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Abstract

Let G be an algebraic group. In this thesis we study the classifying space BG and
most particularly the Chow ring CH∗BG and the cobordism ring MU∗(BG)⊗̂MU∗Z.
Previous work of Burt Totaro shows that the former is well-defined, as BG may be
approximated by algebraic varieties, and suggests that the two are isomorphic. Totaro
also asks for a description of the image of these rings under the cyle map to ordinary
cohomology. Very few calculations have been achieved.

We propose to study a large class of groups, namely symmetric groups and certain
finite groups of Lie type, and show that their Chow rings and cobordism rings indeed
coincide. In passing, we also compute these explicitly. Using the Steenrod algebra, we
then give a conjectural prediction for the image of the cycle map modulo a prime p, and
check it on the same examples.

There has been little work in the field, and we have had to develop our own tools
to explore the properties of these objects. As a consequence, this thesis contains a
number of results of independant interest for the reader who wishes to pursue the study
of classifying spaces.

Declaration

This dissertation is not substantially the same as any I have submitted for a degree or
a diploma or any other qualification at any other university. It is the result of my own
work and includes nothing which is the outcome of work done in collaboration.
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...and so there are many important theorems whose proof requires nothing more than
cleverness and hard work.

Joseph Silverman
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Foreword

Le début est autre chose que le commencement. Le début est ce à quoi quelque chose
s’accroche, le commencement est ce de quoi quelque chose jaillit. A vrai dire, nous autres
hommes, nous ne pouvons jamais commencer par le commencement: cela un Dieu seul
le peut. Il nous faut seulement prendre appui sur quelque chose qui soit capable de nous
conduire vers le commencement ou de nous l’indiquer.

Martin Heidegger, Gesamtausgabe, Bd. 39, p. 3-4, quoted by Pierre Magnard, in Le
livre du néant, Charles de Bovelles, Paris, Vrin, 1983.

Totaro’s work on Chow rings

The Chow group CHn−kX, where X is an n-dimensional scheme of finite type over
a field, is defined to be the free abelian group on k-dimensional reduced subschemes
(subvarieties) of X, modulo the so-called linear equivalence relation. The latter is one
way of expressing homotopy in algebro-geometric terms, see [16] for details.

If moreover X is smooth, then there are products

CHpX ⊗ CHqX → CHp+qX

which are defined by means of intersection theory, cf loc cit. In other words, the clas-
sical way in which one can compute cup products in ordinary cohomology by counting
intersection numbers is here taken as the very definition of the product.

It is quite remarkable that such an explicit definition actually gives a rather well-
behaved theory: a contravariant functor from smooth schemes to graded commutative
rings, with transfers for proper morphisms, with the homotopy invariance property that

CH∗E = CH∗B

when E is a vector bundle over B, and with exact sequences

CH∗Y → CH∗+cX → CH∗+c(X − Y )→ 0

when Y is a closed subscheme of X of codimension c.
However, the price to pay for concreteness is that Chow rings tend to be very hard

to compute.
There are many examples of functors looking more or less like cohomology theories

which may be studied via their equivariant counterparts. This being said, what the
equivariant version should be is not always the naive definition at hand, but usually
involves the Borel construction. Here for a minute we let G be a compact Lie group, we
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x Foreword

denote by EG a universal G-space, and we put BG = EG/G, the classifying space of
G. The Borel construction, or homotopy orbit space, of a G-space X is

XhG = (EG×X)/G.

For example, Quillen ([34]) has used the equivariant cohomology

H∗GX = H∗XhG

to very good effect, recovering all results from Smith theory with short, elegant proofs.
Also, in K-theory, the Atiyah-Segal theorem ([4]) says that K∗XhG is, for reasonable
X, the completion, with respect to some natural topology, of the naive K∗GX defined by
means of the Grothedieck group of equivariant vector bundles – in other words, it is a
nicer theory.

These examples hint at the importance of the Borel construction in building nice,
equivariant versions of cohomologies. It is not such an artificial process, either: recalling
that X/G can be seen as a colimit, we find that XhG is the homotopy colimit of the
same functor over the same category. For those with homotopy inclined minds at least,
this should eliminate the remaining doubts about homotopy orbit spaces: they are the
right objects to consider.

This has been accepted for a number of years now in topology. Nevertheless using
the same idea in algebraic geometry is a relatively recent attempt. Here the naive
definition to avoid is that obtained by replacing cycles (formal sums of subvarieties) by
G-equivariant cycles, where now G is an algebraic group acting on X. Most particularly
when the action is not free, this does not give a satisfactory theory.

The Borel construction, on the other hand, complicates matters slightly in that XhG

is not a finite CW complex even whenX is, and in particular it certainly is not a manifold
(working over C), and we are taken outside the scope of algebraic geometry. However,
Totaro has shown [47] how to approximate the homotopy orbit space by algebraic vari-
eties, which we explain briefly now. Over any field, one can find a representation V of G
such that the action is free outside of a closed subset S of arbitrary large codimension.
The idea is to take the ”colimit” of the schemes

(V − S)×X
G

This can be done literally in Morel-Voevodski’s category of models, but it suffices to
make the elementary remark that for a fixed i, the group CH i((V − S) × X)/G does
not depend on the choice of V and S as long as the codimension of S is large enough.
Call this CH i

GX, the correct definition of the i-th equivariant Chow group of X. (Note
that when the action is free and a geometric quotient X/G exists, then XhG is a vector
bundle over X/G and the equivariant Chow ring of X is the ordinary Chow ring of X/G.
The point however is that the definition works in general.)

We should point out that in order to get a rigorous and canonical definition, an
equivariant Chow ring should be taken as an inverse limit over an appriopriate category,
namely that of pairs (V, S) as above with morphisms taken to be equivariant maps
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xi

V − S →W − T . For the record there are some subtle (but minor) issues in doing this,
see 1.1.5 and [8].

It is reassuring to check what happens over C. In the case when the group isGL(n,C)
and X is a point, to start with, one can choose the V ’s and S’s so that (V − S) is a
Steifel variety and (V − S)/GL(n,C) is a Grassmannian, that is, a building block in
the standard model for BGL(n,C), cf section 1.1.1. For any algebraic group G now,
picking an embedding of G into some general linear group gives preferred choices for
V and S, namely we can arrange to have E = limV − S precisely equal to the infinite
Steifel variety, which is contractible, and E/G = lim(V − S)/G has the homotopy type
of BG. (To be precise, these limits are taken in the category of topological spaces, over
the evident full subcategory of the one described above.)

Moreover, Totaro’s argument can be easily adapted to ordinary cohomology, and we
see that H i(V − S)/G does not depend on V or S, for fixed i. It follows readily that
if we take lim(V − S)/G over all choices of representations and not only the particular
ones just considered, which we certainly want to do for flexibility, the topological space
B thus obtained comes equipped with a map BG→ B which is a homology equivalence.
The bottom line is that, if one replaces Chow rings by cohomology and gives the same
definitions as Totaro’s, one does indeed get the usual cohomology of BG.

The same remark can be made for general X, and as a consequence we see that there
is a natural map

CH∗GX → H∗GX

and in particular
CH∗BG→ H∗BG

where the left hand side is a notation for CH∗G(point) (used over any field) and on the
right hand side BG is the usual classifying space of G, a topological space.

The equivariant Chow rings thus defined have the same formal properties as usual
Chow rings. For example, if G acts on affine space An, considering the latter as a vector
bundle over a point, the homotopy invariance property says that CH∗GAn = CH∗BG.

In fact, the case of a point is more important that might be immediately apparent.
For any affine variety X acted on by G admits an equivariant embedding in affine space
An for some n, and the usual exact sequence that we have is:

CH∗GX → CH∗+c
G An = CH∗+cBG→ CH∗+c

G (An −X)→ 0

Thus knowledge of CH∗BG will give information on the equivariant Chow ring of any
such X.

Our work will focus on CH∗BG. But there is more motivation for doing this than
is contained in the last remark. We specialise now to varieties over C, and introduce
another ring, seemingly quite different.

Among all possible cohomology theories, of particular interest are the so-called com-
plex oriented cohomologies, i.e. those E such that

E∗P∞ = E∗(pt)[[t]],
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xii Foreword

as this simple condition allows many computations. Oriented theories include among
others ordinary cohomology, K-theory, Morava K-theories, and a certain ”universal” ori-
ented cohomlogy denoted MU and called complex cobordism. The associated homology
is given by:

MUk(X) =
maps Mk → X

bordism
where M runs over compact, weakly complex manifolds of dimension k. Moreover

MU∗(pt) = MU−∗(pt) = Z[x1, x2, · · · ]

and
MU∗(pt)⊗Q = Q[P1,P2, · · · ]

The universality of MU means that for any oriented cohomology h, there is a natural
transformation MU → h.

The explicit definitions of CH∗X and MU∗X when X is a variety (or rather what
we know of their Poincaré duals) make it plausible that, as Totaro proved ([46]), there
is factorization of the cycle map as follows:

CH∗X →MU∗X ⊗MU∗ Z→ H∗(X,Z)

Here the map MU∗ → Z sends xi to 0.
There are two remarkable facts to be pointed out now. First, the map

CH∗BG→MU∗(BG)⊗̂MU∗Z

is an isomorphism on all known examples (notice that here, BG not being a finite CW
complex, we have to use a completed tensor product). It is striking that a ring arising
naturally in the realm of algebraic geometry should coincide with a typical ”homotopy
object”. Also, the ring MU∗(BG)⊗̂MU∗Z is a first approximation to the important but
much more complicated ring MU∗BG – the mere computability of MU∗(BG)⊗̂MU∗Z
is surprising and is extra motivation for us to investigate these objects, independently
of their relation to Chow rings.

Second, the image of this ring in the cohomology seems to be the ”simplest possible”
subring. We illustrate this modulo a prime p. Assuming p is odd, one has:

H∗(B(Z/p)n,Fp) = Fp[v1, · · · , vn]⊗ Λ(u1, · · · , un)

and
CH∗B(Z/p)n ⊗Z Fp = MU∗(BG)⊗̂MU∗Fp

= Fp[v1, · · · , vn]

Note that this polynomial part is not the ”even” subring of the cohomology ring,
but indeed the simplest part of it, in some sense. (In chapter 2, we will justify the
simple-minded definition of a mod p Chow ring as above. It is the natural object to
consider, and the resulting simplicity of the ring is not a fraud.) Thus, insisting on a
more geometric definition of the cycles leads to neater algebraic objects.

The present thesis will be dedicated to the study of CH∗BG and MU∗(BG)⊗̂MU∗Z,
or their modulo p counterparts, on examples. Let us describe our progress.
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Overview of results

Before outlining the contents of each chapter, let us quickly summarize our results.
Let us work over C; let p be a prime and let H∗ denote mod p cohomology. The

Steenrod algebra Ap is a central object in this work. We use it, following ideas of
Quillen, to make precise the idea of the ”niceness” of Chow rings, such as the absence
of nilpotent elements. Let Uev be the category of unstable modules over Ap which are
concentrated in even degrees; it is a full subcategory of U, which contains all unstable
modules. Typically, a module in Uev (resp. U) arises as CH∗X ⊗Fp (resp. H∗X) where
X is a smooth variety (resp. a space). There is a localization functor L : Uev → Uev

with respect to the subcategory of nilpotent modules in the sense of Lannes-Schwarz,
and similarly for U (of course all this will be made precise later!) Call a module M
local if M = L(M). Then it is exceptional for H∗BG to be local in U, but it is very
common for CH∗BG⊗Fp to be local in Uev. In practice, this means that CH∗BG⊗Fp

is completely determined by the elementary abelian subgroups of G and their fusion
(and thus has no nilpotent elements). To be precise, we establish that the result (which
is trivial for abelian groups) holds true for the symmetric groups and almost all semi-
simple Chevalley groups, including Spn, Spinn, SLn when p is prime to n, all exceptional
groups when p > 7, as well as products of these and certain quotients (such as SO+

n ).
The idea of localization is not only a neat way of expressing the good properties of

Chow rings. Let G be a group such that CH∗BG⊗ Fp is local (there being no counter
example of this so far for odd p, and only one for p = 2). Then one has

CH∗BG⊗ Fp = L(ÕH∗BG)

where Õ is right adjoint to the forgetful functor O : Uev → U. Again, it is highly
surprising to find a variety for which the algebraic cycles may be so easily identified in
the cohomology ring. In the last chapter we shall say a word on how to apply this to
create examples of projective varieties with interesting Chow rings.

We also investigate the complex cobordism of Chevalley groups. Some recent tech-
niques from stable homotopy theory may be used to exploit the known structure of the
Morava K-theories of these groups and obtain information about MU∗. As it turns out,
we are able to compute these rings completely for any Chevalley group (with no semi-
simplicity assumption) and any finite field (of char 6= p). This gives a lot of examples
of groups for which some standard conjectures are verified: the complex cobordism is
concentrated in even degrees, is a local module in Uev, and coincides with the Chow ring
whenever this can be checked.

There are many other results to be found in the present work, some intermediate,
some having their own interest: in fact we give the reader quite a few ideas and devices
to pursue the investigation of Chow rings or cobordism, and this might be the real point.
Most of these results are too technical to be explained just now; however let us try and
indicate each chapter’s content.

• Chapter 1 contains a number of basic results to be used throughout. It has
the twofold purpose of explaining to the reader what tools are at our disposal,
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xiv Foreword

and of building new ones. Thus we shall begin with a few explicit computa-
tions of CH∗BG when G is a general linear group, a cyclic group, the group of
quaternions, and eventually we compute this completely when G is connected and
solvable. Then we move on to prove the so-called double coset formula, a very
handy equality that is well-known in the cohomology of groups, and which holds
for Chow rings as well, though a little care is needed in proving it when working
over an arbitrary field. At this point we shall have hopefully answered many of
the questions on Chow rings that would spring up in the mind of someone familiar
with the computational side of group cohomology (for example groups of p-rank 1
are completely treated).

• Chapter 2 introduces the Steenrod algebra, and the concept of localization just
mentioned, in details. At this point, the symmetric groups, which are at the heart
of the very definition of the Steenrod operations, are the natural examples to
consider. It is established that they are ”local”, with a self-contained proof.

Complex cobordism is also mentioned, and we explain how MU∗(BG)⊗̂MU∗Fp

seems to be a local object in Uev as well, at least whenever we can compute it;
however it is not even known in general whether this module is concentrated in
even degrees.

• It is in Chapter 3 that we start to look for more examples of groups such that
CH∗BG (= CH∗BG ⊗Z Fp from this chapter onwards) and MU∗(BG)⊗̂MU∗Fp

are local, thus illustrating the importance of the previous chapter. We shall inves-
tigate Chevalley groups, or groups of Fq-rational points of connected, reductive,
split groups schemes – such things as GLn(Fq) or Spn(Fq). In chapter 3 we deal
with MU , which is easier, and obtain rather complete answers via the Morava
K-theories. It might be worth pointing out that an application in group theory is
given: an alternative proof to a theorem of Steinberg.

• Chapter 4 intends to prove that CH∗BG is local for the same Chevalley groups.
We cannot prove this in full generality, though we do obtain the result for a large
class of groups; some general statements are also given, for example the case when
the prime p does not divide the order of the Weyl group is taken care of. This
chapter relies on all the others and puts together all the techniques introduced.

• Finally, in Chapter 5 we take a more modern point of view on the subject and re-
late Totaro’s work and ours to the recent progress of Morel-Voevodsky and Morel-
Levine.

Each chapter opens with a more detailed summary of its results.
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chapter

one

Elementary results

I thought they were kind of trivial. Believe me, nothing is trivial.
The Crow (1994)

In this opening chapter we give a few simple examples of computations with Chow
rings of classifying spaces. The aim is for the reader to gain some familiarity with these
techniques, and also to establish a few lemmas for later purposes.

Here we point out that this thesis is written with the assumption that the reader
knows the material in [47]1. However, we have attempted to write everything in such
a way that the explanations given in the introduction and a little good will should be
sufficient for understanding all the results and proofs. From the antipodal point of view:
even if we start with the very basics of the subject and try to give an exposition that
necessitates very few prerequisites, it should not be mistaken for a full treatment à la
Bourbaki. For this the reader may turn to the various references given throughout the
text.

The chapter is organized as follows. The first section treats the particular cases
of GLn, of a cyclic group, of the group of quaternions, says a word on the Künneth
formula, and finishes with remarks on the functoriality of Chow rings. The next section
computes the Chow ring of a connected, solvable algebraic group by a direct, geometric
method (1.2.4 and 1.2.5). We then turn to the double-coset formula (1.3.4). Finally,
all these results are considered again in the context of complex cobordism in the final
section.

