Estimation of Extreme Risk Regions Under Multivariate Regular Variation

Juan-Juan Cai1 John H. J. Einmahl2 Laurens de Haan3

1Technology University of Delft
2Tilburg University
3University of Lisbon and Erasmus University Rotterdam

University of Strasbourg, December 2014
Let \mathbf{Z} be a random vector on $\mathbb{R}^d \ (d \geq 2)$.

A risk region is a set Q such that $\mathbb{P}(\mathbf{Z} \in Q) = p$, extremely small.
Let \(Z \) be a random vector on \(\mathbb{R}^d \) \((d \geq 2)\).

A risk region is a set \(Q \) such that \(\mathbb{P}(Z \in Q) = p \), extremely small.

Events in \(Q \) hardly happen. The interest of these events originates from their potential large consequences.
Let Z be a random vector on \mathbb{R}^d ($d \geq 2$).

A risk region is a set Q such that $\mathbb{P}(Z \in Q) = p$, extremely small.

Events in Q hardly happen. The interest of these events originates from their potential large consequences.
Suppose \(Z \) has probability density \(f \). Denote the corresponding probability measure with \(P \).

The risk regions of interest are defined in this form:

\[
Q = \{ z \in \mathbb{R}^d : f(z) \leq \beta \},
\]

where \(\beta \) is an unknown number such that \(PQ = p \).
Suppose Z has probability density f. Denote the corresponding probability measure with P.

The risk regions of interest are defined in this form:

$$Q = \{z \in \mathbb{R}^d : f(z) \leq \beta\},$$

where β is an unknown number such that $PQ = p$.

$$Q^c = \{z \in \mathbb{R}^d : f(z) > \beta\}.$$

Q is the set of less likely points.
The goal is to estimate Q based on a random sample from Z. The sample size is n.

For asymptotics, we consider $p = p(n) \rightarrow 0$, as $n \rightarrow \infty$.

We write:

$$Q_n = \{ z \in \mathbb{R}^d : f(z) \leq \beta_n \}.$$
Main Assumption

Multivariate Regular Variation

There exist a positive number α and a positive function q, such that

$$\lim_{t \to \infty} \frac{\mathbb{P}(\|Z\| > tx)}{\mathbb{P}(\|Z\| > t)} = x^{-\alpha}, \quad \text{for all } x > 0,$$

and

$$\lim_{t \to \infty} \frac{f(tz)}{t^{-d} \mathbb{P}(\|Z\| > t)} = q(z), \quad \text{for all } z \neq 0,$$

where $\| \cdot \|$ denotes the L_2 norm.
Main Assumption

Multivariate Regular Variation

There exist a positive number α and a positive function q, such that

$$\lim_{t \to \infty} \frac{P(\|Z\| > tx)}{P(\|Z\| > t)} = x^{-\alpha}, \quad \text{for all } x > 0,$$

and

$$\lim_{t \to \infty} \frac{f(tz)}{t^{-d}P(\|Z\| > t)} = q(z), \quad \text{for all } z \neq 0,$$

where $\| \cdot \|$ denotes the L_2 norm.

1. Examples: Cauchy distributions and all elliptical distributions with a heavy tailed radius.
The distribution of the radius has a right heavy tail. α is the tail index.

q is homogenous: $q(az) = a^{-d-\alpha}q(z)$.

Define $\nu(B) = \int_B q(z)dz$. Then, for a Borel set B with positive distance from the origin,

$$\lim_{t \to \infty} \frac{\mathbb{P}(Z \in tB)}{\mathbb{P}(\|Z\| \geq t)} = \nu(B).$$
Recall that we try to estimate

$$Q_n = \{z \in \mathbb{R}^d : f(z) \leq \beta_n \},$$

such that $$\mathbb{P}(Z \in Q_n) = p.$$
Recall that we try to estimate

\[Q_n = \{ z \in \mathbb{R}^d : f(z) \leq \beta_n \} , \]

such that \(\mathbb{P}(Z \in Q_n) = p \).

Link \(Q_n \) to \(S = \{ z \in \mathbb{R}^d : q(z) \leq 1 \} \).
Recall that we try to estimate

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \leq \beta_n \} ,$$

such that \(\mathbb{P}(\mathbf{Z} \in Q_n) = p \).

Link \(Q_n \) to \(S = \{ \mathbf{z} \in \mathbb{R}^d : q(\mathbf{z}) \leq 1 \} \).

Inflate \(S \) with the factor \(u_n \): \(\tilde{Q}_n := u_n S \), where \(u_n \) is such that \(\mathbb{P}(\|\mathbf{Z}\| > u_n) = \frac{\nu(S)}{p} \).
Recall that we try to estimate

\[Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \leq \beta_n \}, \]

such that \(\mathbb{P}(\mathbf{Z} \in Q_n) = p \).

