the nonlinearity is local and the non-locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation.
- → Key point: the $\partial_t U = 0$ during the relaxation step. Therefore F(U) is explicit.
- Relaxation step:

$$\begin{cases} \boldsymbol{U}^{n+1} = \boldsymbol{U}^n \\ \boldsymbol{V}^{n+1} = \theta \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^n) - \boldsymbol{V}^{N+1}) + (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^n) - \boldsymbol{V}^n) \end{cases}$$

Transport step (order 1) :

$$I_d + \begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix} \partial_x \begin{pmatrix} U^{n+1} \\ V^{n+1} \end{pmatrix} = \begin{pmatrix} U^n \\ V^n \end{pmatrix}$$

- \Box We plug the equation on **V** in the equation on **U**.
- □ We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

We apply a matrix-vector product

$$\boldsymbol{V}^{n+1} = -\Delta t \lambda^2 \partial_x \boldsymbol{U}^{n+1}$$

Natural extension at the second order in time. In space: FV (used here) or DG/FE.

²/₃₀

Main property

- → Relaxation system: "the nonlinearity is local and the non-locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation.
- → Key point: the $\partial_t U = 0$ during the relaxation step. Therefore F(U) is explicit.
- Relaxation step:

$$\begin{cases} \boldsymbol{U}^{n+1} = \boldsymbol{U}^n \\ \left(I_d + \theta \frac{\Delta t}{\varepsilon} \right) \boldsymbol{V}^{n+1} = \theta \frac{\Delta t}{\varepsilon} \boldsymbol{F}(\boldsymbol{U}^n) + (1-\theta) \frac{\Delta t}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}^n) - \boldsymbol{V}^n) \end{cases}$$

Transport step (order 1) :

$$I_d + \begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix} \partial_x \begin{pmatrix} U^{n+1} \\ V^{n+1} \end{pmatrix} = \begin{pmatrix} U^n \\ V^n \end{pmatrix}$$

- \Box We plug the equation on **V** in the equation on **U**.
- We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

We apply a matrix-vector product

$$\boldsymbol{V}^{n+1} = -\Delta t \lambda^2 \partial_x \boldsymbol{U}^{n+1}$$

Natural extension at the second order in time. In space: FV (used here) or DG/FE.

²/₃₀

Main property

- → Relaxation system: "the nonlinearity is local and the non-locality is linear".
- → Main idea: splitting scheme between implicit transport and implicit relaxation.
- → Key point: the $\partial_t U = 0$ during the relaxation step. Therefore F(U) is explicit.
- Relaxation step:

$$\begin{cases} \boldsymbol{U}^{n+1} = \boldsymbol{U}^n \\ \boldsymbol{V}^{n+1} = \boldsymbol{V}^n + \underbrace{\frac{\Delta t}{\varepsilon + \theta \Delta t}}_{\omega} (\boldsymbol{F}(\boldsymbol{U}^n) - \boldsymbol{V}^n) \end{cases}$$

Transport step (order 1) :

$$I_{d} + \begin{pmatrix} 0 & 1 \\ \alpha^{2} & 0 \end{pmatrix} \partial_{x} \begin{pmatrix} \boldsymbol{U}^{n+1} \\ \boldsymbol{V}^{n+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}^{n} \\ \boldsymbol{V}^{n} \end{pmatrix}$$

- \Box We plug the equation on V in the equation on U.
- We obtain the implicit part:

$$(I_d - \Delta t^2 \lambda^2 \partial_{xx}) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \partial_x \boldsymbol{V}^n$$

 $\hfill\square$ We apply a matrix-vector product

$$\boldsymbol{V}^{n+1} = -\Delta t \lambda^2 \partial_x \boldsymbol{U}^{n+1}$$

Natural extension at the second order in time. In space: FV (used here) or DG/FE.