It might be useful to point out our policy with fields of definition. The subsequent
chapters, by nature, have to deal with complex varieties, as it is only in this context
that complex cobordism makes sense (see the very last chapter though). Moreover the
complex case is often more illuminating, with simpler proofs and topological comparisons
to make. Nevertheless, in this first chapter, more precisely in sections 2 and 3, we

1the lucky reader who can find the early electronic version of [8] should have a look at the appendices
there as well.
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2 Chapter 1 Elementary results

sometimes work over an arbitrary field, as we feel the results might be useful for someone
to study Chow rings in this general context. We also try to point out when a result is
not specific to C, and whenever it is unclear what the field of definition is, it will always
mean that it may be chosen arbitrarily.

Finally, a remark on notations. We want to see a Chow ring as a graded module
concentrated in even degrees, so we always put CHk/2X = 0 when k is an integer, and
the degree of x ∈ CHkX is 2k. However, in this situation one finds frequently in the
literature the degree k assigned to x, and some ambiguity will be unavoidable when
making certain references: this will be of little if any consequence.

§1.1. First computations

1.1.1. Grassmannians. The one example when Totaro’s definition of BG is the easiest
to understand is certainly G = GLn. For if we take simply

V = hom(Am,An)

with the action of GLn induced by the obvious one on An, and if S is set to be the
closed subset of nonsurjective maps, then both the dimension of V and the codimension
of S go to infinity as m increases. Moreover, a point (say, in an algebraically closed
field) of (V − S)/GLn is simply a kernel in Am. In other words, BGLn is the variety of
Grassmannians.

It follows, over C, that

CH∗BGLn(C) = H∗(BGLn(C),Z) = Z[c1, · · · , cn].

Indeed, the Grassmannian has an algebraic cell decomposition (see [16]). Since G  
CH∗BG is functorial as we explain at the end of this section, we have a theory of Chern
classes in the Chow ring (which could have been obtained by very different means). It
will play a important role later.

1.1.2. Cyclic groups. The next obvious group to look at is probably Z/n. It is possible
to make an explicit description of the spaces (V − S)/G and compute their Chow rings
directly, but we find it more enlightening to use a couple of theorems of Totaro’s. The
reader can be assured that the next section will contain some pedestrian calculations.

The first result ([47], theorem 14.1) says that if we embed a group G in GLn for
some n, then CH∗BG is generated, as a module over CH∗BGLn, by elements of degree
less or equal to 2 · dimGLn/G.

Let us try to apply this here, working over the complex numbers, and embedding
Z/n in the obvious way in C∗. We have BGL1(C) = P∞ and CH∗BGL1(C) = Z[c1],
as observed above. Denote by x the Chern class of the standard character, that is, the
image of c1 in CH∗BZ/n. Then the latter is generated as an abelian group by elements
of degree 2 together with the powers of x.

Moreover, another result of Totaro’s ([47], theorem 3.3) tells us that (k−1)!CHkBG
is generated by Chern classes; in particular CH1BG is generated by Chern classes of
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1.1 First computations 3

characters. Since H2(BG,Z) is isomorphic to the group of characters of G via the first
Chern class map, which factors through CH1BG, we conclude that

CH1BG = H2(BG,Z).

(This holds for any group G.)
Returning to Z/n, we conclude that CH1BZ/n = Z/n generated by x. Thus

CH∗BZ/n is generated by x as a ring, and

CH∗BG = H2∗(BG,Z) =
Z[x]
(nx)

In fact CH∗BG has a similar description over any field, see [8] for a nice way of com-
puting this.

1.1.3. The group of quaternions. Let G = Q8 be the quaternion group:

G = {±1,±i,±j,±k}.

This group will be of importance later, so we treat it here. It is also a nice illustration of
the methods one can use to compute the Chow ring of a group of small size (or rather,
rank).

We have an action of G on C2 which is free out of {0}, namely quaternionic multi-
plication. We can write

CH∗G({0})→ CH∗+2
G C2 → CH∗+2

G (C2 − {0})→ 0

since equivariant Chow rings have the same formal properties as ordinary Chow rings.
For the same reason, since affine space C2 can be seen as a vector bundle over a

point, its equivariant Chow ring is that of a point, i.e. it is CH∗BG. Finally we remark
that CH∗G(C2−0) = CH∗(C2−0)/G as the action is free on C2−0; and this is obviously
0 as soon as ∗ > 2 = dim(C2 − 0)/G.

The sequence above thus reduces to

CH∗BG→ CH∗+2BG→ 0

when ∗ > 0. In the same way we get a surjective map from H∗(BG,Z) to H∗+4(BG,Z)
and a commutative diagram between the two. But it is well-known that the cohomology
of BG is in fact 4-periodic and it follows by induction that CH∗BG = H2∗(BG,Z).

1.1.4. Künneth formula. It is not known in general how to compute the Chow ring
of G × H in terms of the Chow rings of G and H. However in nice cases there is the
following result:

Lemma. Let X and Y be varieties over the complex numbers, and let p be a prime
number. We assume that CH∗(X) → H∗(X,Z) is split injective, and that CH∗(Y ) →
H∗(Y,Z) is split injective (resp. that CH∗(Y )⊗Fp → H∗(Y,Z)⊗Fp is injective). Then

CH∗(X)⊗ CH∗(Y ) −→ CH∗(X × Y )
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4 Chapter 1 Elementary results

(resp.
CH∗(X)⊗ CH∗(Y )⊗ Fp −→ CH∗(X × Y )⊗ Fp)

is injective. If moreover X or Y can be partitioned into open subsets of affine spaces,
then

CH∗(X)⊗ CH∗(Y ) ≈ CH∗(X × Y )

resp.
CH∗(X)⊗ CH∗(Y )⊗ Fp ≈ CH∗(X × Y )⊗ Fp

In practice this will be sufficient. This is proved in [47], section 6, see also [19]
for the minor modification that gives the mod p version. Note that what we call here
and elsewhere a “partition into open subsets of affine spaces” for simplicity refers to a
stratification: that is, a variety X is stratified if it has dimension 0 or inductively, if it
possesses a proper subvariety Z which is itself stratified and such that X−Z is an open
subset in an affine space.

The hypotheses of the lemma are satisfied by (the finite dimensional approximations
to) the classifying space BZ/n. It follows that the Chow ring of a finite abelian group A
can be described very simply as the symmetric algebra on CH1BA, which as we noticed
before is the group of characters of A. In particular the results on elementary abelian
p-groups mentioned in the introduction are now proved.

1.1.5. Induced maps between Chow rings. In this section we explain how “the
Chow rings are functorial”, ie, a map K → G induces a map CH∗(BG)→ CH∗(BK) in
a functorial manner. We also decribe explicitly the maps induced by the most common
group homomorphisms: inclusion of a subgroup, conjugations.

We shall skip the proof of proposition (2) below: the only difficulties involved in it
are related to the definition of the Chow ring as an inverse limit. The only drawback
is that the reader will believe at first sight that the definition of the induced map
CH∗BG → CH∗BK which we provide is not the simplest one – he or she will have to
take it on faith that it is.

Let φ : K → G be a homomorphism between the groups K and G. Also, let (V, S)
(resp (W,T )) be an admissible pair2 for K (resp G). Via φ, W becomes a representation
of K, and in fact (V ⊕W,S ×W ∪ V × T ) is an admissible pair for K.

Consider the natural maps:

((V − S)× (W − T )) /K → (W − T )/G
↓

(V − S)/K

The vertical map p induces clearly an isomorphism on Chow groups in appropriate
dimensions, by standard arguments. Calling the horizontal map α, we define

φ∗ = (p∗)−1 ◦ α∗ : CH∗(G) −→ CH∗(K)

2in the sense that V is a complex K representation, and S is a closed subset of V such that the action
of K is free on V − S.
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1.1 First computations 5

and call it the map induced by φ.
Tedious verifications yield:

Proposition (1). The above construction satisfies the following:

1. φ∗ can be extended naturally to all dimensions, and thus becomes a ring homomor-
phism.

2. The construction is functorial, and the map to cohomology is a natural transfor-
mation of functors.

In some cases there is a simpler description of these maps:

Proposition (2). Let K and H be closed subgroups of G, and let (V, S) be an admissible
pair for G (hence for all subgroups of G, by restriction). Put U = V − S. Let σ ∈ G
and put Hσ = σHσ−1. Then the following statements hold:

1. The “restriction” map CH∗(G)→ CH∗(K) induced by the inclusion of K in G is
also induced by the natural map

U/K −→ U/G

2. Let cσ−1 : Hσ → H denote conjugation by σ−1, and let i : K ∩Hσ → Hσ be the
inclusion. Define a map

f : U/(K ∩Hσ) −→ U/H

by f(ū) = σ−1 · u. This is well defined, and f∗ = (cσ−1 ◦ i)∗ = i∗ ◦ c∗σ−1.

Corollary. Conjugation by g ∈ G induces the identity on CH∗(G).

Proof. Let us prove (1). Let p1 be the first “projection” map (U × U)/K → U/K,
and define g(ū) = (u, u): this is a well defined map U/K → (U × U)/K, such that
p1 ◦ g = Id. On Chow groups p∗1 is an isomorphism, and we deduce p∗1 = (g∗)−1. By
definition the map induced on Chow rings by the inclusion of K is (p∗1)

−1 ◦ α∗ where
α : (U ×U)/K → U/G is the natural map. Therefore this is also g∗ ◦α∗ = (α ◦ g)∗. But
α ◦ g is the map in the proposition, and thus we have (1).

Turning to (2), we let H act on U × U in the obvious way on the first factor, and
via cσ (conjugation by σ) on the second one. We have now two maps p1 and p2 from
(U × U)/H to U/H and U/Hσ, respectively. As above we introduce a map g from
U/H to (U × U)/H (well) defined by g(ū) = (u, σ · u), and again g∗ = (p∗1)

−1. We let
j : U/(K ∩Kσ)→ U/Kσ be the natural map, and we gather the maps j, p2, g together
with f as in the proposition in the following commutative diagram:

U/(K ∩Hσ) −→ U/Hσ

↓ ↑
U/H −→ (U × U)/H

Commutativity is readily checked. On Chow groups, this reads f∗ ◦ g∗ ◦ p∗2 = j∗.
But g∗ ◦ p∗2 = (p∗1)

−1 ◦ p∗2 = c∗σ by definition, whereas j∗ = i∗ by (1). This concludes the
proof, noting that (c∗σ)−1 = c∗σ−1 .
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6 Chapter 1 Elementary results

Remark (Transfers). If K is a closed subgroup of G of finite index, then the map
U/K → U/G, as in the first point of the proposition, is proper, so we have a trans-
fer homomorphism i∗ : CH∗BK → CH∗BG. Here i denotes the inclusion. By the
proposition and the standard properties of Chow rings, we deduce:

i∗i
∗(x) = [G : K]x

for any x in CH∗BG, where [G : K] is the index of K in G. It follows that when G is
finite, the order of G kills CH∗BG.

§1.2. The Chow ring of a connected, solvable algebraic group

We now return to a general field k and schemes of finite type over it. Most of the time
we use the functor of points to define maps between schemes.

1.2.1. The Chow ring of Ga. In this section we prove that CH∗(BGa) = Z in dimen-
sion 0, where Ga is the “additive” group scheme Spec Z[X], and obtain a description of
BGa that will be useful in the sequel.

Let A be a k-algebra. One can identify Ga(A) with the set of matrices of the form(
1 x
0 1

)
in GL2(A), and in this way we see Ga as a closed subscheme of GL2; in particular, Ga

acts on A2. On A-points this is given by a · (x, y) = (x, ax+ y). Taking direct sums, one
gets a representation V of Ga of dimension 2n. If S is the intersection of the hyperplanes
x2k+1 = 0, it is readily seen that the action of Ga is free on EGa = V − S.

Put A∗ = Spec k[x, x−1], the punctured affine line. Then put

Ωi = A1 × A1 × · · · × A∗ × A1 × · · · × A1 × A1

and
Ui = A1 × A1 × · · · × A∗ × pt× · · · × A1 × A1

with the A∗ in the 2i-th position. We see Ωi as an open subscheme of EGa, and Ui as a
closed subscheme of Ωi (on A-points, Ui is the subset of points (x1, y1, · · · , xn, yn) such
that yi = 0).

We define an isomorphism φi : Ωi → Ga × Ui by:

(x1, y1, · · ·xn, yn) 7→ (x−1
i yi;x1, y1 − x1x

−1
i yi, · · · , xi, · · · , xn, yn − xnx

−1
i yi)

This is clearly an inverse to the obvious map Ga × Ui → Ωi. Also, the action of Ga via
this isomophism becomes the obvious one.

It follows that the projection pi : Ga ×Ui → Ui is a geometric quotient, and then so
also is πi = pi ◦ φi. It is then clear how one can glue the schemes Ui together as open
subschemes of a geometric quotient BGa = EGa/Ga.
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1.2 Connected, solvable groups 7

Thus we conclude that the map π : EGa → BGa is an affine bundle, clearly. There-
fore CH∗(BGa) = CH∗(EGa), cf [16]. Finally, EGa is an open subspace of affine space
A2n, so its Chow groups vanish in positive dimensions, which is what we wanted to
prove.

In the next few sections we try, in simple cases, to relate the Chow groups of a group
scheme G to those of a closed, normal subgroup H.

1.2.2. Extensions by Ga. We assume, to start with, that G/H = Ga. The spaces
EGa, BGa will be as in the previous section, whereas EG will be some open subset
of some representation space of G, on which G acts freely; and we put BG = EG/G,
EH = EG, and BH = EH/H.

We form the fibre square

X = EGa ×BGa (EG× EGa)/G −−−−→ EGa

π

y yφ

(EG× EGa)/G −−−−→ BGa

where G acts on EGa via the projection G → G/H. Note that, because φ is an affine
bundle map, so also is π.

Consider the map EG×EGa×G→ BH which on points is (v, w, g) 7→ g−1 · v. This
induces clearly a map EG × EGa × G/H → BH; but EGa × G/H = EGa ×BGa EGa

because the action of Ga = G/H on EGa is free.
Now, G acts on EG × EGa, and hence on EG × EGa ×BGa EGa, and the map

EG×EGa ×BGa EGa → BH just defined is easily seen to be constant on the G-orbits.
Therefore, it factors through the quotient, which by the lemma below exists and is X.

Using the projection we finally end up with a map X → BH × EGa. There is an
obvious map BH × EGa → X, and these are clearly inverses to each other.

Let us now have a look at the Chow rings of the spaces we have. For example,
X = BH ×EGa is an open set in BH × V where V is some vector space, so in a range
of dimensions these two spaces have isomorphic Chow rings. But BH × V is a vector
bundle over BH, so finally

CH∗(X) = CH∗(BH)

in a range of dimensions. This most standard argument applies also to prove

CH∗((EG× EGa)/G) = CH∗(BG)

However X is an affine bundle over (EG×EGa)/G, so we have CH∗(X) = CH∗((EG×
EGa)/G), and we conclude CH∗(BG) = CH∗(BH). To sum up, we have proved the
following:

Proposition. Let H be a closed, normal subgroup of the algebraic group G, and assume
that G/H = Ga. Then CH∗(BG) = CH∗(BH).

The only thing left to be proved is the following lemma, which was used above with
A = EG× EGa, B = EGa and S = BGa:
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8 Chapter 1 Elementary results

Lemma. Let A and B be schemes over S . Suppose that we have a principal bundle
A → A/G with group G, and suppose that the map from A to S factors through A/G.
Then there is a principal bundle

A×S B → (A/G)×S B

Proof. This is simply the base extension (A/G)×SB → A/G, because A×A/G (A/G)×S

B = A×S B.

1.2.3. Extensions by split tori. Now we try the case where the quotient G/H is a
split torus Tn, ie a product of n copies of the multiplicative group Gm. The result we
obtain is the following:

Proposition. Suppose H is a closed, normal subgroup of G, and suppose G/H = Tn.
Then there are elements x1, · · · , xn ∈ CH1(BG) such that

CH∗(BG)/(x1, · · · , xn) = CH∗(BH)

where (x1, · · · , xn) is the ideal generated by these elements.

Proof. We proceed by induction, there being nothing to say if n = 0; so assuming the
result for n, we prove it for n+ 1.