Link \(Q_n \) to \(S = \{ \mathbf{z} \in \mathbb{R}^d : q(\mathbf{z}) \leq 1 \} \).

Inflate \(S \) with the factor \(u_n : \tilde{Q}_n := u_n S \), where \(u_n \) is such that \(\mathbb{P}(\|\mathbf{Z}\| > u_n) = \frac{\nu(S)}{p} \).
Main Result

\tilde{Q}_n is a good approximation of Q_n. We show that as $n \to \infty$,

$$\frac{P(Q_n \Delta \tilde{Q}_n)}{p} \to 0,$$

where Δ denotes the symmetric difference. $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

To estimate Q_n is now to estimate \tilde{Q}_n.

Estimation
Main Result

Estimation

Estimation of $\tilde{Q}_n = u_n S$

- Suppose we have Z_1, \ldots, Z_n i.i.d copies of Z.
- Write $R_i = \| Z_i \|$ and $W_i = \frac{Z_i}{R_i}$, $i = 1, 2, \ldots, n$.
- Put $\Theta := \{ z : \| z \| = 1 \}$. Then $W_i \in \Theta$, $i = 1, 2, \ldots, n$.
Estimation of u_n

- Note that u_n is the tail quantile of R_1: $\mathbb{P}(R_1 > u_n) = \frac{\nu(S)}{p}$.

- Suppose that we know $\nu(S)$. Applying the univariate extreme value technique, we define the estimator given by

$$\hat{u}_n = R_{n-k,n} \left(\frac{k\nu(S)}{np} \right)^{1/\hat{\alpha}},$$

where $k = k(n)$ such that $k \to \infty$ and $k/n \to 0$, as $n \to \infty$ and $R_{n-k,n}$ is the $(n-k)$-th order statistics of $\{R_i, i = 1, \ldots, n\}$.

Cai, Einmahl, de Haan
Multivariate Extreme Risk Regions

10 / 25
Estimation of u_n

- Note that u_n is the tail quantile of R_1: $\mathbb{P}(R_1 > u_n) = \frac{\nu(S)}{p}$.
- Suppose that we know $\nu(S)$. Applying the univariate extreme value technique, we define the estimator given by

$$\hat{u}_n = R_{n-k,n} \left(\frac{k\nu(S)}{np} \right)^{1/\hat{\alpha}},$$

where $k = k(n)$ such that $k \to \infty$ and $k/n \to 0$, as $n \to \infty$ and $R_{n-k,n}$ is the $(n - k)$-th order statistics of $\{R_i, i = 1, \ldots, n\}$.
- We need to estimate $\nu(S)$. It is sufficient to estimate q.

Estimation of q

- For a Borel set $A \in \Theta$, $\lim_{t \to \infty} P(W_1 \in A | R_1 > t) =: \Psi(A)$ exists.
- The density of Ψ exists: $\psi(w) = \frac{1}{\alpha} q(w), w \in \Theta$.
- We propose a kernel density estimator of ψ making use of observations with big radius.
Estimation of q

- For a Borel set $A \in \Theta$, $\lim_{t \to \infty} P(W_1 \in A | R_1 > t) =: \Psi(A)$ exists.
- The density of Ψ exists: $\psi(w) = \frac{1}{\alpha} q(w)$, $w \in \Theta$.
- We propose a kernel density estimator of ψ making use of observations with big radius.
- As $n \to \infty$,

$$\sup_{w \in \Theta} \left| \hat{\psi}(w) - \psi(w) \right| \overset{P}{\to} 0.$$
Estimation of q

- For a Borel set $A \in \Theta$, $\lim_{t \to \infty} \mathbb{P}(W_1 \in A|R_1 > t) =: \Psi(A)$ exists.
- The density of Ψ exists: $\psi(w) = \frac{1}{\alpha} q(w)$, $w \in \Theta$.
- We propose a kernel density estimator of ψ making use of observations with big radius.
- As $n \to \infty$,
 \[
 \sup_{w \in \Theta} \left| \hat{\psi}(w) - \psi(w) \right| \overset{\mathbb{P}}{\to} 0.
 \]
- Then $\hat{q} = \hat{\alpha} \hat{\psi}$. The estimations of S and $\nu(S)$ follow directly.
Main Result

Estimation

We obtain our estimator:

\[\hat{Q}_n = \hat{u}_n \hat{S} = R_{n-k,n} \left(\frac{k \nu(S)}{np} \right)^{1/\alpha} \{ z : \hat{q}(z) < 1 \} . \]
We obtain our estimator:

\[\hat{Q}_n = \hat{u}_n \hat{S} = R_{n-k,n} \left(\frac{k\nu(S)}{np} \right)^{1/\alpha} \left\{ z : \hat{q}(z) < 1 \right\}. \]