Advantages and defauts

Advantages

- If we have N equations, we obtain N independent wave systems.
- Each substep can be solved implicitly with one inversion of constant elliptic problem and one matrix-vector product.
- Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

Error for the first order splitting scheme:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \Delta t \left(\frac{2-\omega}{\omega}\right) \partial_x ((\lambda^2 \boldsymbol{I}_d - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + O(\Delta t^2)$$

In Low Mach regime $\partial_x u \approx M$, $\partial_x p \approx M$ and $c \approx \frac{1}{M}$ consequently

$$\partial_t \rho + \partial_x (\rho u) \approx \Delta t \left(\frac{2-\omega}{\omega} \right) \left(\partial_x (c^2 - u^2) \partial_x \rho \right) + O(\Delta t^2)$$

- **Conclusion**: Huge diffusion for the contact wave.
- In a 2D case:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p \approx \left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2M^2} |\mathbf{u}|^2 \Delta \mathbf{u} + O(\Delta t^2)$$

Advantages and defauts

Advantages

- If we have N equations, we obtain N independent wave systems.
- Each substep can be solved implicitly with one inversion of constant elliptic problem and one matrix-vector product.
- Uniform cost in Mach number with a good-preconditioning (multigrids).

Numerical error

Error for the first order splitting scheme:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \Delta t \left(\frac{2-\omega}{\omega}\right) \partial_x ((\lambda^2 \boldsymbol{I}_d - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + O(\Delta t^2)$$

In Low Mach regime $\partial_x u \approx M$, $\partial_x p \approx M$ and $c \approx \frac{1}{M}$ consequently

$$\partial_t \rho + \partial_x(\rho u) \approx \Delta t \left(\frac{2-\omega}{\omega}\right) u^2 \left(\partial_x(\frac{1}{M^2}-1)\partial_x \rho\right) + o(\Delta t^2)$$

- **Conclusion**: Huge diffusion for the contact wave.
- In a 2D case:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p \approx \left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2M^2} |\mathbf{u}|^2 \Delta \mathbf{u} + O(\Delta t^2)$$

Results: low Mach regime for Euler isothermal

Gresho vortex: The initial data are given by $\rho(t = 0, \mathbf{x}) = 1 + M^2 \rho_2(\mathbf{x})$,

$$\mathbf{u}(t=0,\mathbf{x})=\mathbf{u}_0(\mathbf{x}), \quad ext{ with }
abla \cdot \mathbf{u}_0=0,$$

 $\parallel \mathbf{u}_0 \parallel \approx 1 \text{ and } \rho(t, \mathbf{x}) = \rho_0 + M^2 \rho_2(\mathbf{x}) \text{ and } p(t, \mathbf{x}) = \frac{1}{\gamma M^2}.$

Figure: Norm of the spatial Mach number for the first order implicit Xin-Jin relaxation scheme. Top: M = 0.9, middle: M = 0.5, bottom: M = 0.1.

/30

Results: AP correction for isothermal case

Error:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p \approx \Delta t \left(\frac{2-\omega}{\omega}\right) \frac{\Delta t}{2M^2} \Delta \mathbf{u} + O(\Delta t^2)$$

Idea: take $\omega = 2 - M^2$

Figure: Norm of the spatial Mach number for the first order adaptive implicit Xin-Jin relaxation scheme. Top: M = 0.9, middle top: M = 0.1, middle bottom: M = 0.03 bottom: M = 0.005.

30

Results: AP correction for the full case

- This correction is sufficient ?
- Contact wave in 1D for $\omega = 2$:

Vayring u0

Figure: Density given by second order implicit scheme varying u_0 in the relaxation.

Results for $u_0 = 0.1$ ($M \approx \frac{1}{10}$) and $u_0 = 0.05$ ($M \approx \frac{1}{20}$) are quite convincing. Not for smaller Mach number. Too much dispersive effects.

Conclusion: The correction modify the diffusion to avoid the Mach number dependency but it is not the case in the dispersion (of the splitting and/or time scheme).