The map BH → BG is a principal fibre bundle map, with group Tn+1. This bundle
is Zariski-locally trivial, as is any torus bundle (tori are called “special” because of this).
If U is open in BG and if the bundle above it is isomorphic to U × Tn+1, we use the
open immersion Gm = A∗ → A1 to see U × Tn+1 as an open subset of U × Tn × A1.
Also, we see U × Tn as a closed subset of U × Tn+1.

Using the transition functions of BH → BG, we can glue the spaces U × Tn (resp.
U × Tn+1, resp. U × Tn × A1) together to obtain a space X (resp. BH, resp. a line
bundle L above X). Moreover BH sits in L as the open subset L −X (recalling that
the 0-section allows us to identify X with a closed subset of any vector bundle above
it).

The exact sequence for Chow groups reads:

CH i(X) −→ CH i+1(L) −→ CH i+1(BH) −→ 0

Now CH∗(L) = CH∗(X), and it is a well-known fact that the map CH i(X) →
CH i+1(X) thus obtained is multiplication by the (first) Chern class of L, which we call
xn+1. Thus CH∗(BH) = CH∗(X)/(xn+1).

Now, X is a principal bundle over BG with group Tn, so using the induction hy-
pothesis (which is really a result on Tn-bundles), we deduce

CH∗(X) = CH∗(BG)/(x1, · · · , xn).

Result follows.

From now on, as we turn to applications, k is algebraically closed. Thus, tori are
split tori, and solvable groups are split solvable, etc...

Compiled on April 3, 2005



1.2 Connected, solvable groups 9

1.2.4. Connected, unipotent groups. We recall that an algebraic group G is called
unipotent if all its elements are unipotent, ie if G = Gu. By theorem 4.8 in [6], unipotent
groups are nilpotent (ie, can be deduced from the trivial group {1} by a finite number
of central extensions). However, there are groups (like tori) which are nilpotent without
being unipotent. Note that nilpotent groups are solvable.

It is proved in theorem 10.6 in loc. cit. that a connected, unipotent group has a
chain of closed, connected, normal subgroups such that the successive quotients have
dimension 1. The only connected groups of dimension 1 are Ga and Gm (theorem 10.9
in loc. cit.), and Gm is certainly not unipotent, being semi-simple. So we have a chain

G0 = {1} ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G

with n = dimG, such that Gi+1/Gi = Ga. It follows therefore from (1.2.2, proposition)
that:

Proposition. If G is a connected, unipotent group, then CH∗(BG) = Z in dimension
0.

1.2.5. Connected, solvable groups. We can now finish off the computation of the
Chow ring of a connected and solvable group:

Proposition. Let G be a connected, solvable group, and let Tn be a maximal torus.
Then the inclusion of Tn in G induces an isomorphism

CH∗(BG) = CH∗(BTn)

so that CH∗(BG) is a polynomial ring in n variables.

Proof. By theorem 10.6 in [6], we have a split exact sequence

0 −→ Gu −→ G −→ Tn −→ 0

Note that in this proof Tn will denote the quotient G/Gu and not a maximal torus in
G. We will prove that the map G → G/Gu induces an isomorphism on Chow rings –
clearly this comes down to what is claimed in the proposition, because the subgroup of
G which splits the sequence is a maximal torus.

We already know that the map CH∗(BTn)→ CH∗(BG) is split injective. The sub-
groupGu is connected and unipotent, so that by (1.2.4, proposition) above, CH∗(BGu) =
Z. Using now (1.2.3, proposition), we know that there are elements x1, · · · , xn in
CH1(BG) generating the ideal I = kerCH∗(BG)→ CH∗(BGu), so that CH∗(BG)/I =
Z. Writing

CH∗(BTn) = Z[t1, · · · , tn]

and likewise for the image of this ring in CH∗(BG), we see that the elements t1, · · · , tn
are in I. It will suffice to show that these elements generate I.

But now, CH1(BG) is the group of characters of G, and the subgroup generated by
the ti’s, being the image of CH1(BG/Gu) → CH1(BG), is the subgroup of characters
whose restriction to Gu is trivial. And in turn, CH1(BGu) = 0 as already observed,
so that all characters of Gu are trivial, and the ti’s generate CH1(BG) as an abelian
group. Because the xi’s are in CH1(BG), this concludes the proof.
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10 Chapter 1 Elementary results

Example. The Chow ring of the group Tn of upper triangular matrices is a polynomial
ring on n variables, as is that of Dn, the group of diagonal matrices (which is a maximal
torus in Tn). The Chow ring of Un, the group of upper triangular matrices with 1’s on
the diagonal, is Z in dimension 0 – in fact Un = (Tn)u.

Remark. If G is solvable but not connected, then we can still use G◦, the connected
component of 1, and conclude that CH∗(BG)⊗Q injects in a polynomial ring. It is in
fact well-known ([13]) that CH∗(BG)⊗Q = H∗(BG,Q) and that this is a polynomial
ring on r generators where r is the rank of G, ie the dimension of a maximal torus .
This says nothing about finite groups.

§1.3. The double coset formula for Chow rings

We prove an analog of the “double coset formula”, a well-known result about the co-
homology of finite groups, in the new context of algebraic groups and Chow rings. We
work over an arbitrary field k. If one focuses on the complex numbers, which we do not,
a neat simplification can be reached: there is a more or less obvious map of varieties
that is a bijection and realizes the identification in 1.3.3, see below, which is the crux of
the matter; but over C, this is automatically an isomorphism as soon as we know that
the varieties are normal, which they are as étale schemes over BK. The point of this
section is to demonstrate this for any field.

1.3.1. Notations. We consider two closed subgroups K and H of G, and we assume
that H has finite index in G. Our goal is to find a description of BK ×BG BH (us-
ing of course some finite dimensional approximation of BG etc), which is achieved in
proposition 1.3.3 below.

Let us fix some notation. We choose representatives σi for the double cosets KσiH
(a finite number will do). We put Li = K ∩σiHσ

−1
i . Next we choose representatives kij

for the left cosets of Li in K (which again are finite in number), and we put Kij = kijLi,
a subset of K (we let ki0 = 1 so that Ki0 = Li).

We let (V, S) be an admissible pair for G (hence for all its closed subgroups), and
we let U = V − S. We make the following assumption: for any closed subgroup Γ of G,
the map U → U/Γ is a universal quotient in the sense of Mumford [30]: there is no loss
of generality here, as there are sufficiently many such U ’s, see [47]. We shall frequently
denote U/Γ by BΓ. Note that the two natural maps G×U → U induce an isomorphism
G× U = U ×BG U , because the action is free.

Define Ωi = KσiH×U and Ωij = KijσiH×U . Since H is open in G, Ωi and Ωij are
open in G× U . In fact, one checks readily that, for i fixed and variable j, the Ωij ’s are
disjoint open sets whose union is Ωi. Similarly, the disjoint union of the Ωi’s is G× U .

We let G×G and its subgroups act on G× U on the left by

(σ, τ) · (g, u) = (σgτ−1, τ · u)

1.3.2. Let us start by describing a few quotient spaces.
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1.3 The double coset formula for Chow rings 11

Lemma. The map G× U −→ BLi defined by (g, u) 7→ g · u is a geometric quotient for
the action of Li ×G. That is,

(G× U)/(Li ×G) = BLi

Proof. Consider the universal quotient map U → BG and the base extension BLi →
BG; it follows that we have a quotient map

U ×BG BLi → BLi

(for the action ofG). Considering the latter as a base extension, and using that U → BLi

is a universal quotient, we obtain a quotient map

(U ×BG BLi)×BLi U → U ×BG BLi

(for the action of Li). But

(U ×BG BLi)×BLi U = U ×BG (BLi ×BLi U) = U ×BG U = G× U

It is readily checked that the action of Li ×G on G×U , as defined in the introduction,
induces via the last identifications just made the actions on U ×BG BLi ×BLi U and
U ×BG BLi obtained by base extensions. Also, the map G × U → BLi thus created is
clearly that given in the lemma. It being a composition of two quotient maps, it follows
that this morphism is a quotient map, as claimed.

Lemma. The map LiσiH × U → BLi obtained by restricting the previous one is a
geometric quotient for the action of Li ×H. That is,

LiσiH × U/(Li ×H) = BLi

Proof. For (g, u) ∈ LiσiH × U the following is easy to prove:

(Li ×H) · (g, u) = (Li ×G) · (g, u) ∩ LiσiH × U

That is, the orbit of (g, u) under Li × H is the trace on LiσiH × U of its orbit under
Li ×G. It follows that the fibres of the map under consideration are exactly the orbits
of Li×H, and indeed that this map is a quotient map, because the “bigger one” is.

We construct now a map Ωi → BLi. On Ωi0 we take this to be the map of the
previous lemma (recall the notations of the introduction). On Ωij , we use left translation
by k−1

ij to obtain an isomorphism Ωij → Ωi0, and again we compose with the map of
the lemma.

Lemma. The map Ωi → BLi is a quotient for the action of K ×H. That is,

KσiH × U/(K ×H) = BLi
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12 Chapter 1 Elementary results

Proof. Again this is easy from the last lemma, noting that if (g, u) ∈ Ωi0, then

(K ×H) · (g, u) =
∐
j

kij · ((Li ×H) · (g, u))

Result follows.

Lemma. The map G× U →
∐
BLi, obtained by putting together the above maps, is a

quotient map for the action of K ×H.

This is clear.

We are now able to describe the space BK ×BG BH in terms of the BLi’s:

1.3.3 Proposition. There is a natural identification

BK ×BG BH =
∐

i

BLi

Proof. Let X = BK ×BG BH, and write simply:

X ×BK U ×BH U = BK ×BG BH ×BK U ×BH U
= BH ×BG (BK ×BK U)×BH U
= U ×BG (BH ×BH U)
= U ×BG U
= G× U

The induced map G×U → X is a quotient map, because it is obtained by two successive
base extensions of universal quotients, namely U → BK and U → BH. The action of
K × H that we get is readily seen to be the one given in the introduction. Since we
have already described this quotient in 1.3.2, it follows that there exists an isomorphism
(unique in the obvious sense) between X and

∐
BLi, which is what we were after.

1.3.4. Double coset formula. Suppose that H is a closed subgroup of G. Then
the restriction map CH∗(BG) → CH∗(BH) induced by inclusion will be denoted by
i∗H→G. If moreover H has finite index in G, then the “push-forward” homomorphism
CH∗(BH)→ CH∗(BG) will be written iH→G

∗ .
The geometric information obtained in the previous section is all we needed to prove:

Theorem. Let K and H be closed subgroups of G, H having finite index. Then one
has:

i∗K→G ◦ iH→G
∗ =

∑
i

iLi→K
∗ ◦ i∗Li→Hσi ◦ c∗σ−1

i

Proof. Consider the fibre square: ∐
BLi −→ BH
↓ ↓
BK −→ BG
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1.3 The double coset formula for Chow rings 13

It is clear that the map
∐

iBLi → BH is x 7→ (· · · , i∗Hσi→Li
◦ cσ−1

i
(x), · · · ) on

Chow rings, from proposition 1.1.5. Also the map
∐

iBLi → BK pushes forward as
(· · · , xi, · · · ) 7→

∑
i i

Li→K
∗ (xi), as is easily seen.

Now, the map BK → BG is flat, and BH → BG is proper, as can be seen by
faithfully flat descent (or directly). Therefore we may apply proposition 1.7 in [16],
which yields the result immediately.

This last formula has a lot of consequences, which we list now without much justifica-
tion: these are well-known facts in the case of cohomology, and the same demonstrations
can be used without any modification. See [45] for example.

From now on all groups are finite.

1.3.5 Proposition. Let G be a finite group, let Gp be subgroup of index prime to
p. Then the p-torsion summand of CHk(G) restricts isomorphically onto the “stable”
subgroup of CHk(Gp). In other words, defining a map CHk(Gp)→ CHk(Gp ∩Gg

p) by

Ψg(x) = i∗Gp∩Gg
p→Gp

(x)− i∗Gp∩Gg
p→Gg

p
◦ c∗g−1(x)

then the following sequence is exact (for k > 0):

0→ CHk(G)⊗ Z(p) → CHk(Gp)→
∏
g∈G

CHk(Gp ∩Gg
p)

1.3.6 Remark. Let G and G′ be finite groups, and let S and S′ be Sylows. The
Martino-Priddy conjecture, recently proved by Bob Oliver (see [32] and the references
therein), asserts that whenever there is a homotopy equivalence BG∧p ≈ BG′∧p , then
there is an isomorphism of groups S ≈ S′ which is “fusion preserving”, ie it respects the
conjugacies in the strongest possible sense. It follows then from the last proposition that
there is an isomorphism CH∗BG ≈ CH∗BG′. Note that any map G → G′ inducing
an isomorphism on mod p cohomology yields a homotopy equivalence between the p-
completed classifying spaces, and thus any homomorphism of groups which induces an
isomorphism on cohomology also implies the existence of an isomorphism between the
Chow rings (or cobordism rings, or any ring coming from a theory with transfers for
that matter).

The proof of the Martino-Priddy “conjecture” is very long and complicated and
proceeds by a case-by-case check through the classification of finite simple groups, so we
shall refrain from using it. This being said, the application just discussed comes from
the “easy half” of the proof.

1.3.7 Proposition (Swan’s lemma).
Suppose that the p-Sylow subgroup Gp is abelian. Then if Np is its normalizer, we

have
CH∗(G)⊗ Z(p) = CH∗(Gp)Np

This last proposition shows, for example, that if G has an abelian p-Sylow subgroup,
then its p-torsion summand injects into the corresponding cohomology group.
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14 Chapter 1 Elementary results

Our last result concerns groups of p-rank 1. Let us first deal with odd p’s: in this
case having p-rank 1 means that the p-Sylow subgroups are cyclic. Then one has:

1.3.8 Proposition. Suppose G has p-rank 1, for some odd p. Then

CH∗(G)⊗ Z(p) = Heven(G,Z)⊗ Z(p) = H∗(G,Z)⊗ Z(p)

Moreover this ring is generated by Chern classes.

For p = 2, having 2-rank 1 means the 2-Sylow subgroups are either cyclic, or gen-
eralized quaternion groups. It is likely that such groups have Chow rings mapping
isomorphically to cohomology, and therefore that the theorem above holds for p = 2.
We know for sure that it holds if G2 is cyclic or if G2 = Q8.

§1.4. Complex cobordism

At least we should consider ourselves happy that we are not doing Algebraic Geometry.
Frank Adams, Infinite Loop Spaces.

All the results of this chapter also hold for complex cobordism, as we proceed to
prove. Things are much easier to demonstrate in this case.

And to start with, the first computations:

• Grassmannians are very easy to deal with: when the cohomology of a space X
is torsion-free, it is always isomorphic to MU∗(X)⊗̂MU∗Z, and so

MU∗(BGLn(C))⊗̂MU∗Z = CH∗BGLn(C) = H∗(BGLn(C),Z)

• Cyclic groups. We note that BZ/n is a circle bundle over BS1, and so the Gysin
exact sequence gives immediately

E∗BZ/n = E∗[[x]]/([n](x))

for any oriented cohomology E, where the (standard) notation [n] refers to the
homomorphism E∗BS1 → E∗BS1 induced from the map BS1 → BS1 which
raises a line bundle to its n-th tensor power, or equivalently the map coming from
z 7→ zn on the circle.

In the case of MU , we have [n](x) = nx+ · · · , and we conclude

MU∗(BZ/n)⊗̂MU∗Z = CH∗BZ/n = H2∗(BZ/n,Z)

• Künneth Formulae. Suppose all the Morava K-theories of BGi, at all primes,
are concentrated in even degrees, for i = 1, 2 (which is extremely often, though
not always, the case). Then one has

MU∗(BG1 ×BG2) = MU∗(BG1)⊗̂MU∗MU∗(BG2)

In fact this is a particular case of a more precise statement regarding BP ∗, see
3.2.6 where we also give some details about the Morava K-theories.
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1.4 Complex cobordism 15

• Quaternions. We let Ep,q = Hp(BG,MU q) denote the first page of the Atiyah-
Hirzebruch spectral sequence converging to MU∗BG, where G = Q8. The integral
cohomology of G is concentrated in even degrees, and is periodic, the period being
given by (cup) multiplication by an element z ∈ H4(BG,Z). This z happens to
be a Chern class, in fact the top Chern class of the representation of G used in our
computation for Chow rings. Hence it is certainly an infinite cycle in the spectral
sequence. Since all differentials are derivations and dr(z) = 0 for all r ≥ 2, as we
have just argued, it follows that multiplication by z commutes with dr and gives an
isomorphism between the columns of the spectral sequences (away from the 0-th
column), on every page. We conclude that for n > 0, MUnBG = MUn+4BG.