Theorem

Under some regular conditions, we have, as \(n \to \infty \),

\[P \left(\frac{\hat{Q}_n \triangle Q_n}{p} \right) \overset{\mathbb{P}}{\to} 0, \]

Here \(\triangle \) denotes the symmetric difference.
Bivariate Cauchy Distribution

Data are simulated from the bivariate Cauchy distribution. $n = 5000$. The area outside the solid line is the true risk region. $PQ = 10^{-4}$. The area outside the dotted curve corresponds to the estimated risk region.
Bivariate Cauchy Distribution

Data are simulated from the bivariate Cauchy distribution. \(n = 5000 \).
Bivariate Cauchy Distribution

- Data are simulated from the bivariate Cauchy distribution. \(n = 5000 \).
- The area outside the solid line is the true risk region. \(PQ = 10^{-4} \) .
Bivariate Cauchy Distribution

- Data are simulated from the bivariate Cauchy distribution. \(n = 5000 \).
- The area outside the solid line is the true risk region. \(PQ = 10^{-4} \).
- The area outside the dotted curve corresponds to the estimated risk region.
Bivariate Cauchy Distribution

- Data are simulated from the bivariate Cauchy distribution. \(n = 5000 \).
- The area outside the solid line is the true risk region. \(PQ = 10^{-4} \).
- The area outside the dotted curve corresponds to the estimated risk region.
Clover Density
Clover Density

Clover Density, n=5000

$n = 5000$.
Clover Density

- $n = 5000$.
- The area outside the solid line is the true risk region, Q.
 \[PQ = 10^{-4} \]
Clover Density

- $n = 5000$.
- The area outside the solid line is the true risk region, Q.
- $ PQ = 10^{-4}$.
- The area outside the dotted curve corresponds to the estimated risk region.
Elliptical Density, n=5000, p=1/2000, 1/10000
Asymmetric Shifted Density, n=5000, p=1/2000, 1/10000
Two competitors

A “Parametric” estimator

- Estimate $\nu(S)$ and S by assuming
 $\psi(w_1, w_2) = \psi(\cos \theta, \sin \theta) = (4\pi)^{-1}(2 + \sin(2(\theta - \rho))))$, $\theta \in [0, 2\pi]$.
- The method works for bivariate distributions only.

A non-parametric estimator

- Compute the smallest ellipsoid containing half of the data, the so-called MVE.
- Inflate this ellipsoid such that largest observation lies on its boundary.
- It works for $p = 1/n$ only.
We simulate 100 data sets from four bivariate distributions and the trivariate Cauchy distribution. Each data set is of size 5000.

The main theorem states \(\frac{P(\hat{Q}_n \triangle Q_n)}{p} \to 0 \).
\[\tilde{e}_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000} \text{ and } p_2 = \frac{1}{10000}. \]
\[\tilde{e}_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000}. \]
\[\tilde{e}_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000} \text{ and } p_2 = \frac{1}{10000}. \]
\[e_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \quad p_1 = 1/5000 \text{ and } p_2 = 1/10000. \]
\[e_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \quad p_1 = 1/5000. \]
\[e_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \quad p_1 = 1/5000 \text{ and } p_2 = 1/10000. \]
\[e_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000} \text{ and } p_2 = \frac{1}{10000}. \]

\[e_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000}. \]

\[e_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \quad p_1 = \frac{1}{5000} \text{ and } p_2 = \frac{1}{10000}. \]
We apply our method to foreign exchange rate data.

- **Data**: daily exchange rates of yen-dollar and pound-dollar, dating from 4 Jan 1999 to 31 July 2009. $n = 2665$
- We consider the log-return.

$$X_{t,i} = \log \frac{Y_{t,i}}{Y_{t-1,i}}$$

where $t = 1, \ldots, 2664$, $i = 1, 2$ and $Y_{t,1}$ is the daily exchange rate of yen-dollar and $Y_{t,2}$ pound-dollar.
\[\hat{\alpha} = 3.9 \]
\(\hat{\alpha} = 3.9 \)
\(\hat{\alpha} = 3.9 \)
\(\hat{\alpha} = 3.9 \)
Ordering multivariate extreme observations

- For an extreme observation Z_i, we associate a p-value given by

$$H(Z_i) = P(z : f(z) \leq f(Z_i)).$$

- Estimation of $H(Z_i)$ follows easily from the current procedure.
- Order multivariate extremes accordingly.
Outlier detection

An issue: It is not clear how to formulate an alternative hypothesis.