Sujet 9: Tests de comparaison de deux moyennes à deux échantillons indépendants

• Quelques rappels sur la définition mathématique des tests d'hypothèses:

Soit X une variable aléatoire à valeurs dans un ensemble \mathcal{X} , de loi P_{θ} où $\theta \in \Theta$. Supposons que l'on veuille effectuer un test statistique d'hypothèses portant sur θ . On formule deux hypothèses contradictoires notées H_0 et H_1 dont on suppose que l'une et seulement l'une est vraie. Mathématiquement, formuler H_0 et H_1 revient à choisir deux sous-ensembles disjoints de Θ notés Θ_0 et de Θ_1 de sorte que l'hypothèse H_0 s'écrit alors $\{\theta_0 \in \Theta_0\}$ tandis que l'hypothèse H_1 s'écrit $\{\theta_1 \in \Theta_1\}$. Soit $(X_1, ..., X_n)$ un échantillon i.i.d. issu d'une variable parente X et soit $(x_1, ..., x_n) \in \mathcal{X}^n$ une réalisation de $(X_1, ..., X_n)$. Construire un test de H_0 contre H_1 revient à construire une région critique \mathcal{R} de telle sorte que l'on rejette H_0 lorsque $(x_1, ..., x_n) \in \mathbb{R}$ et que l'on s'assure que le risque de 1ère espèce est inférieur ou égal à α .

Dans ce cadre, on parle de fonction de risque de 1ère espèce définie sur Θ_0 pour

$$\theta \to \alpha(\theta) = \mathbb{P}_{\theta}((X_1, ..., X_n) \in \mathcal{R})$$
.

On appelle **taille du test** la probabilité maximale de rejeter H_0 alors que H_0 est vraie:

$$\sup_{\theta \in \Theta_0} \left\{ \mathbb{P}_{\theta}((X_1, ..., X_n) \in \mathcal{R}) \right\}.$$

On dit qu'un test est de **niveau** α si sa taille est égale à α ie si

$$\sup_{\theta \in \Theta_0} \{ \mathbb{P}_{\theta}((X_1, ..., X_n) \in \mathcal{R}) \} = \alpha.$$

On parle de fonction de risque de 2nde espèce définie sur Θ_1 pour

$$\theta \to \beta(\theta) = \mathbb{P}_{\theta}((X_1, ..., X_n) \notin \mathcal{R}).$$

On parle de fonction puissance définie sur Θ_1 pour

$$\theta \to 1 - \beta(\theta) = \mathbb{P}_{\theta}((X_1, ..., X_n) \in \mathcal{R})$$
.

• Tests de comparaison de deux moyennes à deux échantillons indépendants:

Soient deux variables X et Y indépendantes dont on souhaite comparer les valeurs moyennes sur la base d'échantillons i.i.d. Formellement, on souhaite tester l'hypothèse nulle H_0 : $\mathbb{E}[X] = \mathbb{E}[Y]$ contre l'hypothèse alternative H_1 : $\mathbb{E}[X] \neq \mathbb{E}[Y]$ au niveau α .

Soit (X_1, \ldots, X_{n_X}) un échantillon i.i.d. distribué comme la variable X. Soit (Y_1, \ldots, Y_{n_Y}) un échantillon i.i.d. distribué comme la variable Y, indépendant de (X_1, \ldots, X_{n_X}) . Soit

$$\overline{X}_{n_X} = \frac{1}{n_X} \sum_{i=1}^{n_X} X_i$$

un estimateur de $\mathbb{E}[X]$ et soit

$$\overline{Y}_{n_Y} = \frac{1}{n_Y} \sum_{i=1}^{n_Y} Y_i$$

un estimateur de $\mathbb{E}[Y]$. Notons

$$S_{X,n_X}^{'2} = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (\overline{X}_{n_X} - X_i)^2$$

un estimateur de Var(X) et

$$S_{Y,n_Y}^{'2} = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (\overline{Y}_{n_Y} - Y_i)^2$$

un estimateur de Var(Y). Notons également

$$S_{n_X+n_Y}^{'2} = \frac{(n_X - 1)S_{X,n_X}^{'2} + (n_Y - 1)S_{Y,n_Y}^{'2}}{n_X + n_Y - 2} = \frac{1}{n_X + n_Y - 2} \left(\sum_{i=1}^{n_X} \left(\overline{X}_{n_X} - X_i \right)^2 + \sum_{i=1}^{n_Y} \left(\overline{Y}_{n_Y} - Y_i \right)^2 \right)$$

• 1er cas: $n_X \ge 30$ et $n_Y \ge 30$:

Soit la statistique de test

$$T_{n_X,n_Y} = \frac{\overline{X}_{n_X} - \overline{Y}_{n_Y}}{\sqrt{\frac{S_{X,n_X}'^2}{n_X} + \frac{S_{Y,n_Y}'^2}{n_Y}}}.$$

La région critique est

$$\mathcal{R} = \{(x_1, \dots, x_{n_X}) \in \mathbb{R}^{n_X}, (y_1, \dots, y_{n_Y}) \in \mathbb{R}^{n_Y} : |t_{n_X, n_Y}| > F_{\mathcal{N}(0, 1)}^{-1}(1 - \alpha/2)\}$$

en notant $F_{\mathcal{N}(0,1)}^{-1}(1-\alpha/2)$ le quantile d'ordre $(1-\alpha/2)$ de la loi gaussienne centrée réduite.

• 2ème cas: $X \sim \mathcal{N}(\mathbb{E}[X], \sigma^2)$ et $Y \sim \mathcal{N}(\mathbb{E}[Y], \sigma^2)$, autrement écrit les deux populations sont gaussiennes et de variances identiques (on parle alors d'homoscédasticité): Soit la statistique de test

$$T_{n_X,n_Y} = \sqrt{\frac{n_X n_Y}{n_X + n_Y}} \frac{\overline{X}_{n_X} - \overline{Y}_{n_Y}}{\sqrt{S'^2_{n_X + n_Y}}}.$$

La région critique est

$$\mathcal{R} = \{(x_1, \dots, x_{n_X}) \in \mathbb{R}^{n_X}, (y_1, \dots, y_{n_Y}) \in \mathbb{R}^{n_Y} : |t_{n_X, n_Y}| > F_{T(n_X + n_Y - 2)}^{-1}(1 - \alpha/2)\}$$

en notant $F_{T(n_X+n_Y-2)}^{-1}(1-\alpha/2)$ le quantile d'ordre $(1-\alpha/2)$ de la loi de Student à (n_X+n_Y-2) degrés de liberté.

• 3ème cas: $X \sim \mathcal{N}(\mathbb{E}[X], \sigma_X^2)$ et $Y \sim \mathcal{N}(\mathbb{E}[Y], \sigma_Y^2)$, autrement écrit les deux populations sont gaussiennes et de variances différentes (on parle alors d'hétéroscédasticité): La question de comparer les moyennes de deux échantillons gaussiens indépendants lorsque les variances diffèrent porte le nom de problème de Behrens-Fisher (d'après l'astronome Berhens

qui s'y est intéressé en 1929 et le statisticien Fisher qui s'y est intéressé en 1935). Il existe maintenant des solutions exactes à ce problème mais ici nous ne considérons que deux solutions approchées. Soit la statistique de test

$$T_{n_X,n_Y} = \frac{\overline{X}_{n_X} - \overline{Y}_{n_Y}}{\sqrt{\frac{S'_{X,n_X}^2}{n_X} + \frac{S'_{Y,n_Y}^2}{n_Y}}}.$$

La solution de Hsu-Scheffé consiste à prendre la région critique

$$\mathcal{R} = \{(x_1, \dots, x_{n_X}) \in \mathbb{R}^{n_X}, (y_1, \dots, y_{n_Y}) \in \mathbb{R}^{n_Y} : |t_{n_X, n_Y}| > F_{T(\min(n_X, n_Y) - 1)}^{-1}(1 - \alpha/2)\}$$

en notant $F_{T(\min(n_X,n_Y)-1)}^{-1}(1-\alpha/2)$ le quantile d'ordre $(1-\alpha/2)$ de la loi de Student à $(\min(n_X,n_Y)-1)$ degrés de liberté.

La solution d'Aspin-Welch consiste à prendre la région critique

$$\mathcal{R} = \{(x_1, \dots, x_{n_X}) \in \mathbb{R}^{n_X}, (y_1, \dots, y_{n_Y}) \in \mathbb{R}^{n_Y} : |t_{n_X, n_Y}| > F_{T(\nu)}^{-1}(1 - \alpha/2)\}$$

où ν est l'entier le plus proche de

$$\frac{\left(S_{X,n_X}^{'2}/n_X + S_{Y,n_Y}^{'2}/n_Y\right)^2}{\left(S_{X,n_X}^{'2}/n_X\right)^2 \times \frac{1}{n_X - 1} + \left(S_{Y,n_Y}^{'2}/n_Y\right)^2 \times \frac{1}{n_Y - 1}}$$

et en notant $F_{T(\nu)}^{-1}(1-\alpha/2)$ le quantile d'ordre $(1-\alpha/2)$ de la loi de Student à ν degrés de liberté.