Now, MU∗(BG)⊗̂MU∗Z is 0 in dimension 1 and 3 by [47], theorem 3.3, and the
even part (MU∗(BG)⊗̂MU∗Z)2i agrees with CH iBG for i ≤ 2 by loc. cit., corollary
3.5. By periodicity,

CH∗BG = MU∗(BG)⊗̂MU∗Z = H2∗(BG,Z).

• Functoriality and transfers: everything is true and trivial.

We now turn to connected, solvable groups, for which it is enough to point out
that the propositions in 1.2.2 and 1.2.3 trivially hold for MU∗(−)⊗̂MU∗Z, by a spectral
sequence argument. It follows that the results in 1.2.4 and 1.2.5 also hold.

Finally, the double coset formula is really the statement in 1.3.3. From this
point onwards, we have a formula as given in 1.3.4 for any theory with transfers having
reasonable properties with respect to fibre products. It is certainly the case of MU .
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chapter

two

The Steenrod algebra

He would make outrageous claims like he invented the question mark. Sometimes he
would accuse chestnuts of being lazy. The sort of general malaise that only the genius
possess and the insane lament.

Dr Evil

In this chapter appears the Steenrod algebra Ap, the algebra of all stable cohomol-
ogy operations. Equivalently, Ap is H∗(H) = π∗(hom(H,H)) where H is the mod p
Eilenberg Mac-Lane spectrum and the hom object is taken in an appropriate category
of spectra. We will denote by U the category of unstable modules over Ap, while Uev

will stand for the full subcategory consisting of modules which are concentrated in even
degrees. Brosnan has shown ([8]) how Ap acts on the Chow ring of a smooth variety,
and CH∗X ⊗ Fp thus becomes a typical element in Uev.

We shall explain how a theorem of Quillen leads one to the study of these two
categories after localizing away from a subcategory called Nil, which roughly consists
of modules containing only “nilpotent” elements in an intuitive sense. Localizing away
from Nil means we want a module in Nil to count as zero, and thereby a map whose
kernel or cokernel is in Nil should count as a monomorphism or epimorphism.

Quillen’s theorem then says that after this simplification is done, the cohomology or
Chow ring of BG is completely determined by the elementary abelian subgroups of G
and their fusion (that is, the conjugacies between them).

Our observation is that in the case of Chow rings, but not that of cohomology, we have
very often a much finer result, namely this is true even before localizing. Equivalently,
Chow rings are often local (isomorphic to their localizations).

We make all this precise in the first section, and give an illustration in the second,
with G taken to be the symmetric group on n letters. We prove that it is indeed local
or “Nil-closed”. The symmetric groups are used in the very definition of the Steenrod
operations (which together with the Bockstein generate the Steenrod algebra) and this
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18 Chapter 2 The Steenrod algebra

is exploited in our proof: therefore it makes sense to isolate this example from the ones
considered in later chapters.

A piece of notation: from now on, we will write simply

CH∗X = CH∗X ⊗Z Fp.

We use the forgetful functor O : Uev → U and its right adjoint Õ : U → Uev. Note
then that OÕM is the largest submodule of M which is concentrated in even degrees,
which need not be the even part of M but rather the submodule on which the ideal
generated by the Bockstein in Ap acts trivially.

And p is a prime.

§2.1. Nilpotent modules and localization

2.1.1. Let G be a reductive algebraic group, and let C(G) be the category whose objects
are the elementary abelian p-subgroups of G and whose morphisms are induced by
conjugations in G. In [34], Quillen proved that the natural map

H∗(BG)→ lim←−
C(G)

H∗BE

is an “F-isomorphism”, in the sense that any element in the kernel is nilpotent, and for
any x in the target, xpn

is in the image for some n. As it happens, this is a property
that can be characterised in U, because the p-th power is given by a Steenrod opera-
tion. Quillen’s theorem can be reformulated by saying that the above map becomes an
isomorphism upon localizing away from the subcategory of so-called nilpotent modules
(we will give more precise definitions below). Rather surprisingly, it is very fruitful to
“linearize” the situation in this way ([20], [22]).

Yagita proved a version of Quillen’s theorem for Chow rings when G is finite, see
[48]: the map

CH∗(BG)→ lim←−
C(G)

CH∗BE

is also an F-isomorphism. We will see in this section that we can express this as a
localization result in Uev, parallel to the one for cohomology. If we saw our Chow rings
as modules in U this would not be possible, which confirms our intuition that Chow
rings naturally live in Uev.

It is natural to ask whether there are any groups for which Quillen’s map is actually
an isomorphism. For example if G = Sn is the symmetric group, the map is an isomor-
phism at the prime 2 but not for any other prime, see [20]. However we shall see in the
next section that the Quillen-Yagita map for Sn is an isomorphism at all p. Indeed one
of the main points of this thesis is to show that this is true for a whole lot of groups.

In this section we make the above statements precise, treating simultaneously the
cases of U and Uev. There is essentially nothing new here, cf [22], [20], [21], but we
need all this for reference. It is also felt that the reader might appreciate a concise and
reasonably self-contained presentation.
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2.1 Nilpotent modules and localization 19

2.1.2. Quotient categories; localizations.([18], [17]) Let C be an abelian category,
and let D be a Serre class (a full subcategory with the property that if two objects of a
short exact sequence in C belong to D, then so does the third). Then there is a quotient
category C/D which is abelian and an exact functor r : C→ C/D satisfying the obvious
universal property. A morphism in C induces a monomorphism (resp. epimorphism)
in C/D if and only if its kernel (resp. cokernel) belongs to D. We will talk about
D-monomorphisms, etc.

The category D is said to be localizing if r admits a right adjoint, or section functor,
s : C/D → C. We put l = s ◦ r and we call the natural map λM : M → l(M) the
localization of M away from D. When this is an isomorphism, we say that M is D-
closed or D-local.

One can prove easily that the natural transformation r ◦ s(M) → M is an isomor-
phism. It follows that λM : M → l(M) is a D-isomorphism, that is, r(λM ) is an
isomorphism. Hence λl(M) = l(λM ) : l(M)→ l ◦ l(M) is an isomorphism, too: in other
words, the localization ofM is local. More generally, keep in mind that a D-isomorphism
M → N induces an isomorphism l(M)→ l(N).

Finally, we note that if C has enough injectives, then an object M is D-closed if and
only if

ExtiC(D,M) = 0

for i = 0, 1 and all D in D.

2.1.3. Nilpotent and Nil-closed modules. Given M in U or Uev, and x ∈ M of
even dimension, we put P0x = P |x|/2x (so that if M happens to be an unstable algebra,
P0x = xp).

We say that M is nilpotent if PN
0 x = 0 for all x of even dimension and all large N .

(See [38], p47). There is an exception if we work with U at the prime 2: in this case we
put Sq0x = Sq|x|x and call a module M nilpotent if SqN

0 x = 0 for all x and all large N .
The subcategory of U or Uev which is comprised of the nilpotent modules will be

denoted by Nil (we do not distinguish between U and Uev, hopefully the context will
make things clear).

It is easy to see that Nil is localizing, see the criterion in [38], prop 6.3.1. Therefore,
the results of the previous paragraph apply, and we use the notation λM : M → L(M)
for the localization away from Nil (notation as in [22]).

It is well-known that U has enough injectives, and it follows that the same can be
said of Uev. Accordingly, M is Nil-closed if and only if Exti(N,M) = 0 for i = 0, 1 and
for all N nilpotent.

To finish with, we call a module reduced if Hom(N,M) = 0 for all nilpotent modules
N . In Uev, or in U at the prime 2, this is equivalent to demanding that P0 be injective
on M : combine lemma 2.6.4 and equation 1.7.1* in [38] (alternatively, see lemma 4.5 in
[21]).

2.1.4 Lemma. Any reduced module in Uev embeds in a reduced Uev-injective. The tensor
product of two reduced Uev-injectives is a reduced Uev-injective.
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20 Chapter 2 The Steenrod algebra

Proof. We observe immediately that if I is injective in U, then ÕI is injective in Uev.
The first assertion of the lemma follows then from the corresponding statement in U,
which is well-known, and the left exactness of Õ. It also follows that any reduced
injective in Uev is a direct summand in such a module ÕI with I reduced, and we get
the second assertion, again because the analogous result in U is well-known (and because
Õ(A⊗B) = ÕA⊗ ÕB if one of the factors is reduced).

2.1.5 Proposition. In either U or Uev, we have the following properties:

1. If 0→M ′ →M →M ′′ → 0 is exact and if M ′ and M ′′ are both Nil-closed, so is
M .

2. If 0→M →M ′ →M ′′ is exact and if M ′ is Nil-closed while M ′′ is reduced, then
M is Nil-closed.

3. M is Nil-closed ⇐⇒ there exists an exact sequence

0→M → I → J

with I and J both reduced and injective.

4. M1 and M2 Nil-closed ⇒ M1 ⊗M2 Nil-closed.

2.1.6 Corollary. Any product or inverse limit of Nil-closed modules is Nil-closed.

Proof. This is trivial from the lemma. Note that the third point in the proposition is
only here to prove the fourth. In case of problems see [20] or [21].

2.1.7. Back to Quillen’s map. The cohomology of an elementary abelian p-group
is reduced and injective ([38], 2.6.5 and 3.1.1), hence is Nil-closed. Consequently, the
target of Quillen’s map is Nil-closed, as an inverse limit of such. Quillen’s theorem
asserts that his map is a Nil-isomorphism, so that it becomes an isomorphism upon
localizing. In other words

L(H∗(BG)) ≈ lim←−
C(G)

H∗BE

(as the inverse limit is isomorphic to its own localization). We see in this way that
Quillen’s map is an isomorphism if and only if H∗BG is Nil-closed.

Similarly, CH∗BE = ÕH∗BE is injective and reduced in Uev, and the target of the
Quillen-Yagita map is Nil-closed in Uev. It follows that

L(CH∗(BG)) ≈ lim←−
C(G)

CH∗BE

and that the Quillen-Yagita map is an isomorphism if and only if CH∗BG is Nil-closed.
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2.1 Nilpotent modules and localization 21

2.1.8 Example. It is instructive to have a look at G = GL(n,C), even if this G is not
finite (so only Quillen’s map can be mentioned, not Yagita’s): in effect M = H∗BG =
CH∗BG illustrates well how a module can behave better in Uev than in U, which we see
as follows. If E is the subgroup of G of diagonal matrices with p-th roots of unity as
entries, then any elementary abelian p-subgroup of G is conjugated to a subgroup of E.
If W denotes the Weyl group, it follows that

L(M) = (H∗BE)W 6= H∗BGL(n,C);

consequently M is not Nil-closed in U. On the other hand

(CH∗BE)W = CH∗BGL(n,C)

from which we deduce that M is indeed Nil-closed in Uev (being an inverse limit of
Nil-closed modules).

To get an example with finite groups, it is in fact possible to take a finite field k of
characteristic different from p but containing the p-th roots of unity, and to consider
H∗BGL(n, k) and CH∗BGL(n, k). The former is reduced but not Nil-closed in U ([22],
[35]), while the latter is Nil-closed in Uev (see chapter 4). In the rest of this thesis we
shall extend this to other groups of matrices over finite fields.

2.1.9 Example. We cannot hope for CH∗BG to be always Nil-closed, as is illustrated
by the group of quaternions: there is only one elementary 2-subgroup, namely the centre
{1;−1}, and the restriction map is neither injective nor surjective.

However, this example is not too discouraging: the quaternion groups are precisely
the 2-groups which have 2-rank 1, together with cyclic groups (recall that the rank of a
p-group is the dimension of the largest Fp vector space contained in it). For odd p on
the other hand, this pathology disappears, and a group of p-rank 1 can only be cyclic.
So the example above might reflect a purely group-theoretic defect (or subtlety, if you
want), and one might still hope that for groups of odd order, the Quillen-Yagita map is
“very often” an isomorphism.

2.1.10. Remark. Combining Quillen’s and Yagita’s result, we obtain of course that
the cycle map CH∗BG → H∗BG is an F-isomorphism. So we can write in U that
L(CH∗BG) = L(H∗BG) and in Uev that L(CH∗BG) = L(ÕH∗BG). Whenever
CH∗BG is Nil-closed this reads

CH∗BG = L(ÕH∗BG)

This is a description of the Chow ring in terms of H∗BG using merely functors between
U and Uev (which do not depend on G).

We end this section with a few more remarks, before starting to give examples of
groups G with CH∗BG Nil-closed, hopefully convincing the reader that there is a fair
number of them. When p is odd, we do not know of an example of a group not satisfying
this property.
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22 Chapter 2 The Steenrod algebra

2.1.11. Remark. Suppose that G is a group such that H∗BG is reduced. Since the
functor Õ is left-exact and commutes with inverse limits, we have an injection:

ÕH∗BG ↪→ lim←−ÕH
∗BE

But ÕH∗BE = CH∗BE, so if we suppose further that the Quillen-Yagita map for
Chow rings is surjective, it follows that the image of CH∗BG under the cycle map has
to contain all of ÕH∗BG. We will use this later with G = Sn.

2.1.12. Complex cobordism. Most of what we have said so far applies to the theory
MU∗(−)⊗̂MU∗Fp.

We start by explaining why we have Steenrod operations on this theory. First, we
have the isomorphism of graded abelian groups:

MU∗(MU) = MU∗(pt)[[· · · cn · · · ]]

More generally for any oriented cohomology theory E, the Thom-Dold theorem asserts
E∗MU = E∗BU , and E∗BU is computed via the Atiyah-Hirzebruch spectral sequence,
and is a power series ring as above. However this is not a ring isomorphism: we are inter-
ested in the multiplication given by composition in MU∗(MU) = π∗(hom(MU,MU)).
Nevertheless, it is a fact (cf [37],VII,3.1) that any element x ∈MU∗(MU) can be written

x =
∑
ω

aωSω

where aω ∈ MU∗(pt) and Sω has an (easy) explicit description in terms of the ci’s.
The ring structure on MU∗(pt) is the natural one, and the notation aωSω does refer
to the “correct” multiplicative structure. (On the other hand multiplying Sω and Sω′

gives funny results.) From this it follows that the kernel I of the (surjective) map
MU∗(MU) → H∗MU , where as always H denotes mod p cohomology, is the ideal
generated by (p, xi) ⊂ MU∗(pt), in standard notation. In other words, I is generated
in MU∗(MU) by the kernel of the map

MU∗(pt) = Z[x1, x2, · · · ]→ Fp = H∗(pt)

Now, this I acts trivially on MU∗(X)⊗̂MU∗Fp for any space X, of course. (That is,
the elements of this ideal act as 0.) Thus H∗MU acts on our theory (again, with some
ring structure which is not the one coming from the isomorphism H∗MU = H∗BU ,
but this will not matter). Since the Steenrod algebra acts on H∗MU , it also acts on
MU∗(X)⊗̂MU∗Fp. Moreover, it is well-known that H∗MU is a free Ap/(β)-module, so
that the Bocksteins act trivially in this new setting. (Note that H∗MU is thus not
unstable, this is an example that shows that the Thom-Dold isomorphism is not a map
of Ap-modules!)

Is MU∗(X)⊗̂MU∗Fp unstable? This appears to be true, and we outline a proof –
we shall not need the result in what follows, as we shall only consider some spaces
X for which MU∗(X)⊗̂MU∗Fp injects into the cohomology ring. To prove the claim,
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2.2 The Symmetric Groups 23

one would construct directly some operations on MU∗(−)⊗̂MU∗Fp in the obvious way:
starting with a manifold M representing a class in MU∗X, then Mp gives a class in
MU∗Xp, and thus it yields one in MU∗ZpX, the cyclic product; project this onto

MU∗(X ×BZ/p)⊗̂MU∗Fp =
(
MU∗(X)⊗̂MU∗Fp

)
⊗

(
MU∗(BZ/p)⊗̂MU∗Fp

)
and define the coefficients of the polynomial in v thus obtained to be your “Steenrod”
operations. These act “unstably” for any space, by construction. After taking limits, we
extend this to X = MU , and the images of 1 ∈MU∗(MU)⊗̂MU∗Fp define elements P̄ i

there; these lift toMU∗(MU) and yield operations onMU∗(−) and onMU∗(−)⊗̂MU∗Fp

which by naturality agree with the ones just described. Thanks to the existence of such
lifts, in fact, any element in MU∗(MU)⊗̂MU∗Fp acts on MU∗(−)⊗̂MU∗Fp, and thus
any relation between the P̄ i’s and the ci’s still holds after it’s applied to any x in
MU∗(X)⊗̂MU∗Fp for any X. By picking some spaces X for which MU∗(X)⊗̂MU∗Fp

injects into the cohomology H∗X, and using the obvious compatibility of the P̄ i’s with
the actual Steenrod operations P i once we have projected to cohomology, we deduce
P̄ i = P i.