Semi-Implicit relaxation method

(nría-

E. Franck

Suliciu-type Relaxation method

- **Problem**: the nonlinearity of the implicit acoustic step generates difficulties.
 - Non-conservative form and acoustic term:

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0 \\ \partial_t p + u \partial_x p + \rho c^2 \partial_x u &= 0 \\ \partial_t u + u \partial_x u + \frac{1}{\rho} \partial_x \rho &= 0 \end{aligned}$$

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.

$$\begin{aligned} &\partial_t \rho + \partial_x (\rho v) = 0 \\ &\partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ &\partial_t E + \partial_x (E v + \Pi v) = 0 \\ &\partial_t \Pi + v \partial_x \Pi + \phi \lambda^2 \partial_x v = \frac{1}{\varepsilon} (p - \Pi) \\ &\partial_t v + v \partial_x v + \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{aligned}$$

Limit:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \varepsilon \partial_x [A \partial_x p] \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = \varepsilon \partial_x [(A u \partial_x p) + B \partial_x u] \\ \partial_t E + \partial_x (E u + p u) = \varepsilon \partial_x \left[A E \partial_x p + A \partial_x \frac{p^2}{2} + B \partial_x \frac{u^2}{2} \right] \end{cases}$$

with $A = \frac{1}{\rho} \left(\frac{\rho}{\phi} - 1 \right)$ and $B = (\rho \phi \lambda^2 - \rho^2 c^2)$.
Stability: $\phi \lambda > \rho c^2$ and $\rho > \phi$.

Avdantage

We keep the conservative form for the original variables and obtain a fully linear acoustic.

/ 30

Splitting

Dynamical splitting

- Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time depending for low-Mach [IDGH2018]
- For large acoustic waves (Mach number not small) we want capture to all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \mathcal{M}^2(t) \Pi) = 0 \\ \partial_t E + \partial_x (Ev + \mathcal{M}^2(t) \Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda_c^2 \partial_x v = 0 \\ \partial_t v + v \partial_x v + \frac{\mathcal{M}^2(t)}{\phi} \partial_x \Pi = 0 \end{cases}, \quad \begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{M}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{M}^2(t)) \partial_x (\Pi v) = 0 \\ \partial_t \eta + \phi (1 - \mathcal{M}^2(t)) \lambda_a^2 \partial_x v = 0 \\ \partial_t v + (1 - \mathcal{M}^2(t)) \frac{1}{\phi} \partial_x \Pi = 0 \end{cases}$$

with $\mathcal{M}(t) \approx max\left(\mathcal{M}_{\textit{min}}, \textit{min}\left(max_{x}\frac{|u|}{c}, 1\right)\right)$

Eigenvalues of Explicit part: $v, v \pm \mathcal{M}(t) \underbrace{\lambda_c}_{\approx c}$. Implicit part 0, $\pm (1 - \mathcal{M}^2(t)) \underbrace{\lambda_a}_{\approx c}$

At the end: we make the projection $\Pi = p$ and v = u (can be viewed as a discretization of the stiff source term).

Implicit time scheme

We introduce the implicit scheme for the "acoustic part":

$$\begin{cases} \rho^{n+1} = \rho^{n} \\ (\rho u)^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} \Pi^{n+1} = (\rho u)^{n} \\ E^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} (\Pi v)^{n+1} = E^{n} \\ \Pi^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \phi \lambda_{a}^{2} \partial_{x} v^{n+1} = \Pi^{n} \\ v^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \frac{1}{\phi} \partial_{x} \Pi^{n+1} = v^{n} \end{cases}$$

■ We plug the equation on v in the equation on Π. We obtain the following algorithm: □ Step 1: we solve

$$(I_d - (1 - \mathcal{M}^2(t_n))^2 \Delta t^2 \lambda_a^2 \partial_{xx}) \Pi^{n+1} = \Pi^n - \Delta t (1 - \mathcal{M}^2(t_n)) \phi \lambda_a^2 \partial_x v^n$$

 \Box Step 2: we compute

$$\mathbf{v}^{n+1} = \mathbf{v}^n - \Delta t (1 - \mathcal{M}^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1}$$

□ Step 3: we compute

$$(\rho u)^{n+1} = (\rho u)^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x \Pi^{n+1}$$

Step 4: we compute

$$E^{n+1} = E^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x(\Pi^{n+1} v^{n+1})$$

Advantage

- We solve only a constant Laplacian. We can assembly matrix once.
- No problem of conditioning, which comes from to the strong gradient of ho