\bullet Test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon):

Il s'agit à proprement parler d'un test de position. Soient deux variables X et Y indépendantes de fonction de répartition respective F et G que l'on suppose toutes deux continues. On suppose de plus que $G(x) = F(x - \delta)$ pour tout $x \in \mathbb{R}$. On souhaite comparer les positions respectives de X et Y sur la base d'échantillons i.i.d. Formellement, on souhaite tester l'hypothèse nulle H_0 : $\delta = 0$ contre l'hypothèse alternative H_1 : $\delta \neq 0$ au niveau α . Sous H_0 , les deux échantillons à comparer sont donc issus de la même distribution.

Soit (X_1, \ldots, X_{n_X}) un échantillon i.i.d. distribué comme la variable X. Soit (Y_1, \ldots, Y_{n_Y}) un échantillon i.i.d. distribué comme la variable Y, indépendant de (X_1, \ldots, X_{n_X}) . Ce test repose donc sur l'idée que, si H_0 est vraie, en mélangeant les valeurs obtenues dans les deux échantillons et en les ordonnant alors par valeurs croissantes, on doit obtenir un mélange homogène des deux échantillons. Pour $i \in \{1, \ldots, n_X\}$, notons R_{X_i} le rang de X_i dans l'échantillon aggloméré $(X_1, \ldots, n_Y, 1, \ldots, n_Y)$. De même, pour $j \in \{1, \ldots, n_Y\}$, notons R_{Y_j} le rang de Y_j dans l'échantillon aggloméré $(X_1, \ldots, n_Y, 1, \ldots, n_Y)$. Soit la statistique de test de la somme des rangs (proposée par Wilcoxon)

$$W_{n_X,n_Y} = \sum_{j=1}^{n_Y} R_{Y_j}.$$

Par des calculs directs (mais non triviaux), on peut montrer que $\mathbb{E}_{\delta=0}[W_{n_X,n_Y}] = \frac{n_Y(n_X+n_Y+1)}{2}$

et que $\operatorname{Var}_{\delta=0}(W_{n_X,n_Y}) = \frac{n_X n_Y (n_X + n_Y + 1)}{12}$. La loi de W_{n_X,n_Y} sous H_0 ne dépend que de n_X et n_Y et est tabulée. Notons w_{n_X,n_Y} la réalisation de W_{n_X,n_Y} . La région critique est

$$\mathcal{R} = \{(x_1, \dots, x_{n_X}, y_1, \dots, y_{n_Y}) \in \mathbb{R}^{n_X + n_Y} : w_{n_X, n_Y} < k_{\alpha/2, n_X, n_Y} \text{ ou } w_{n_X, n_Y} > K_{\alpha/2, n_X, n_Y} \}$$

où $k_{\alpha/2,n_X,n_Y}$ et $K_{\alpha/2,n_X,n_Y}$ satisfont respectivement $\mathbb{P}_{\delta=0}(W_{n_X,n_Y} < k_{\alpha/2,n_X,n_Y}) = \alpha/2$ et $\mathbb{P}_{\delta=0}(W_{n_X,n_Y} > K_{\alpha/2,n_X,n_Y}) = \alpha/2$ et sont tabulés ou déterminés par ordinateur. De plus, dès lors que $n_X \geq 8$ et $n_Y \geq 8$, on peut approximer la loi de W_{n_X,n_Y} sous H_0 par la loi gaussienne.

NB: pour information, ce test est parfois présenté dans la version U de Mann-Whitney. La statistique de test U_{n_X,n_Y} compte le nombre de couples (X_i,Y_j) tels que Y_jX_i a un rang supérieur à X_i :

$$U_{n_X,n_Y} = \sum_{i=1}^{n_X} \sum_{i=1}^{n_Y} I(R_{Y_i} > R_{X_i}).$$

On peut montrer que

$$W_{n_X,n_Y} = U_{n_X,n_Y} + \frac{n_Y(n_Y+1)}{2}.$$

La fonction wilcox.test du logiciel R implémente les versions exacte et asymptotique de ce test.

Exercice 1.

- 1. Illustrer de manière empirique à partir de données simulées le comportement de la taille du test.
- 2. Illustrer de manière empirique à partir de données simulées le comportement de la fonction puissance.
- 3. Tests paramétriques: Illustrer de manière empirique à partir de données simulées la robustesse ou au contraire la sensibilité du test aux hypothèses sous-jacentes.
- 4. Tests non-paramétriques: faire varier la loi servant à générer les données ainsi que la valeur de son/ses paramètre(s).

Vous veillerez à faire varier tour à tour:

- le risque de 1ère espèce α ,
- la taille de l'échantillon n.