Université de Strasbourg

MPA Algèbre S1

P. Guillot, bureau 314, guillot@math.unistra.fr

Devoir d'algèbre numéro 1

Problème 1

Dans ce problème on va montrer des propriétés des entiers qui sont évidentes, ou bien connues, ou les deux (surtout dans les deux premières questions). Le but est de s'entraîner à rédiger. On évitera toute formule du genre « il est clair que. . . », et toute référence à des théorèmes savants.

Un entier $n \in \mathbb{N}$ est dit *pair* lorsqu'il existe $k \in \mathbb{N}$ tel que n = 2k. Lorsque n n'est pas pair, on dit qu'il est *impair*.

1. Montrer soigneusement l'équivalence suivante, pour $n \in \mathbb{N}$:

$$n$$
 est impair \iff $\exists k \in \mathbb{N}$ tel que $n = 2k + 1$.

Conseil : montrer ← directement, puis → par récurrence.

2. Montrer par récurrence que tout $n \in \mathbb{N} \setminus \{0\}$ peut s'écrire

$$n = 2^{\ell}(2k+1)$$

où $k, \ell \in \mathbb{N}$.

3. Montrer que si

$$2^{\ell}(2k+1) = 2^{\ell'}(2k'+1),$$

avec $k, k', \ell, \ell' \in \mathbb{N}$, alors k = k' et $\ell = \ell'$.

4. Montrer qu'il existe une bijection entre $\mathbb{N} \times \mathbb{N}$ et \mathbb{N} .

Problème 2

Si A et B sont des ensembles, on note B^A l'ensemble de toutes les fonction dont le domaine de définition est A et dont le but est B. Ainsi, l'écriture $f \in B^A$ signifie exactement la même chose que $f \colon A \longrightarrow B$.

Enfin, C désigne encore un ensemble.

- 1. Montrer qu'il existe une bijection entre $(C^B)^A$ et $C^{A\times B}$. Cette question nécessite beaucoup de rédaction, et il est normal d'y passer du temps (elle rapporte beaucoup de points aussi). On gardera en tête les choses suivantes. Si $f: A\times B\to C$, alors pour $a\in A$ on peut regarder $f_a\colon B\to C$ définie par $f_a(b)=f(a,b)$. Par ailleurs, si $g\colon A\to C^B$, penser que g(a)(b) a un sens.
- 2. Donner, sans démonstration, une « formule » pour $(B \times C)^A$. Inversement, cette question rapporte peu de points!

.../ ...

Problème 3

- 1. Montrer qu'il existe une bijection entre $\mathbb R$ et]0,1[.
- 2. On rappelle que tout nombre $x\in]0,1[$ peut s'écrire de manière unique

$$x = 0, d_1 d_2 d_3 \dots$$

où $0 \le d_i \le 9$, et où l'écriture ne se termine pas par une infinité de 9. Utiliser ceci pour construire une fonction injective $]0,1[\times]0,1[\longrightarrow]0,1[$. Votre fonction est-elle une bijection?

3. En déduire qu'il existe une fonction injective $\mathbb{R}\times\mathbb{R}\longrightarrow\mathbb{R}.$