Spatial scheme in 1D

- Idea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
- Main problem of the explicit part: design numerical flux.
- First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.
- Other solution: construct a Godunov scheme for the relaxation system. Principle:
 - \Box eigenvalues: $v \mathcal{E}(t)\lambda_c$, v(x3), $v + \mathcal{E}(t)\lambda_c$
 - Strong invariants of external waves:

$$\partial_t (v \pm \phi \lambda_c \pi) + (v \pm \mathcal{E}(t) \lambda_c) \partial_x (v \pm \phi \lambda_c \pi) = 0$$

Strong invariants of central waves:

$$\partial_t \left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2} \right) + v\partial_x \left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2} \right) = 0$$
$$\partial_t \left(u - \frac{\phi}{\rho}v \right) + v\partial_x \left(u - \frac{\phi}{\rho}v \right) = 0$$
$$\partial_t \left(\rho e + \frac{\pi^2}{2\rho\phi\lambda_c^2} + \frac{(v-u)^2}{2(\frac{\rho}{\phi} - 1)} \right) + v\partial_x \left(\rho e + \frac{\pi^2}{2\rho\phi\lambda_c^2} + \frac{(v-u)^2}{2(\frac{\rho}{\phi} - 1)} \right) = 0$$

- □ **Important**: strong invariant are weak invariant (conserved) on the other waves. **Exemple**: (π, ν) preserved on central wave.
- □ We obtain all the intermediary states using these previous results.

Results 1D I: contact

Smooth contact :

$$\begin{aligned} \rho(t,x) &= \chi_{x < x_0} + 0.1 \chi_{x > x_0} \\ u(t,x) &= 0.01 \\ \rho(t,x) &= 1 \end{aligned}$$

Error

cells	Ex Rusanov	Ex LR	Old relax Rusanov	Relax Rus	Relax PC-FVS
250	0.042	$3.6E^{-4}$	$1.4E^{-3}$	$7.8E^{-4}$	$4.1E^{-4}$
500	0.024	$1.8E^{-4}$	$6.9E^{-4}$	$3.9E^{-4}$	$2.0E^{-4}$
1000	0.013	$9.0E^{-5}$	$3.4E^{-4}$	$2.0E^{-4}$	$1.0E^{-5}$
2000	0.007	$4.5E^{-5}$	$1.7E^{-4}$	$9.8E^{-5}$	$4.9E^{-5}$

- **Old relax**: other relaxation scheme where the implicit Laplacian is not constant and depend of ρ^n .
- Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max(\mid u-c\mid,\mid u+c\mid)$	$2.2E^{-4}$
SI Old relax	$\max(\mid u - \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid, \mid u + \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid)$	0.0075
SI new relaxation	$\max(\mid v - \mathcal{M}(t_n))\lambda \mid, \mid v + \mathcal{M}(t_n))\lambda \mid)$	0.04

Conditioning:

Schemes	Δt	conditioning
Si old relax	0.00757	3000
Si new relax	0.041	9800
Si new relax	0.0208	2400
si new relax	0.0075	320

30

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and final (blue) time .From left to right: $M_0 = 0.5$ ($\Delta t = 1.4E^{-3}$), $M_0 = 0.1$ ($\Delta t = 3.5E^{-4}$), $M_0 = 0.01$ ($\Delta t = 3.5E^{-5}$), $M_0 = 0.001$ ($\Delta t = 3.5E^{-6}$).

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue) times. From left to right: M = 0.5, $\Delta t = 2.5E^{-3}$, M = 0.1, $\Delta t = 2.5E^{-3}$, M = 0.01, $\Delta t = 2.5E^{-3}$.

30

Results in 2D: Kelvin helmholtz

Kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 1, $M_0 = 0.1$. Explicit Lagrange-Remap scheme with 120×120 (left) and 360×360 cells (middle left), SI two-speed relaxation scheme ($\lambda_c = 18$, $\lambda_a = 15$, $\phi = 0.98$) with 42 × 42 (middle right) and 120 × 120 cells (right).

Insta-

Results in 2D: Kelvin helmholtz

Kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 2, $M_0 = 0.01$ with SI two-speed relaxation scheme ($\lambda_c = 180$, $\lambda_a = 150$, $\phi = 0.98$). Left: 120×120 cells. Right: 240×240 cells.