In any case, if we take this for granted, we see that the modulesMU∗(X)⊗̂MU∗Fp live
naturally in the category U/β of unstable modules over Ap/(β), which is an intermediate
between Uev and U. Considering the odd and even parts of a module M in U/β gives a
decomposition of M as a direct sum of two elements of Uev. It should be easy from this
to extend the localization results obtained for U and Uev to the category U/β. However,
we do not have any application in sight, mostly because all modules of interest to us
given as MU∗(BG)⊗̂MU∗Fp for some G are concentrated in even degrees and can be
seen as objects of Uev. Therefore we shall not fill in the details here. The interested
reader might want to have a look at [33], formula 3.18 in particular.

In any case, it is convenient to use the term “F-isomorphism”, and we state for future
reference Yagita’s result [48]:

Proposition. Let G be a finite group. The natural map

MU∗(BG)⊗̂MU∗Fp → lim←−MU∗(BE)⊗̂MU∗Fp

is an F-isomorphism.

Corollary. If G is a finite group, then the two maps

CH∗BG→MU∗(BG)⊗̂MU∗Fp → H∗BG

are F-isomorphisms.

§2.2. The Symmetric Groups

2.2.1. In this section we prove that CH∗BSn is Nil-closed in Uev. As one could expect,
the proof is by induction, by proving that if CH∗BG is Nil-closed, then so is CH∗B(Sp o
G). It might seem simpler to use Z/p o G instead, but things turn out to be slghtly
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easier this way, and also we want the reader to be able to compare our proof with that
in [21] which deals with a similar result using ÕH∗BG instead of our CH∗BG (and
in turn, both treatments follow closely the original one in [20] for mod 2 cohomology).
Incidentally, the result in [21] can be recovered from ours, see 2.2.13.

For technical reasons stemming from [47], we will have to restrict attention to a
certain class of groups: namely, G will be assumed to have a subgroup H of index prime
to p such that BH can be cut into open subsets of affine space. Then Z/p o H is a
subgroup of index prime to p in Sp oG which has the same property, by [47], lemma 8.1,
and the induction may proceed.

We will also assume that the mod p cycle map CH∗BG → H∗BG is injective. We
will prove quickly that the cycle map for Z/p oG and Sp oG is injective too.

Here we point out a gap in [47]: even though all the results that we shall refer to
are correct and cover a great deal of the work needed to study the Chow ring of Sn, it
appears that assertion (3) in lemma 8.1 does not have a correct proof (it is stated for
integral coefficients but the proof refers to a paper of Nakaoka which is written mod p).
The computation of CH∗BSn that follows is thus not entirely justified. Therefore our
own results partially fill in the gap.

We begin by explaining how Chow rings and cohomology rings are affected by taking
wreath products, and we give a few immediate properties, in particular we will end up
with an exact sequence which together with 2.1.5,1/, will eventually yield the result.

2.2.2. Cohomology and Chow rings of cyclic products. We shall need the fol-
lowing nice result of Nakaoka[31]:

H∗(Z/p oG) = H∗(Z/p, (H∗G)⊗p)

Recall that the cohomology of a cyclic group with coefficients in any ring A is pe-
riodic, and the period is given by taking cup-products with an element in H2(Z/p,A).
Here we denote by v ∈ H2(Z/p, (H∗G)⊗p) an element giving the period (abusing the
notation given in the introduction).

For Chow rings of cyclic products, we use results of [47]. There a certain functor Fp

from graded abelian groups to graded abelian groups is defined, which comes equipped
with a natural map FpCH

∗X → CH∗ZpX, where X is a variety and ZpX is it p-fold
cyclic product. After changing the grading from dimension to codimension, reducing
modulo p, and changing the notations to relate to [8], the definition of FpA

∗ is as follows:
take the p-fold tensor product A∗⊗· · ·⊗A∗, take symbols Px in degree p · |x| for x ∈ A∗
of positive degree, take also elements αix of degree p · |x|+2i for all x ∈ A∗ and positive
i, and finally divide by the relations:

x1 ⊗ · · · ⊗ xp = x2 ⊗ · · · ⊗ xp ⊗ x1

x⊗p = 0

P (x+ y) = Px+ Py +
∑

s1 ⊗ · · · ⊗ sp

together with the relations that turn αi into a homomorphism of groups. Here the
sum in the third formula runs over a set of representatives for the Z/p-orbits in the
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set {x, y}p − {(x, · · · , x), (y, · · · , y)}. To be rigorous, the elements αix should be only
defined for i small enough and likewise the Px’s should only appear when the degree of
x is small enough; but in both cases the bound depends on the dimension of the variety
X, and when we deal with classifying spaces of groups BG we take a limit of varieties
(with “compatible” Chow rings) having their dimensions going to infinity, and we do
not need to worry about this complication.

From the construction of Fp as given in [47], it is easy to describe the composition
FpCH

∗BG→ CH∗B(Z/p oG)→ H∗B(Z/p oG), for any G: the element x1⊗ · · · ⊗ xp is
sent to the “norm”

∑
xi1 ⊗· · ·⊗xip , with the sum running over all cyclic permutations,

sitting in H0(Z/p, (H∗G)⊗p); the element Px is sent to x ⊗ · · · ⊗ x in the same group
(note how the relations above relate to the expansion of (x + y) ⊗ · · · ⊗ (x + y)); and
finally the element αix goes to vi · x⊗ · · · ⊗ x. This is all clear. In particular this map
is injective if the cycle map for G is injective.

For G as in the introduction, FpCH
∗BG→ CH∗B(Z/p oG) is surjective by lemma

8.1 in [47]. Therefore for the G we consider, there is an isomorphism FpCH
∗BG =

CH∗B(Z/poG), the cycle map for Z/poG is injective, and its image is explicitly described.
We shall denote by τ the transfer from Gp to Z/p o G. Its image is spanned by the

“norms”, clearly.

2.2.3. We will also be interested in wreath product of the form Sp o G. Nakaoka has
established that H∗(Sp oG) = H∗(Sp, (H∗G)⊗p) in this case too. Since Z/p is a p-Sylow
of Sp, we deduce:

Lemma. Let W = NSp(Z/p)/Z/p = (Z/p)∗. Then

H∗(Sp oG) = (H∗(Z/p oG))W

and
CH∗(Sp oG) = (CH∗(Z/p oG))W

Proof. The equality for cohomology groups follows from Nakaoka’s results just quoted
and Swan’s lemma. To get the result for Chow rings, we proceed as follows: there is an
obvious inclusion, and the double coset formula tells us that the image of the restriction
map is the group of “stable” elements, ie those x such that, putting K = Z/p o G, we
have x|K∩gKg−1 = gxg−1|K∩gKg−1 (proposition 1.3.5). So we need to show that if x is
W -invariant, then x is stable. But K ∩ gKg−1 is either K or Gp (this is because Gp is
normal in Sp oG, and the order of Z/p is prime). In either case, the cycle map is injective
on this group, and so the result for cohomology implies that for Chow rings.

2.2.4 Proposition. There are exact sequences:

0→ τ(H∗(BGp))→ H∗B(Z/p oG)→ H∗BG⊗H∗BZ/p

and
0→ τ(CH∗(BGp))→ CH∗B(Z/p oG)→ CH∗BG⊗ CH∗BZ/p
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Note that the maps on the right come from the inclusion of Z/p × G in Z/p o G =
Z/pnGp.

Proof. The exact sequence for cohomology follows from results of Steenrod’s ([42] chap-
ter VII), as is explained, for example, in [29], theorem II.3.7.

To get the result for Chow rings, we use the cycle map, which here is injective. The
only thing to prove is that CH∗B(Z/p oG) ∩ τ(H∗(BGp)) = τ(CH∗(BGp)), but this is
clear from the explicit description in 2.2.2.

2.2.5 Corollary. There are exact sequences:

0→ (τ(H∗BGp))W → H∗B(Sp oG)→ R1(H∗BG)→ 0

and
0→ (τ(CH∗BGp))W → CH∗B(Sp oG)→ Rev

1 (CH∗BG)→ 0

where W is as in lemma 2.2.3 and where R1(H∗BG), resp. Rev
1 (CH∗BG), is a submod-

ule of H∗BG⊗H∗BZ/p, resp. CH∗BG⊗ CH∗BZ/p.

The functorial notations R1(H∗BG) and Rev
1 (CH∗BG) will be justified below.

2.2.6. The point now is to prove that (τ(CH∗BGp))W and Rev
1 (CH∗BG) are both Nil-

closed, and to use proposition 2.1.5, 1/. This is where we can only continue the proof
for Chow rings, as the result does not hold for cohomology at odd primes. It is proved
in [21], however, that if one replaces H∗BK by ÕH∗BK for all groups K occuring in
Quillen’s map, then one still gets an isomorphism.

2.2.7. The functor Rev
1 . Let M be a module in Uev. For any x ∈ M of degree 2k,

define

Stev1 (x) =
k∑

i=0

(−1)ivi(p−1) ⊗ P k−ix ∈ CH∗BZ/p⊗M

where we recall that P i = Sq2i when p = 2. We define Rev
1 M to be the CH∗(BSp)-

submodule of CH∗BZ/p ⊗M generated by the elements Stev1 x, for x ∈ M . Here we
view CH∗BZ/p as a module over CH∗BSp via the restriction map.

There is a functor R1 : U → U which is defined in a similar, but more complicated,
way (see for example [21], definition 4.2, or the original in [49]). In fact one has Rev

1 M =
ÕR1(OM): this can be seen from the explicit description of R1 given in loc cit , and
using lemma 2.2.3 which asserts in particular that CH∗Sp = Fp[vp−1]. This proves that
Rev

1 M is always in Uev, ie it is stable under the action of the Steenrod algebra. We will
not use this seriously, however, and Rev

1 can be taken as a functor from Uev to graded
Fp-vector spaces.

The definition of Rev
1 is very explicit and will allow computation. However:

2.2.8 Lemma. The two definitions of Rev
1 M given coincide.
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Proof. We need to show that the image of the map

CH∗(Sp oG)→ CH∗BZ/p⊗ CH∗G

is Rev
1 M . The fact that the elements Stev1 x are in this image follows from the very defi-

nition of the Steenrod operations on Chow rings: in [8], an element P (x) is constructed
in CH∗(Sp oG) (prop 4.2 in loc cit) which retricts to Stev1 x (definition 7.5 in loc cit; note
that our (−1)i sign is on p10, before prop 6.6 there). Therefore, the image certainly
contains Rev

1 M .
To get the reverse inclusion, observe that (with notations as in 2.2.2, our Px being

consistent with Brosnan’s) the elements in CH∗(Z/p oG) not mapping to 0 in CH∗G⊗
CH∗BZ/p are of the form Px or αix = vi · Px. The latter elements can only be in
CH∗(Sp o G) = (CH∗(Z/p o G))W (cf 2.2.3) if i is a multiple of (p − 1), and the image
of the map above is indeed contained in the CH∗BSp = Fp[vp−1]-module generated by
the Stev1 x.

2.2.9. A few properties of Rev
1 . Put P = CH∗BZ/p and Q = CH∗BSp.

Lemma (1). If {x} is an Fp-basis of M , then {Stev1 x} is a basis of Rev
1 M as a free

Q-module.

Proof. (Almost word for word from [26], proof of 4.2.3, included for the convenience of
the reader). Given a relation

∑
λxSt

ev
1 x = 0 with λx ∈ P , put m = min |x| taken over

all x for which λx 6= 0, if there are any. Then project into P ⊗Mm, which is a free
P -module having a basis containing the elements 1⊗x for x of degree m. You get, with
m = 2k, the relation

∑
λx(−1)kvk(p−1) ⊗ x = 0 which yields λx = 0.

Lemma (2). The functor Rev
1 is exact.

Proof. From the previous lemma, we can say that as a vector space, Rev
1 M is Q⊗ΦM ,

where here ΦM means M with all degrees mutiplied by p. Result follows.

Lemma (3). IF M ′ is a submodule of M , then (Rev
1 M) ∩ (P ⊗M ′) = Rev

1 M
′.

Proof. This follows from the commutative diagram with exact rows:

0 −−−−→ Rev
1 M

′ −−−−→ Rev
1 M −−−−→ Rev

1 M/M ′ −−−−→ 0y y y
0 −−−−→ P ⊗M ′ −−−−→ P ⊗M −−−−→ P ⊗M/M ′ −−−−→ 0

Our next lemma will involve the functor Φ defined in [38], 1.7. When M ∈ Uev, ΦM
is M with all degrees multiplied by p, and with an appropriate action of the Steenrod
algebra which makes the map ΦM → M,x 7→ P0x linear over Ap (so more formally,
P iΦx = ΦP i/px if p|i and 0 otherwise). Whenever M is reduced, we identify ΦM with
the submodule of M comprised of the elements P0x.
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Lemma (4). For any M ∈ Uev, we have

(Rev
1 ΦM) ∩ (ΦP ⊗M) ⊂ ΦRev

1 M

Proof. (cf [21], 4.7). Let x ∈M have degree 2k; we can write

Stev1 Φx =
k∑

j=0

(−1)jvjp(p−1) ⊗ P (k−j)pΦx

because P kp−i can only act non-trivially on Φx when p divides i (so we have put i = pj).
A typical element in (Rev

1 ΦM) ∩ (ΦP ⊗M) is thus

y = vpm(p−1)
k∑

j=0

(−1)jvjp(p−1) ⊗ P (k−j)pΦx

and this is Φz for

z = vm(m−1)
k∑

j=0

(−1)jvj(p−1) ⊗ P (k−j)Φx

from Cartan’s formula and 1.7.1* in [38].

2.2.10 Proposition. If M ∈ Uev is Nil-closed, so is Rev
1 M .

Proof. We prove that if an element y of Rev
1 M is of the form y = Pox for some x ∈

CH∗BZ/p ⊗M , then in fact we can choose such an x in Rev
1 M . It follows that P0 is

injective on the quotient (CH∗BZ/p ⊗M)/Rev
1 M , so that this module is reduced (cf

2.1.3). As CH∗BZ/p⊗M is Nil-closed from proposition 2.1.5, 4/, it follows from 2/ of
the same propostion that Rev

1 M is Nil-closed.
We have

(Rev
1 ΦM) ∩ (ΦP ⊗M) ⊂ ΦRev

1 M

and
Rev

1 M ∩ (P ⊗ ΦM) = Rev
1 ΦM

from (2.2.9, lemmas 3 & 4). Thus

Rev
1 M ∩ Φ(P ⊗M) ⊂ ΦRev

1 M

using the fact that on Uev, Φ commutes with tensor products, just like it does on U at
the prime 2, so that Φ(P ⊗M) = (ΦP ⊗M) ∩ (P ⊗ ΦM).

This was what we wanted.

2.2.11. By contrast, proving that τ(CH∗BG⊗p)W is Nil-closed is straightforward. Put
M = CH∗BG. The explicit formulae of 2.2.2 and 2.2.3 show that there is an exact
sequence

0→ τ(M⊗p)→ (M⊗p)Z/p → ΦM → 0

Since M is reduced, direct computation shows that ΦM is reduced; the middle term of
the sequence is Nil-closed by 2.1.5,4/ and 2.1.6; so τ(M⊗p) is Nil-closed by 2.1.5, 2/;
and finally (τ(M⊗p))W is Nil-closed by 2.1.6 again.
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2.2.12 Theorem. Let G be a group as in the introduction. If CH∗BG is Nil-closed,
so is CH∗B(Sp oG). In particular, CH∗BSn is Nil-closed for any n. It follows that

CH∗BSn = lim←−CH
∗BE

where E runs over the elementary abelian subgroups of Sn.

Proof. The only thing to add is that the Sylow subgroup of Sn is contained in a product
of iterated wreath products Sp o Sp o · · · o Sp.

2.2.13. It has been known since Quillen’s paper [34] that the cohomology of Sn is
reduced. From 2.1.11, we deduce

CH∗BSn = ÕH∗BSn

It follows that
ÕH∗BG = lim←−ÕH

∗BE

which was established in [21], a paper which has been a great source of inspiration.
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chapter

three

Chevalley groups: cobordism

I have seen men fly bombers with their faces half- blown away. You’re going to allow a
few algebra formulas to ground you?

