Université de Strasbourg

MPA Algèbre S1

P. Guillot, bureau 314, guillot@math.unistra.fr

3 – Polynômes

Premiers calculs

Exercice 1 (Somme et produit de polynômes et leur degrés). Étant donnés deux polynômes $P,Q\in\mathbb{K}[X]$ exprimer les degrés de (-10)P, de P+Q et $P\cdot Q$ en fonction de deg(P) et deg(Q).

Exercice 2. Montrer que, si \mathbb{K} est un corps, alors $\mathbb{K}[X]$ est un anneau intègre.

Exercice 3. Soit $P_n(X) = (1+X)(1+X^2)(1+X^4)(1+X^8)\cdots(1+X^{2^n})$. Calculer les coefficients de P_n . Pouvez-vous le faire sans récurrence?

Exercice 4. Pour $n \neq 0$, trouver toutes les racines du polynôme $P_n(X) = 1 - X + \frac{X(X-1)}{2!} - \dots + (-1)^n \frac{X(X-1) \dots (X-n+1)}{n!}$. Indication : commencer par regarder $P_n(n)$.

DIVISION EUCLIDIENNE DE POLYNÔMES

Exercice 5. Trouvez le quotient et le reste des divisions suivantes : (2X+5) par (3X+1), (X^2-2X) par (X-2), (X^2+6X+9) par (X+3), (X^3-2X+3) par (X^2-1) , (X^3-4X^2+2) par (X^2+i) , $(X^4-2X^2+17X-10)$ par (X^4-3X^2+1) .

Exercice 6. Déterminer p et q dans \mathbb{R} pour que $P=X^3+pX+q$ soit divisible par $Q=X^2+3X-1$.

Exercice 7. Soit P un polynôme tel que les restes de la division euclidienne de P par (X-1),(X-2) et (X-3) soient 3,7 et 13 respectivement. Déterminer le reste de la division euclidienne de P par (X-1)(X-2)(X-3).

Exercice 8. Soit $t \in \mathbb{R}$ un paramètre, $n \in \mathbb{N}$, et $P_n(X) = (\sin(t)X + \cos(t))^n$. Déterminer le reste de la division euclidienne de P par $(X^2 + 1)$.

DÉRIVÉES DE POLYNÔMES

Par définition, si

$$P = a_0 + a_1 X + \dots + a_n X^n \,,$$

sa dérivée est

$$P' = a_1 + 2a_2X + \dots + na_nX^{n-1}$$
.

Les règles habituelles s'appliquent, notamment (PQ)' = P'Q + PQ', comme vous pouvez le montrer à titre d'exercice (pour les polynômes à coefficients dans $\mathbb C$, on ne peut pas le déduire de ce qu'on sait déjà des dérivées, puisque vous n'avez pas vu de théorie de la dérivation sur $\mathbb C$).

Exercice 9. Déterminer tous les polynômes P de $\mathbb{R}[X]$, non nuls, tels que $(X^2+1)P''(X)-6P=0$ et P(1)=2.

Exercice 10. Soit P un polynôme et $a \in \mathbb{K}$. Montrer que les deux énoncés ci-dessous sont équivalents :

- 1. $(X-a)^m$ divise P, pour un certain $m \geq 2$.
- 2. P(a) = 0 et P'(a) = 0.

Dans ce cas on dit que a est une racine multiple de P. Cette notion et le résultat de l'exercice sont à connaître absolument.

Exercice 11 (Amélioration du résultat de l'exercice précédent). Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \geq 1$ un entier. Montrer que les deux énoncés ci-dessous sont équivalents :

- 1. m est le plus grand entier tel que $(X-a)^m$ divise P.
- 2. On peut écrire $P = (X a)^m Q$ avec $Q(a) \neq 0$.

Dans ce cas on dit que a est une racine de multiplicité m de P. Montrer ensuite que, dans ce cas, a est une racine de multiplicité m-1 de P'.

Est-il vrai, réciproquement, que si a est une racine de multiplicité m-1 de P^\prime , alors a est une racine de multiplicité m de P? Attention!

Exercice 12. Soit $n\in\mathbb{N}$, montrer que le polynôme $P_n=1+X+\frac{X^2}{2!}+\cdots+\frac{X^n}{n!}$ n'a pas de racine multiple.

Exercice 13. Déterminer $a,b\in\mathbb{Z}$ de façon à ce que le polynôme $aX^{n+1}-bX^n+1$ soit divisible par $(X-1)^2$.

FACTORISATIONS

Exercice 14. Décomposer dans $\mathbb{R}[X]$, sans déterminer ses racines, le polynôme $P=X^4+1$, en produit de facteurs irréductibles.

Exercice 15. Dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$, décomposer les polynômes suivants en facteurs irréductibles.

- 1. $X^3 3$.
- 2. $X^{12} 1$.
- 3. $X^9 + X^6 + X^3 + 1$.

CALCULS DE PGCD

Exercice 16. Calculer pgcd(1001, 221). Idem pour 33055 et 12621.