Inia

Well-balanced extension for Ripa model

Ripal model and steady states

- To finish we propose to see if the method can be combined with WB property to solve flow around equilibrium.
- Ripa equation:

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{p(h,\Theta))}{\mathcal{F}_r^2} = -\frac{gh}{\mathcal{F}_r^2} \Theta \partial_x z, \\ \partial_t (h\Theta) + \partial_x (h\Theta u) = 0, \end{cases}$$
(1)

- where h(x, t) is the water height, u(x, t) the velocity, $\Theta(x, t)$ the temperature and z(x) the topography, the pressure law is given by: $p(h, \Theta) = g\Theta \frac{1}{2}h^2$ and the Froud number $\mathcal{F}_r = u/\sqrt{gh}$.
- Steady state:

$$\begin{cases} u = 0, \\ \Theta = Cst, \\ h + z = Cst, \end{cases} \qquad \begin{cases} u = 0, \\ z = Cst, \\ \Theta \frac{h^2}{2} = Cst, \end{cases} \qquad \begin{cases} u = 0, \\ h = Cst, \\ z + \frac{h}{2}\ln(\Theta) = Cst. \end{cases}$$
(2)

Aim: solve flows like

$$u = O(\mathcal{F}_r), \quad \Theta = Cst + O(\mathcal{F}_r), \quad h + z = Cst + O(\mathcal{F}_r),$$
 (3)

with $\mathcal{F}_r \ll 1$. In that case, the perturbation has a small amplitude but moves with a large propagation speed of order $O(1/\mathcal{F}_r)$.

Splitting scheme

Idea: use the same scheme as for Euler equation coupling with WB approach. Splitting:

$$(C) \begin{cases} \partial_t h + \partial_x (hv) = 0, \\ \partial_t (hu) + \partial_x (huv + \mathcal{F}^2 \Pi) = -\mathcal{F}^2 g h \Theta \partial_x z, \\ \partial_t (h\Theta) + \partial_x (h\Theta v) = 0, \\ \partial_t \Pi + v \partial_x \Pi + h_m \lambda^2 \partial_x v = 0 \\ \partial_t v + v \partial_x v + \frac{\mathcal{F}^2}{h_m} \partial_x \Pi = -\mathcal{F}^2 \frac{h}{h_m} g \Theta \partial_x z \end{cases}$$
$$(W) \begin{cases} \partial_t h = 0, \\ \partial_t (hu) + (1 - \mathcal{F}^2) (\partial_x \Pi + hg \partial_x z) = 0, \\ \partial_t h \Theta = 0 \\ \partial_t \Pi + (1 - \mathcal{F}^2) h_m \lambda^2 \partial_x v = 0 \\ \partial_t v + \frac{(1 - \mathcal{F}^2)}{h_m} (\partial_x \Pi + hg \partial_x z) = 0 \end{cases}$$
$$(R) \begin{cases} \partial_t \Pi = \frac{1}{\varepsilon} (p(h, \Theta) - \Pi), \quad \partial_t v = \frac{1}{\varepsilon} (u - v), \end{cases}$$

where $\mathcal{F} = \max\left(\mathcal{F}_{\min},\min\left(\frac{u}{\sqrt{h\Theta g}},1
ight)
ight)$ and

$$\left(rac{h}{h_m}-1
ight)>0,\quad \gamma=\left(h_m\lambda^2-hc^2
ight)>0.$$

Well-balanced property

- **Explicit part**: we plug the source term into the flux (Jin Levermore technic).
- Specific discretization of the steady states at the interface: centered gradient for $\partial_x z$, average mean for h, entropic mean for Θ .
- Implicit part: The final algorithm writes:
 - \Box Step 1: solve

$$\begin{pmatrix} \Pi_j^{n+1} - (1 - \mathcal{F}^2)^2 \Delta t^2 \lambda^2 \frac{\Pi_{j+1}^{n+1} - 2\Pi_j^{n+1} + \Pi_{j-1}^{n+1}}{\Delta x^2} \end{pmatrix} = \\ \Pi_j^n - \Delta t (1 - \mathcal{F}^2) \lambda^2 \frac{v_{j+1}^n - v_{j-1}^n}{2\Delta x} + (1 - \mathcal{F}^2)^2 \Delta t^2 \lambda^2 \frac{1}{\Delta x} \left(S_{j+\frac{1}{2}}^n - S_{j-\frac{1}{2}}^n \right),$$

with

$$S_{j+rac{1}{2}}^n = h_{j+rac{1}{2}}^n \Theta_{j+rac{1}{2}}^n rac{z_{j+1}-z_j}{\Delta x},$$

computed as for the explicit.