Robin Green and Mitchell Burgess, Northern Exposure, Cup of Joe, 1993

Now that we have set up the language of localization of unstable modules and showed
that the concept was not vacuous with the example of Sn, we proceed to analyze a large
class of groups, namely the finite groups of Lie type, or Chevalley groups. These are
essentially the groups of matrices over finite fields which have a counterpart in the realm
of Lie groups – e.g. Spn(Fq), SLn(Fq), and the like (precise definition below).

This chapter is dedicated to the complex cobordism, while the next one, by no means
independent, will deal with the Chow ring.

Briefly, the result we obtain is the following. Let G be a Chevalley group, let p
be a prime such that H∗(BGC,Z) has no p-torsion (where GC is the associated Lie
group), and let k be a finite field of char 6= p containing the p-th roots of unity. Then
MU∗(BG(k))⊗̂MU∗Fp is a Nil-closed module in Uev, and there is a natural isomorphism

MU∗(BG(k))⊗̂MU∗Fp = H∗BGC.

When k does not contain the p-th roots of unity, one has to take a certain Galois
action into account, and this is completely described.

We shall take the following route. The first section explains the basic properties of
Chevalley groups. Most of these facts are not even needed until the next chapter, but
they find a natural niche here, giving the reader a feel for which results of the theory of
Lie groups carry over to these finite analogs that we are confronted with. The following
two sections do the actual work: section 2 contains a couple of technical lemmas on
going back to MU∗ from the Morava K-theories, and section 3 applies this, exploiting a
theorem of Tanabe [44] on the Morava K-theories of Chevalley groups. The computation
is finished just before section 4, where it is interpreted in terms of localizations (they
are not mentioned up to that point).
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Note the slight twist: to be able to see the result as a localization statement, we
need some information on the elementary abelian subgroups of the group G under con-
sideration. In the present case this can be taken care of by a rather strong theorem
of Steinberg [43]. However, the computation of MU∗(BG)⊗̂MU∗Fp does not depend
on any of this (its interpretation only does), and in turn, one can deduce Steinberg’s
result once the cobordism ring is known. So we have a very different proof of a classical
group-theoretic fact.

§3.1. Introduction

3.1.1. Chevalley groups. The point of this chapter and the next is to study Chevalley
groups, ie groups of the form G(Fla) where G is a connected, reductive, split group
scheme over Z, and l is a prime different from p. Recall that “split” means that G has a
maximal torus T which is itself “split” in the sense that T = Gn

m over Z (or whatever the
base is); in this definition Gm is the multiplicative group scheme Spec Z[X,X−1]. The
associated Lie group over C will be denoted GC (and in fact the notation will occasionally
refer to a maximal compact Lie subgroup, which should not cause any confusion as the
inclusion map induces a homotopy equivalence; the two classifying spaces also share the
same homotopy type).

3.1.2. The Weyl group. Let us start with some general remarks on group schemes.
Recall that normalisers, centralisers, and quotients (at least by diagonalisable subgroups)
can be performed over any base scheme, see [1], exposé VIII,6/. It will be important to us
that these operations commute with base extensions – for example if G is a group scheme
over S and H a subgroup scheme, and if R → S is any morphism, then (NG(H))R =
NGR

(HR) where XR = X ×S R.
If now G is a reductive group scheme over S with a split maximal torus T , recall

that T = C(T ) (its own centraliser), cf [2], exposé XIX, 2.8. We (momentarily) put
WG(T ) = NG(T )/T . The following is proved in [2], exposé XXII,3/ (in particular
proposition 3.4): there exists a finite group W such that WG(T ) is the constant group
scheme associated to W . This means in particular that for any ring R above S without
idempotents other than 0 and 1, we have WG(T )(R) = W . Furthermore, it is also
established in loc cit that

W ⊂ NG(T )(S)
T (S)

⊂WG(T )(S)

Using the preceding remark on base extensions, we conclude that the above inclusions
are equalities whenever S is replaced by (the spectrum of) a ring without nontrivial
idempotents.

Now let G be a Chevalley group as in the previous paragraph. There is thus a finite
group W such that

W = NG(T )(Z)
T (Z) = NG(T )

T (Z)

= NG(T )(k)
T (k) = NG(T )

T (k)
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for any field k.
It follows that W acts on T (k). Note that unless k is algebraically closed, there

is no reason for NG(T )(k) to be the normaliser of T (k) in G(k), it may be a strictly
smaller subgroup; similarly T (k) = C(T )(k) may be smaller than the centraliser of T (k)
in G(k). However we have the following

Lemma. Any automorphism of T (k) induced by conjugation by an element of G(k)
may also be realised by an element of W . More generally, any isomorphism between two
subgroups of T (k) induced by conjugation by an element of G(k) can also be realised by
conjugation by an element of W .

Proof. This is a well-known argument. So let K denote an algebraic closure of k. Sup-
pose x ∈ G(k) and xAx−1 = B. Let C be the connected component of 1 in the centraliser
of B in G(K). We have then T (K) and xT (K)x−1 as maximal tori in C, and therefore
they are conjugated by some c ∈ C ⊂ G(K). Consider then n = c−1x. It is clear
that n ∈ NG(T )(K), and can be written n = wt with w ∈ NG(T )(k) and t ∈ T (K),
according to the equalities above, valid for any field. Thus the elements w and n induce
the same automorphism of T (K), and induce the same isomorphism between A and B
as x does.

3.1.3. Notations. Throughout the rest of this thesis, G will be a Chevalley group, T
a split maximal torus, NT will be short for NG(T ), and W will be the finite group just
introduced (to be refered to as the Weyl group). We pick a prime number p and assume
that H∗(BGC,Z) has no p-torsion. Some of this will be repeated for emphasis.

We take l to be another prime, and q will be a power of l. The field with q elements
will be denoted by Fq, and F stands for an algebraic closure of Fl. For each field under
discussion, µp will be the group of p-th roots of unity.

If A is a ring with an action of a group Γ, then AΓ = A/(a − γ · a) is the ring of
coinvariants – this is not quite standard, as the notation refers usually to the abelian
group obtained by dividing out by the subgroup spanned by the a− γ · a, as opposed to
the ideal that they generate. But we choose to follow Tanabe [44].

On the other hand AΓ = {a : γ · a = a} is classically the ring (resp. group if A is
only a group, etc...) of invariants.

§3.2. Preliminaries on cohomology theories

... utinam intelligere possim rationacinationes pulcherrimas quae e propositione
concisa “de quadratum nihilo exaequari” fluunt...

Henri Cartan

3.2.1. Conventions. A space will always mean a CW complex with finitely many cells
in each dimension, although we will repeat this occasionally for emphasis. If E and F are
spectra, then we put E∗(F ) = [F,E]; ifX is a space, we put E∗(X) = E∗(Σ∞(X+)); ifX
is a pointed space, we put Ẽ∗(X) = E∗(Σ∞(X)). Here Σ∞ is the canonical functor from
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pointed spaces to spectra and X+ is the disjoint union of X and a base point. Putting
E∗ = E∗(point), we have thus E∗(X) = E∗ ⊕ Ẽ∗(X) and Ẽ∗(X) = ker(E∗(X)→ E∗).

If X is a space and E a spectrum, we will say that “X has no lim1 term with respect
to E” if E∗(X) = lim←E∗(Xm). Here and elsewhere the superscript refers to the m-
th skeleton. This terminology is justified by Milnor’s exact sequence (cf [37], corollary
4.18).

3.2.2. We shall encounter several (generalised) cohomology theories: complex cobordism
MU∗ and Brown-Peterson cohomology BP ∗ (cf [37] chapter 7), Morava K-theoriesK(j)∗

([37] chapter 9), and we will also mention P (1)∗ briefly in the course of one proof (loc.
cit.). These spectra are to be taken at the prime p. So we have

MU∗ = Z[x1, x2, · · · ]
BP ∗ = Z(p)[v1, v2, · · · ]
P (1)∗ = Fp[v1, v2, · · · ]
K(j)∗ = Fp[vj , v

−1
j ]

with xi of degree −2i and vi of degree −2(pi − 1).

3.2.3. Completed tensor products. For each such theory h∗ and spaces Xi, i = 1, 2
satisfying

h∗(Xi) = lim
←m

h∗(Xm
i )

where Xm
i is the m-th skeleton of Xi, we will use the completed tensor products:

h∗(X1)⊗̂h∗h
∗(X2) = lim

←m
[im(h∗(X1)→ h∗(Xm

1 ))⊗h∗ im(h∗(X2)→ h∗(Xm
2 ))]

and h∗(X)⊗̂h∗R is defined similarly, for a ring R with a map h∗ → R (by considering R
as graded but concentrated in dimension zero). Examples in view are the natural maps
MU∗ → Z→ Z(p) → Fp and BP ∗ → Z(p) → Fp. Recall that

MU∗(X)⊗MU∗ Z(p) = BP ∗(X)⊗BP ∗ Z(p)

for, say, a finite dimensional CW complex X so in particular

MU∗(X)⊗̂MU∗Fp = BP ∗(X)⊗̂BP ∗Fp

for a CW complex X.

3.2.4. It is worth making a few comments about this last ring. Intuitively, it is obtained
from MU∗(X) (or BP ∗(X)) by setting to zero all elements in the ideal generated by p
and the xi’s, or rather in the closure of this ideal. For some nice spaces we can make
this idea precise, namely, for spaces with no lim1 term with respect to MU (or BP ).
For future reference we state this as a lemma:
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Lemma. If MU∗(X) = limMU∗(Xm), then the natural map

MU∗(X)→MU∗(X)⊗̂MU∗Fp

is surjective. It follows that MU∗(X)⊗̂MU∗Fp is obtained from MU∗(X) by dividing out
by the closure of the ideal generated by the xi’s and by p.

A similar result holds for BP ∗.

This follows from the arguments in [47], section 2. In fact something much stronger
is proved there.

3.2.5. An exactness result. We shall need the following rather technical result later
on. This is the only time when we shall use P (1)∗. It partially generalizes the half-
exactness of the usual tensor product functor.

Lemma. For i = 1, 2, 3, let Xi be a space with no lim1 term with respect to BP , and
with even Morava K-theories. Suppose given an exact sequence (where all maps are
induced by maps of topological spaces):

B̃P
∗
(X1)→ B̃P

∗
(X2)→ B̃P

∗
(X3)→ 0

Then there is an exact sequence

B̃P
∗
(X1)⊗̂BP ∗Fp → B̃P

∗
(X2)⊗̂BP ∗Fp → B̃P

∗
(X3)⊗̂BP ∗Fp → 0

Proof. Because Xi has even Morava K-theories, the reduction mod p of BP ∗(X) is
P (1)∗(X) ([36], theorem 1.9). Consider then the following diagram with exact columns:

0 0y y
ker2 −−−−→ ker3 −−−−→ 0y y

P̃ (1)
∗
(X1) −−−−→ P̃ (1)

∗
(X2) −−−−→ P̃ (1)

∗
(X3) −−−−→ 0y y y

B̃P
∗
(X1)⊗̂BP ∗Fp −−−−→ B̃P

∗
(X2)⊗̂BP ∗Fp −−−−→ B̃P

∗
(X3)⊗̂BP ∗Fp −−−−→ 0y y

0 0

By the lemma in 3.2.4, we can define keri to obtain exact columns. We prove now
that the rows are all exact.

For the middle one, simply apply −⊗Z Fp to the given exact sequence.
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From 3.2.4 again, we see that keri can be described as the closure of the ideal
generated by the vi’s in P̃ (1)

∗
(Xi). It follows that ker2 → ker3 has a dense image.

But now, since Xi is of finite type, each graded piece of P̃ (1)
∗
(Xm

i ) is finite, so that

P̃ (1)
∗
(Xi) = lim← P̃ (1)

∗
(Xm

i ) (say, by Mittag-Leffler), and the natural topology on

P̃ (1)
∗
(Xi) is compact Hausdorff. (This is the chief reason for using P (1)∗ instead of

BP ∗.) Thus ker2 → ker3 is surjective, and the first row is exact.
There remains only a trivial diagram chase to prove that the bottom row is exact,

too.

3.2.6. Künneth formulae. A quick word on the cohomology of a product X × Y of
two spaces. The situation for Morava K-theories is, as usual, very simple, and it is an
understatement to say that the following result is well-known; however for lack of a good
reference we submit a proof.

Lemma. Let X, Y be any two spaces. Then:

K(j)∗(X × Y ) = K(j)∗(X)⊗̂K(j)∗K(j)∗(Y )

Proof. (cf [36], proof of theorem 1.11.) Write E for K(j), ⊗ for ⊗E∗ , lim for inverse
limits, and E∗(X)s for im(E∗(X) → E∗(Xs)). We recall that E∗ is a graded field in
the sense that every graded module over it is free.

Now if Y is a finite complex we have

E∗(X)⊗ E∗(Y ) = E∗(X × Y )

because if we see both sides of this equation as functors on the category of finite com-
plexes, fixingX, then they are cohomology theories which agree on S0 and with a natural
transformation between them, so the result follows from [37], proposition 3.19(i).

There is never a lim1 term for Morava K-theory (and for spaces), see [36], corollary
4.8. So in particular for any X and Y we have lim1

i E
∗((X × Y )i) = 0. From the

naturality of the Milnor sequence applied to the subcomplexes (X ×Y )i and X ×Y i we
draw lim1

i E
∗(X × Y i) = 0 and hence

E∗(X × Y ) = limE∗(X × Y i) = limE∗(X)⊗ E∗(Y i)

from the previous equation.
Observe that for a finitely generated E∗-module M and any inverse system {Ai} of

E∗-modules, we have
(limAi)⊗M = lim(Ai ⊗M)

because M being free, this is just the statement that inverse limits commute with finite
direct sums. We apply this below with M = E∗(Y i), M = E∗(X)s and M = E∗(Y )s.
The following computation should now be straightforward:
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E∗(X × Y ) = limj E
∗(X)⊗ E∗(Y j)

= limj(limiE
∗(X)i)⊗ E∗(Y j)

= limj limiE
∗(X)i ⊗ E∗(Y j)

= limi limj E
∗(X)i ⊗ E∗(Y j)

= limiE
∗(X)i ⊗ (limj E

∗(Y j))
= limiE

∗(X)i ⊗ (limj E
∗(Y )j)

= limi limj E
∗(X)i ⊗ E∗(Y )j

= limi,j E
∗(X)i ⊗ E∗(Y )j

= E∗(X)⊗̂E∗(Y )

For BP cohomology, there is the following nice result taken from [36] (theorem
1.11): if Xi is a CW complex of finite type, with even Morava K-theories, and such that
BP ∗(Xi) = limBP ∗(Xm

i ) (for i = 1, 2) then

BP ∗(X × Y ) = BP ∗(X)⊗̂BP ∗BP
∗(Y )

In particular, one has a map

BP ∗(X)⊗BP ∗ BP
∗(Y )→ BP ∗(X × Y )

with a dense image, and similarly for Morava K-theory.
We will give some related results for Chow rings in 4.1.3.

3.2.7. More exactness. To finish these preliminaries, we have the following proposi-
tion dealing with a certain type of exact sequences. Its formulation might seem cumber-
some at first; the reason is that we want to exploit the ring structure on our cohomology
groups, and the notion of an exact sequence of rings is delicate to phrase (the image
of a homomorphism is always a subring, which is almost never an ideal at the same
time). Here we can take advantage of the decomposition E∗(X) = E∗ ⊕ Ẽ∗(X) using
reduced cohomology and make some sense (however we shall not use the terminology of
“augmented rings”).

Proposition. Suppose given spaces X, Y and Z with no lim1 term with respect to BP ,
and suppose that X × Y has no lim1 term either. Assume given maps

X
f, g←−−−− Y

h←−−−− Z

such that f ◦ h and g ◦ h are homotopic, and giving rise to an exact sequence

K̃(j)
∗
(X)⊗K(j)∗ K(j)∗(Y )

(f∗−g∗)⊗id−−−−−−−→ K̃(j)
∗
(Y ) h∗−−−−→ K̃(j)

∗
(Z) −−−−→ 0

for all j > 0. Then the same is true with K(j)∗(−) replaced by BP ∗(−)⊗̂BP ∗Fp.
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38 Chapter 3 Chevalley groups: cobordism

Remark. The exact sequence says that the kernel of h∗ is the ideal generated by the
image of f∗ − g∗. Thus the multiplicative structure plays the prominent role here.