Exercice 17. Calculer pgcd(P,Q) dans chaque cas : $(P=2X+2,Q=3X+4); (P=X^2-3X,Q=X-4); (P=X^2+6X+1,Q=X-3); (P=X^4-3X^2+3;Q=X^3-2); (P=X^5-4X^2+2,Q=X^3+i); (P=X^6-3X^2+7X-11,Q=X^4-3X^2+1).$

Exercice 18. Soient $P=X^5+X^4-6X^3-X^2-X+6$ et $Q=X^4+2X^3-X-2$. Déterminer pgcd(P,Q) et en déduire les racines communes de P et Q.

Exercice 19. Soient $n, p \in \mathbb{N}$.

- 1. Trouver quotient et reste de la division de (X^n-1) par X^p-1 .
- 2. Trouver une condition nécéssaire et suffisante pour que X^p-1 divise X^n-1 .
- 3. Trouver le pgcd de $X^n 1$ et $X^p 1$.

Théorème de Bézout

Exercice 20. Soient $P=2X^4+X^3-2X-1$ et $Q=2X^4-X^3-3X^2+X+1$. Trouver $U,V\in\mathbb{C}[X]$ tels que UP+QV=pgcd(P,Q). Quelles sont les racines communes de P et de Q?

Exercice 21. Soit $n \in \mathbb{N}$. Déterminer $pgcd((X-1)^n, X^n-1)$ en pensant aux racines communes. Pour n=3 trouver $U,V \in \mathbb{C}[X]$ tels que $(X-1)^3V+(X^3-1)U=X-1$.

Exercice 22. 1. Soient $P,Q\in\mathbb{K}[X]$ et U,V tels PU+QV=1. Montrer qu'alors pgcd(P,Q)=1=pgcd(U,V).

2. Soient $P,Q\in \mathbb{K}[X]$ et U,V tels que PU+QV=pgcd(P,Q). Montrer qu'alors pgcd(U,V)=1. Ces résultats sont-ils valables avec \mathbb{Z} plutôt que $\mathbb{K}[X]$?

Exercice 23. Soient P,Q deux polynômes premiers entre eux. Il existe alors U_0,V_0 tels que $PU_0+QV_0=1$.

- 1. Determiner tous les couples (U,V) telles que PU+QV=1.
- 2. Prouver qu'il existe un unique couple (U_0,V_0) tel que $PU_0+QV_0=1$, $deg(U_0)< deg(Q)$ et $deg(V_0)< deg(P)$. (Indication : si U,V est une solution alors poser

 U_0,V_0 les restes des divisions respectivement de U par Q et de V par P.)

Ces résultats sont-ils valables avec \mathbb{Z} plutôt que $\mathbb{K}[X]$?

Exercice 24. Soit

(E)
$$(X+1)^2A + (X-1)^2B = 1$$
.

- 1. Trouver une solution particulière A_0, B_0 de (E) avec $A_0, B_0 \in \mathbb{R}[X]$.
- 2. En déduire toutes les solutions de (E).
- 3. Déterminer tous les polynômes P tels que P-1 soit un multiple de $(X+1)^2$ et que P+1 soit un multiple de $(X-1)^2$.

ARITHMÉTIQUE DANS Z

Exercice 25. Montrer que $2^n + 1$ et $2^{n+1} + 1$ sont premiers entre eux, pour $n \in \mathbb{N}$.

Exercice 26. Trouver tous les entiers x, y tels que 12x+8y=1.

Exercice 27. Soit p un nombre premier, et k un entier tel que $1 \le k \le p-1$. Montrer que p divise $\binom{p}{k}$. Quelles sont les conséquences pour la formule du binôme?

Plus difficile: montrer que

$$\binom{p-1}{k} \equiv (-1)^k \bmod p.$$

On pourra calculer de deux manières différentes les coefficients du polynôme $(X-1)^{p-1} \in \mathbb{Z}/p\mathbb{Z}[X]$.

Exercice 28 (Petit théorème de Fermat). Soit p un nombre premier, et soit $t \in (\mathbb{Z}/p\mathbb{Z})^* = \mathbb{Z}/p\mathbb{Z} \setminus \{\bar{0}\}.$

- 1. Montrer qu'il existe un plus petit entier $k \geq 0$ tel que $t^k = \bar{1}$. On dit que k est l'ordre de t.
- 2. Pour $x,y\in (\mathbb{Z}/p\mathbb{Z})^*$ on va noter $x\sim y$ lorsqu'il existe un entier $i\in \mathbb{Z}$ tel que $y=xt^i$. Montrer que \sim est une relation d'équivalence.
- 3. Calculer la taille des classes d'équivalence.
- 4. En déduire que $t^{p-1}=\bar{1}.$ Puis, montrer que pour tout $s\in \mathbb{Z}/p\mathbb{Z}$ on a $s^p=s.$
- 5. Reformuler ceci sous forme de congruences.

Exercice 29. Quel est le reste de la division euclidienne de 2^{49} par 7? de 28^{1000} par 13?