□ Step 2: compute

$$v_{j}^{n+1} = v_{j}^{n} - (1 - \mathcal{F}^{2}) \frac{\Delta t}{h_{m}} \frac{\Pi_{j+1}^{n+1} - \Pi_{j-1}^{n+1}}{2\Delta x} - (1 - \mathcal{F}^{2}) \frac{\Delta t}{h_{m}} \frac{g}{2} \left(S_{j+\frac{1}{2}}^{n} - S_{j-\frac{1}{2}}^{n} \right),$$

$$(hu)_{j}^{n+1} = (hu)_{j}^{n} - \Delta t (1 - \mathcal{F}^{2}) \frac{\Pi_{j+1}^{n+1} - \Pi_{j-1}^{n+1}}{2\Delta x} - \frac{g\Delta t}{2} (1 - \mathcal{F}^{2}) \left(S_{j+\frac{1}{2}}^{n} - S_{j-\frac{1}{2}}^{n} \right).$$

 \Box If the steady state is preserved at time *n* it still be preserved after an implicit step

/ 30

Numerical results

WB property

$$\begin{array}{ll} (ST1) & z(x) = 0.1 + G_{x_0,\sigma}(x), & h_0(x) = 8.0 - z(x), & \Theta_0(x) = 1, \\ (ST2) & z(x) = 1, & h_0(x) = 1.0 + 0.2 G_{x_0,\sigma}(x), & \Theta_0(x) = \frac{1}{gh_0(x)^2}, \\ (ST3) & z(x) = x(1-x), & h_0(x) = 1, & \Theta_0(x) = 2e^{-x(1-x)}. \end{array}$$

$\Delta t/Error$	Tests	Rusanov	SI WB Ex	SI two-speed WB Imp
	Error h	$1.5E^{-2}$	$1.5E^{-17}$	$3.6E^{-13}$
ST1	Error u	$5.9E^{-3}$	$1.5E^{-15}$	$6.7E^{-13}$
511	Error Θ	0.0	0.0	0.0
	Δt	$8.1E^{-4}$	$7.1E^{-4}$	$1.42E^{-1}$
	Error h	$9.3E^{-2}$	0.0	$8.4E^{-12}$
ST2	Error u	$7.3E^{-9}$	0.0	$1.3E^{-13}$
512	Error Θ	0.13	$1.8E^{-17}$	$6.0E^{-12}$
	Δt	$2.5E^{-3}$	$2.3E^{-3}$	$4.7E^{-1}$
	Error h	0.59	0.0	$1.38E^{-12}$
ST3	Error u	0.65	$1.6E^{-15}$	$4.4E^{-14}$
515	Error Θ	0.19	0.0	$1.4E^{-12}$
	Δt	$2.4E^{-3}$	$1.8E^{-3}$	0.49

²⁹/₃₀

Numerical results

Wave perturbation:

Figure: Left: explicit Rusanov scheme; In green the initial data. In red the solution on a semi-coarse grid (1200 cells), in blue the solution on a fine grid (12000 cells). Right: SI two-speed WB; in green the initial data. In red the solution on a coarse grid (600 cells), in blue the solution on a semi-coarse grid (4800 cells).

30

Conclusion

Resume

- Introducing Dynamic splitting scheme we separate the scales.
- Introducing implicit scheme for the acoustic wave we can filter these waves.
- Introducing relaxation we simplify at the maximum the implicit scheme.
- A well-adapted spatial scheme is also very important.
- At the end: we capture the incompressible limit.

Perspectives:

- To avoid some spurious mods: Use compatible discretization for the linear wave part (mimetic/staggered DF, compatible finite element).
- Extension to High Order, MUSCL firstly and after DG and HDG schemes.
- Extension to MHD (main goal). For MHD the relaxation it is ok but the splitting is less clear.