Proof. Write E for K(j). We use the Kunneth formula for Morava K-theory:

E∗(X × Y ) = E∗(X)⊗̂E∗E
∗(Y )

= E∗ ⊕ Ẽ∗(Y )⊕ Ẽ∗(X)⊗̂E∗E
∗(Y )

Note that the sum of the last two terms above is Ẽ∗(X × Y ), and the last summand is
the kernel of the map Ẽ∗(X × Y )→ Ẽ∗(Y ) induced by the inclusion Y → X × Y . Let
X ∝ Y be the cone of this map (that is, up to homotopy, X×Y/∗×Y ). The cofibration
gives an exact sequence on reduced cohomology, and the projection X × Y → Y gives a
splitting, so that

Ẽ∗(X ∝ Y ) = ker Ẽ∗(X × Y )→ Ẽ∗(Y )
= Ẽ∗(X)⊗̂E∗E

∗(Y )

We conclude that the maps f ∝ id : Y → X ∝ Y and g ∝ id : Y → X ∝ Y induced by
(f, id) and (g, id) give rise to an exact sequence

K̃(j)
∗
(X ∝ Y )

(f∝id)∗−(g∝id)∗−−−−−−−−−−−→ K̃(j)
∗
(Y ) h∗−−−−→ K̃(j)

∗
(Z) −−−−→ 0

for all j > 0.
Now, after suspending one may find1 a map F : SY → S(X ∝ Y ) such that F ∗ =

S(f ∝ id)∗ − S(g ∝ id)∗ (on any cohomology theory), where S is reduced suspension.
Moreover, F ◦ Sh is inessential. Therefore by theorem 1.18 in [36], we have also

B̃P
∗
(X ∝ Y )

(f∝id)∗−(g∝id)∗−−−−−−−−−−−→ B̃P
∗
(Y ) h∗−−−−→ B̃P

∗
(Z) −−−−→ 0

using (twice) the fact that the effect of reduced suspension on cohomology is only a shift
in degrees. Then by (3.2.5, lemma) we have

B̃P
∗
(X ∝ Y )⊗̂BP ∗Fp −−−−→ B̃P

∗
(Y )⊗̂BP ∗Fp −−−−→ B̃P

∗
(Z)⊗̂BP ∗Fp −−−−→ 0

Now there are maps

BP ∗(X)⊗BP ∗ BP
∗(Y )→ BP ∗(X × Y )→ BP ∗(X × Y )⊗̂BP ∗Fp

The first map has a dense image by (3.2.6), and the second map is surjective by (3.2.4).
Arguing as above we end up with a map

B̃P
∗
(X)⊗BP ∗ BP

∗(Y )→ B̃P
∗
(X ∝ Y )⊗̂BP ∗Fp

with a dense image. Clearly we also have a map[
B̃P

∗
(X)⊗̂BP ∗Fp

]
×

[
BP ∗(Y )⊗̂BP ∗Fp

]
→ B̃P

∗
(X ∝ Y )⊗̂BP ∗Fp

with a dense image, but here by compactness the map is actually surjective.
Finally, we patch up things together and obtain the desired exact sequence.

1For spectra E and F , [E, F ] is always an abelian group, so that given two spaces X and Y one is tempted
to consider E = Σ∞(X+) and F = Σ∞(Y +) if one wants to take the difference between two maps X → Y .
However one must be careful, as most results in [36], on which we rely heavily, are strictly unstable, ie do not
apply to spectra and their maps.
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3.3 Cobordism of Chevalley groups 39

Remark. During the course of this proof we have implicitly used the fact that the space
X ∝ Y has no lim1 term for BP . This follows easily from the injectivity of

B̃P
∗
(X ∝ Y )→ B̃P

∗
(X × Y )

and the naturality of Milnor’s exact sequence.

§3.3. Cobordism of Chevalley groups

3.3.1. The associated Lie group. The study of GC is quite easy, given the well-
known results obtained by Borel for ordinary cohomology. We have:

Proposition. Let n be the rank of G. There are elements si, for 1 ≤ i ≤ n, of positive
even degree, such that:

BP ∗(BGC) = BP ∗[[s1, · · · , sn]]

It follows that

BP ∗(BGC)⊗̂BP ∗Fp = H∗(BGC,Fp) = Fp[s1, · · · , sn]

Proof. This follows from the classical result (cf [5])

H∗(BGC,Z(p)) = Z(p)[s1, · · · , sn]

and similarly with Fp coefficients, by using the Atiyah-Hirzebruch spectral sequence.

3.3.2. Brauer lifts. In order to study now the finite groups G(Fq) we shall make use of
“Brauer lifts”, a general term meaning that we lift some representations of a group from
characteristic l to characteristic 0. A possible approach is described in the proposition
below; later in 4.1.4 another point of view will be preferable. Recall that F denotes the
algebraic closure of Fq.

Proposition. There exists a map

BG(F) −→ BGC

natural with respect to maps of group schemes, such that the maps

BP ∗(BGC) −→ BP ∗(BG(Fq))

are all surjective, for all choices of q. It follows that

BP ∗(BGC)⊗̂BP ∗Fp −→ BP ∗(BG(Fq))⊗̂BP ∗Fp

is also surjective.
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40 Chapter 3 Chevalley groups: cobordism

Proof. The map is described in [15]. In [44], it is shown that it induces surjective maps

K(j)∗(BGC) −→ K(j)∗(BG(Fq))

for all j > 0 (and in this case the kernel is also known). By a result of Ravenel-Wilson-
Yagita [36], this implies that the induced map on BP cohomology is surjective as well.
The final statement follows by the right exactness of the (completed) tensor product.

Remark (1). Note that for classifying spaces of compact Lie groups, such as BGC and
BG(Fq), there is no lim1 term for BP cohomology (and for the skeletal filtration). This
is essential to use the results of [36] in their strong form (ie, with BP itself instead of
its completion). This is a major concern which explains why very few of our statements
will involve BG(F), for which there might be a priori a non-vanishing lim1.

Remark (2). The kernel of the map above can in fact be described, but we postpone
this to 3.3.6, in order to prove as much as possible by elementary means.

3.3.3. Tori. Let K be a finite field of characteristic l which contains the p-th roots of
unity and let T be a torus (in our framework, this means that T is split over Z and
hence over K). Then T (K) is a product of cyclic groups whose order is a multiple of p.
Therefore

BP ∗(BT (K))⊗̂BP ∗Fp = Fp[η1, · · · , ηn]

where n is the dimension of T , and where the ηi’s have degree 2. But of course
BP ∗(BTC)⊗̂BP ∗Fp has a similar description (these are all well-known results). Con-
sequently the surjective map between this two rings that we obtained in (3.3.2, propo-
sition) is in fact an isomorphism.

3.3.4. Quite fortunately, we can easily relate a Chevalley group G as above to its
maximal torus, in terms of cohomology. More precisely:

Proposition. The restriction map

BP ∗(BGC)⊗̂BP ∗Fp −→ BP ∗(BTC)⊗̂BP ∗Fp

is injective. Moreover if the order of the Weyl group is prime to p, then the image of
this map is precisely the subring of invariants.

Proof. As observed above (3.3.1, proposition), this is simply the map

H∗(BGC,Fp) −→ H∗(BTC,Fp)

It is well known, since BG has no p-torsion, that the restriction map gives an isomor-
phism

H∗(BGC,Z(p)) −→ H∗(BTC,Z(p))
W

where W denotes the Weyl group. Consider the exact sequence of coefficients:

0 −−−−→ Z(p)
×p−−−−→ Z(p) −−−−→ Fp −−−−→ 0
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3.3 Cobordism of Chevalley groups 41

This gives rise to exact sequences in cohomology:

0 −−−−→ Hk(BGC,Z(p))
×p−−−−→ Hk(BGC,Z(p)) −−−−→ Hk(BGC,Fp) −−−−→ 0

using either the fact that the rings are concentrated in even degrees, or that multipli-
cation by p is clearly injective here. Apply this to T as well, appeal to naturality, and
apply the functor (−)W to obtain the following commutative diagram:

0 −−−−−−→ Hk(BGC, Z(p)) −−−−−−→ Hk(BGC, Z(p)) −−−−−−→ Hk(BGC, Fp) −−−−−−→ 0y≈ y≈ y
0 −−−−−−→ Hk(BTC, Z(p))

W −−−−−−→ Hk(BTC, Z(p))
W −−−−−−→ Hk(BTC, Fp)W −−−−−−→ H1(W, Hk(BTC, Z(p)))

Injectivity is now proved by a quick diagram chase. If the order of W is prime to p,
then H1(W,Hk(BTC,Z(p))) = 0 and the result follows.

3.3.5. Big finite fields. We can now finish off the computations for BG(K) if K, as
above, is a finite field of char = l containing the p-th roots of unity. Indeed, putting
together the information of the previous paragraphs, we get a commutative and exact
diagram:

0y
0 −−−−→ BP ∗(BGC)⊗̂BP ∗Fp −−−−→ BP ∗(BTC)⊗̂BP ∗Fpy y

BP ∗(BG(K))⊗̂BP ∗Fp −−−−→ BP ∗(BT (K))⊗̂BP ∗Fpy y
0 0

From this it follows that for G as in the introduction and K as above, the map

BP ∗(BGC)⊗̂BP ∗Fp −→ BP ∗(BG(K))⊗̂BP ∗Fp

is an isomorphism.

3.3.6. Galois actions. If now k = Fq is any field, let K = k(µp) (extension obtained
by adding the p-th roots of unity) and let Γq = Gal(K/k), which is cyclic generated by
the Frobenius automorphism γ. Let n be the rank of G and let r = [K : k].

We have a surjective map

BP ∗(BG(K))⊗̂BP ∗Fp −→ BP ∗(BG(k))⊗̂BP ∗Fp

from (3.3.2, proposition) and (3.3.5). Moreover the Galois group Γq acts on both groups,
trivially on BP ∗(BG(k))⊗̂BP ∗Fp. Therefore there is actually a surjective map from
(BP ∗(BG(K))⊗̂BP ∗Fp)Γq (coinvariants) to BP ∗(BG(k))⊗̂BP ∗Fp and one has:
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42 Chapter 3 Chevalley groups: cobordism

Proposition. This map is an isomorphism, ie

(BP ∗(BG(K))⊗̂BP ∗Fp)Γq = BP ∗(BG(k))⊗̂BP ∗Fp

Proof. Tanabe proved that this was true for Morava K-theory in [44], which can be
stated by saying that we have an exact sequence just as in (3.2.7, proposition) with
X = Y = BG(K), Z = BG(k), f∗(a) = a, and g∗(a) = γ · a, keeping the same
notations. This very proposition gives us the result.

3.3.7. So let us describe the ring of coinvariants a bit more precisely. Starting with an
n-dimensional torus as usual, we have

BP ∗(BT (K))⊗̂BP ∗Fp = Fp[η1, · · · , ηn]

and the description of the ηi’s as Euler classes makes it clear that γ sends ηi to q · ηi.
For general G, the ring

BP ∗(BG(K))⊗̂BP ∗Fp = Fp[s1, · · · , sn]

injects into the analogous ring for a maximal torus, and si is sent to a homogenous
polynomial in the ηj ’s of degree |si|/2; therefore γ sends si to q|si|/2 · si. We have then
the following lemma (which will be used later on with Rk = 2k -th graded piece of
BP ∗(BG(K))⊗̂BP ∗Fp):

Lemma. Suppose R = Fp[s1, · · · , sn] is a graded polynomial ring with an action of a
cyclic group Γ =< γ > given by γ · si = q|si|si. Then the ring of coinvariants R′ =
R/(a− γ · a) is isomorphic to Fp[si : r divides |si|].

Proof. To see this, observe first that the condition r|k is equivalent to the p-th roots of
unity being in Flk , and so in turn this is equivalent to qk = 1 mod p. Suppose now that
k = |si| is not a multiple of r, then 1− qk is invertible in Fp, and we can write

si = si ·
1− qk

1− qk
=

si

1− qk
− γ · si

1− qk

so that si maps to 0 in R′. Hence there is a surjective map Fp[si : r divides |si|] → R′.
We leave to the reader the easy task of proving the injectivity of this map.

3.3.8. To summarize, we have proved the following (casually replacing BP with MU ,
cf (3.2.3)):

Theorem. Let G be a reductive, connected group scheme (over Z). Let p be a prime
number such that H∗(GC,Z) has no p-torsion. Let K be a finite field of characteristic
l 6= p containing the p-th roots of unity, and let n be the rank of G. Then there are
elements si of even degree such that

MU∗(BG(K))⊗̂MU∗Fp = MU∗(BGC)⊗̂MU∗Fp

= H∗(BGC,Fp)
= Fp[s1, · · · , sn]
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If k is any finite field of char 6= p, let K = k(µp) and let r = [K : k]. Then

MU∗(BG(k))⊗̂MU∗Fp = Fp[si : 2r divides |si|]

3.3.9. Example: the symplectic group. Let us have a look at G = Sp2n. We have

H∗(Sp2n(C),Z) = Λ(e1, e2, · · · , en)

and
H∗(BSp2n(C),Z) = Z[q1, q2, · · · , qn]

where |ei| = 4i − 1 and |qi| = 4i. Say for example that we choose p = 5 and that we
look at fields of characteristic 3. If we take q = 81, the 5-th roots of unity are already
in F81, and we have

MU∗(BSp2n(F81))⊗̂MU∗F5 = F5[q1, · · · , qn]

If we take q = 9 we need to go to F81 and r = 2, but all degrees appearing above are
divisible by 2r = 4. So we also obtain that

MU∗(BSp2n(F9))⊗̂MU∗F5 = F5[q1, · · · , qn]

However for q = 3 we have r = 4, and also for q = 27 (the 5-th roots of unity appear
only in F531441=274) and we drop the “odd” generators, whose degree is not divisible by
2r = 8. Hence

MU∗(BSp2n(F3))⊗̂MU∗F5 = MU∗(BSp2n(F27))⊗̂MU∗F5 = F5[q2, q4, · · · ]

§3.4. Localization

The elementary abelian subgroups of Lie groups have been studied extensively by Borel
[6], among others. He proves the following amazing theorem:

Theorem. Let G be a compact connected Lie group. Then the following three conditions
are equivalent:

1. H∗(G,Z) has no p-torsion,

2. H∗(BG,Z) has no p-torsion,

3. any elementary abelian subgroup of G is contained in a maximal torus.

The reader might find it amusing to see how the implication 2/ ⇒ 3/ can be proved
very quickly using some recent results in homotopy theory: namely, if E is elemen-
tary abelian, then conjugacy classes of maps E → G are precisely the same as maps
H∗BG → H∗BE of unstable algebras ([25], corollaire 3.1.4); the assumption on p im-
plies, classically, that H∗BG→ H∗BT is injective, where T is any maximal torus, and
thus what we need to prove is that we can extend the map H∗BG → H∗BE induced
by the inclusion of E into G to a map H∗BT → H∗BE of unstable algebras. In turn,
this follows from the “non-linear injectivity of H∗BE”, [38], 3.8.7.

We prove now a variation on Borel’s theorem.
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Proposition. Let G be a Chevalley group with split maximal torus T , let p be a prime
number such that H∗(BGC,Z) has no p-torsion, and let k be a finite field of characteristic
6= p which contains the p-th roots of unity. Then any elementary abelian p-subgroup of
G(k) is conjugated to a subgroup of T (k).

Proof. We have just seen that for such k, we have

MU∗(BG(k))⊗̂MU∗Fp = H∗BGC

for any G (hence for T as well). By choice of p, the map H∗BGC → H∗BTC is injective,
so that

MU∗(BG(k))⊗̂MU∗Fp →MU∗(BT (k))⊗̂MU∗Fp

is injective. Combining this with (2.1.12, proposition) tells us that the natural map

lim←−
C(G)

MU∗(BE)⊗̂MU∗Fp → lim←−
C′(G)

MU∗(BE)⊗̂MU∗Fp

is an F-monomorphism, where C′(G) is the subcategory of C(G) (definition in section
2.1) consisting of those E which are conjugated to a subgroup of T (k). Note that we
write G for G(k) for simplicity. (In fact this is simply a monomorphism, as both its
source and target are Nil-closed modules in Uev.)

Suppose that there is a V ∈ C(G) which is not in C′(G). Choose a V maximal with
respect to this property, and note that V is then maximal in C(G). We construct an
element x in MU∗(BV )⊗̂MU∗Fp which restricts to 0 in any proper subgroup of V : for
this, choose for each such subgroup E a non-zero element xE in MU∗(BV )⊗̂MU∗Fp

which restricts to 0 in MU∗(BE)⊗̂MU∗Fp, for example the first Chern class of a non-
trivial 1-dimensional representation of V which is trivial on E; and then take x to be
the product of all the different xE ’s. By symmetry, x is invariant under the action of
the normaliser of V . (In fact, in this way we end up taking x to be the product of all
non-zero elements of degree 2, but we prefer to phrase it this way.)

Given this, define α(E) = 0 if E ∈ C(G) is not conjugated to V and α(E) = x
otherwise, with an obvious abuse of notation. By maximality of V and choice of x, this
defines an element α in the inverse limit on the left hand side above (we need such an x
because there could be a group W which is not conjugated to V but having a subgroup
E conjugated to a subgroup of V ).

This is a contradiction, as α is non-zero (ie non-nilpotent) but it lies in the kernel of
the (F-) monomorphism above. Hence C(G) = C′(G).

It follows in particular that

lim←−
C(G)

CH∗BE = (CH∗BT (k))W

and
lim←−
C(G)

MU∗(BE)⊗̂MU∗Fp = (MU∗(BT (k))⊗̂MU∗Fp)W

We may then state:
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Corollary (1). The localization of CH∗BG(k) away from Nil is

L(CH∗BG(k)) = (CH∗BT (k))W

Corollary (2). The module MU∗(BG(k))⊗̂MU∗Fp is in Uev and its localization away
from Nil is (MU∗(BT (k))⊗̂MU∗Fp)W . If moreover p is odd, this module is Nil-closed,
i.e.

MU∗(BG(k))⊗̂MU∗Fp = (MU∗(BT (k))⊗̂MU∗Fp)W

Proof. This corollary is a summary of everything proved so far, together with the fact
that H∗BGC = (H∗BTC)W when G has no p torsion and p is odd. A good reference for
this is ([11], 2.11), see also ([27], lemma 7.1).

Remark (1). Here’s a variant of the proposition. Keep the same hypotheses but do not
assume that k contains the p-th roots of unity; then each elementary abelian p-subgroup
of G(k) is contained in a maximal torus, possibly not split. To see this, let E be such a
subgroup, and let K be an algebraic closure of k. Let Z(E,G) be the centraliser of E in
G(K), and let Z0 be the connected component of 1 – a reductive group. From the result
obtained when k is big enough, we deduce that E is contained in Z0. Being central, it
is contained in any maximal torus of Z0, and there is one which is defined over k.

Remark (2). This proposition is classically seen as an application of a theorem of
Steinberg, though our proof is so different that it seemed worth giving it. One normally
proceeds as follows. Let E be an elementary p-subgroup of G(k) and let K be an
algebraic closure of k. Then theorem 2.28 in [43] says that E is toral over K, ie there
is a g ∈ G(K) such that gEg−1 ⊂ T (K) where T is the fixed, split maximal torus.
Considering the assumption on k, gEg−1 is in fact contained in T (k). Now consider the
set X of x ∈ G(K) such that xex−1 = geg−1 for all e in E. It is a principal homogeneous
space under Z, the centraliser of E in G(K). This Z is defined over k and connected
(theorem 2.28 in loc cit again), and by Lang, it has a k-rational point. In other words
there is an x ∈ G(k) such that xEx−1 is contained in T (k), which was what we wanted.

Note. The two remarks above are due to J.P. Serre.

§3.5. A word on ordinary cohomology

The computation of the cobordism ring of a space X, or rather the simplified ring
MU∗(X)⊗̂MU∗Fp, will give some information about the ordinary cohomology ring of X.
In the context of Chevalley groups, it is easy to see that the map

MU∗(BG(k))⊗̂MU∗Fp −→ H∗(BG(k),Fp)

is injective. Indeed, if k contains the p-th roots of unity, this is obvious for tori, and one
concludes from (3.3.4) and (3.3.5). Alternatively, the cycle map is an F-monomorphism
as observed in the previous chapter, and here the source has no nilpotent elements, so
the map is actually injective for any k. So we know that H∗(BG(k),Fp) contains a
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polynomial ring, which is also the image of H∗(BGC,Fp) under the evident map (cf
(3.3.2)); incidentally this map is injective when k = k(µp). Moreover the pm-th power of
any element in the cohomology ring, for m large enough, is in this polynomial subring.

In fact we can expect the cohomology ring to be always obtained from the cobordism
ring by tensoring with an exterior algebra. The cohomology rings of Chevalley groups
have been investigated, see [14] and [24]. Using more or less case-by-case considerations,
we see from these references that the cohomology ring is indeed very often the tensor
product of some polynomial ring and some exterior algebra. Moreover the polynomial
part is abstractly isomorphic to the cobordism ring (as graded rings, ie we have the
same number of generators in the same degrees). So for most choices of G, n, p and
l the conjecture above will be true. However it would still be interesting to have a
direct, neat proof of this. The geometry beyond this problem involves comparing usual
complex cobordism and “cobordisms with singularities” – ordinary cohomology being
the example in view.
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chapter

four

Chevalley groups: Chow ring

There are no shortcuts to any place worth going.
Anonymous.

We proceed to the investigation of CH∗BG(k) for a Chevalley group G and a finite
field k. We shall not obtain such complete results as we did in the previous chapter, but
we deal with most semi-simple groups over a field containing the p-th roots of unity. We
can also make a few general statements, for example CH∗BG(k) is Nil-closed when G
is semi-simple and p does not divide the order of the Weyl group.

The strategy is simple: deal with the general linear group first, which always gives
information about other groups via representation theory; then reduce the computation
to the case of simply-connected groups; finally make the calculations that you can in
the simply-connected case. The three sections of this chapter follow these steps.

We will say that G satisfies

• condition (1) when CH∗BG(k)→ (CH∗BT (k))W is injective, and

• condition (2) when CH∗BG(k)→ (CH∗BT (k))W is surjective.

We have seen in the previous chapter that CH∗BG(k) is Nil-closed if and only if (1)
and (2) both hold.

§4.1. The general linear group

4.1.1. In order to compute now CH∗(BGL(n, k)), we shall follow closely Quillen’s paper
[35] where the cohomology ring is investigated. The argument is greatly simplified in
the case of Chow rings since abelian groups have such nice Chow rings.

As usual, k will be a finite field of characteristic l and K will denote, as above, the
extension of k obtained by adding the p-th roots of unity. Again put r = [K : k], and
write the long division n = rm+ e with 0 ≤ e < r. We shall assume that m ≥ 1, noting
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that in the trivial case when m = 0 (ie, n < r), then the order of GL(n, k) is prime to
p: to see this, recall first that this order is

qn(n−1)/2
n∏

i=1

(qi − 1)

and note that r is the smallest integer such that p divides qr − 1.
Hence in this case CH∗(BGL(n, k)) = Fp in dimension 0 (and 0 in other dimensions).
A last notation: write qr − 1 = pah, with h prime to p. By choice of r, we have

a ≥ 1.

4.1.2. A subgroup of GL(n, k). We let C = K×, a cyclic group of order qr − 1.
We have an obvious representation of C on K which is 1-dimensional. If we let π =
Gal(K/k), then we can extend the action of C to one of the semi-direct product C o π;
the representation we obtain is faithful. Taking direct sums, we now have a faithful
representation of (C o π)m on Km.

In turn, we can form the semi-direct product with Sm to obtain the wreath product
(C o π) o Sm = (C o π)m o Sm, and we can again extend the above representation to
this new group. It is still faithful.

Regarding K as an r-dimensional vector space over k, and adding an e-dimensional
trivial representation, we end up with an embedding of (C o π)m o Sm in GL(n, k). It
has the advantage of providing an embedding of Cm in GL(n, k) such that the actions
of πm and Sm are realized by inner automorphisms of GL(n, k).

The subgroup Cm enjoys the following property:

Lemma. Any abelian subgroup of GL(n, k) of exponent dividing pa is conjugate to a
subgroup of Cm.

A proof can be found in [35], lemma 12. The reader can check that when k contains
the p-th roots of unity, we do not need this lemma in what follows: it is enough to study
abelian groups of exponent p (i.e. elementary abelian p-groups) and to use our previous
results to the effect that they are, up to conjugation, contained in a maximal split torus.
The considerations above are thus a refinement for other fields, which is very specific to
the general linear group.

4.1.3. Detecting families. We also need a refinement of the statement that CH∗B(Go
Z/p) is reduced when CH∗BG is.

Let G be a finite group. We shall call (*) the following condition: BG can be cut into
open subspaces of affine spaces, and the map CH∗(BG)→ H∗(BG,Z) is split injective,
where exceptionally CH∗BG is not the mod p Chow ring but the integral one.

Lemma (1). Let G be a finite group satisfying (*). Then the map

CH∗(B(G o Z/l))/l→ CH∗(BGl)/l ⊕ CH∗(B(G× Z/l))/l

is injective. Moreover, G o Z/l satisfies (*).
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This lemma is essentially taken from [47]; the result is stated in this form at the end
of section 9 for a special case, but it is clear from the material contained in sections
8 and 9 that it holds as we have stated it. See lemma 8.1 in particular for the last
statement.

A family of subgroups (Gi)i∈I of G will be called a p-detecting family if the map

CH∗(BG)→
⊕
i∈I

CH∗(BGi)

is injective. Throughout, the indexing sets I will be finite.

Lemma (2). Suppose that G satisfies (*), and let l be a prime number. If G has an
p-detecting family of abelian subgroups whose exponent divides pa, then G o Sn has the
same property.

Proof. (cf [45], corollary of 9.4) We proceed by induction, the result being trivial for
n = 1. We have two cases:

1. n = n′p. In this case the subgroup (G oZ/p) oSn′ has index prime to p, so it suffices
to prove the existence of a p-detecting family for this subgroup. By the first part
of (4.1.3, lemma (1)), G o Z/p has such a family; by the second part of the same
lemma, it satisfies (*), so that we may simply appeal to the induction hypothesis.

2. n is prime to p. The subgroup G× (G o Sn−1) has index prime to p, so it detects
the mod p Chow rings, and it is enough to exhibit a p-detecting family for this
subgroup. Now by the induction hypothesis there is such a family (Hi)i∈I for
H = G o Sn−1. Consider the following commutative diagram

CH∗(BH) −→
⊕

iCH
∗(BHi)

↓ ↓
H∗(H,Z)⊗ Fp −→

⊕
iH
∗(Hi,Z)⊗ Fp

The top map is injective, as is the right vertical one (because Hi is abelian). We
deduce that the left vertical map is injective as well.

From (1.1.4, lemma (2)), we conclude that

CH∗(B(G×H)) ≈ CH∗(BG)⊗ CH∗(BH)

and the same holds with Hi in place of H. It follows that the map

CH∗(B(G×H)) −→
⊕

i

CH∗(B(G×Hi))

is none other than the map on the top of the last diagram above, tensored by
CH∗(BG). It is therefore injective.
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Let (Kj)j∈J be a p-detecting family for G, and repeat the argument with some Hi

in place of G, and the Kj ’s in place of the Hi’s: we end up with an injective map:

CH∗(B(G×Hi)) −→
⊕

j

CH∗(B(Kj ×Hi))

Composing, we finally obtain an injective map

CH∗(B(G×H)) −→
⊕
i,j

CH∗(B(Kj ×Hi))

Thus (Kj ×Hi)(i,j)∈I×J is a p-detecting family of abelian groups for G×H.

This completes the induction step.

Remark. This lemma does not only refine our previous results (for a = 1), its proof
also shows that G o Sn possesses a subgroup of index prime to p satisfying (*), which
will be used to later in order to apply the Künneth formula.

4.1.4. More Brauer lifts. We recall another way of lifting representations from char-
acteristic l to characteristic 0, thus creating interesting new characters. From chapter
18 of Serre’s book [39] we keep the following ingredient:

Proposition. Let G be a finite group, and let ρ : G→ GL(n,F) be a representation of
G over a finite field F. Let m be the least common multiple of the orders of the regular
elements of G, let E be the extension of F obtained by adjoining the m-th roots of unity,
and suppose given an embedding ψ : E∗ → C∗. Put

χ(g) =
∑

λ

ψ(λ)

where the sum runs over all eigenvalues of ρ(g) counted with multiplicities.
Then χ ∈ R(G), that is, χ is a virtual character of G.

Remark. Recall that the regular elements of G are those whose order is prime to l.
Note also that such an embedding ψ clearly always exists, but is not unique. Most of
what follows depends on this choice. By abuse of language we refer to χ simply as the
Brauer lift of ρ (thus ignoring the dependance on ψ).

4.1.5. In the case of G = GL(n, k) there is an obvious candidate for such a lift to
characteristic 0, and it turns out that the Chern classes of the virtual character thus
obtained satisfy an important property:

Proposition. Write CH∗(BCm)/l = Fp[η1, · · · , ηm]. Let ρ be the lift, as defined above,
of the obvious representation of GL(n, k) on kn, and let c̄i be the restriction to Cm of
the Chern class ci(ρ). Then c̄ir = 0 if i > m, and otherwise c̄ir is (up to sign) the i-th
symmetric function on the variables ηr

j , for 1 ≤ j ≤ m.
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Proof. Consider first the cyclic group C and its natural representation θ on C. Its first
Chern class η = c1(θ) is such that CH∗(BC) = Fp[η]. Consider also the representation

W = θ ⊕ θ⊗q · · · ⊕ θ⊗qr−1

The homomorphism x 7→ qx of C sends θ to θ⊗q and hence it sends η to qη. The ring
of fixed elements in the Chow ring is Fp[ηr] (see the argument in the proof of theorem
4.1.6 below). Because W is unchanged by this transformation, its Chern classes are
necessarily 0 in dimensions other than r (and 0). In dimension r, by the sum formula,
cr(W ) = qr(r−1)/2ηr. But note that qr(r−1)/2 = (−1)r−1 modulo p.

Next consider the group Cm whose Chow ring is Fp[η1, · · · , ηm]. We let Wi be the
lift of the above representation of C via the i-th projection, and we now use the letter
W to denote W =

⊕
iWi. By the formula giving the Chern class of a sum, we deduce

that cir is the i-th symmetric function in the ηr
j (and is 0 if j > m), up to a sign.

The proof will therefore be complete if we show that the restriction of ρ to Cm

is isomorphic to W . To see this, let x be a generator of C. The action of x on K,
considered as a k-linear map, has by definition the trace

trK/k(x) =
∑

σ∈Gal(K/k)

σ(x) =
r−1∑
i=1

xqi

Result follows.

4.1.6. Main result. We are now in position to prove:

Theorem. Let k = Fq where q is a power of the prime l. Let p be an odd prime different
from l, put r = [k(µp) : k], and put m = [n/r]. Let ρ be the Brauer lift of the natural
action of GL(n, k) on kn, and let ci be its i-th Chern class. Then:

CH∗(BGL(n, k)) = Fp[cr, c2r, · · · , cmr]

Note that if m = 0, this means CH∗(BGL(n, k)) = Fp in dimension 0, as announced
in the introduction.

Proof. Let N = π o Sm, a subgroup of GL(n, k) which normalizes Cm. We have a
restriction map:

CH∗(BGL(n, k)) −→ (CH∗(BCm))N

which we will prove to be an isomorphism.
Let us write CH∗(BCm) = Fp[η1, · · · , ηm]. Recall that π is cyclic generated by the

Frobenius map x 7→ xq; this element acts on ηi by multiplication by q, and hence on
ηs

i by multiplication by qs. It follows that an invariant element of the Chow ring has
to be a polynomial in the ηr

i (because qs = 1 modulo p if and only if the p-th roots of
unity are in Fqs , ie if and only if r|s). Furthermore Sm acts by permuting the indices, so
that finally the ring of fixed elements is the polynomial algebra on the si, the symmetric
functions in the ηr

j .
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It is then immediate from (4.1.5, proposition) that the above map is surjective. If
we can show that it is injective as well, then CH∗(BGL(n, k)) will have the desired
description.

First consider the group C oSm. Now, C has a cyclic subgroup of order pa, which is a
p-detecting family in itself, so that by (4.1.3, lemma), C oSm has also a p-detecting family
of abelian groups whose exponent divides pa (noting that a cyclic group satisfies (*)).
Observe now that the index of C o Sm in GL(n, k) is prime to p (cf proof of proposition
4 in [35], so it detects the modulo p Chow ring of GL(n, k), and therefore the family of
subgroups just considered works for GL(n, k) itself. But now from (4.1.2, lemma), it is
clear that the restriction map above is injective.

Corollary. If k contains the pb-th roots of unity for some integer b, then

CH∗(BGL(n, k))/pb = Z/pb[c1, · · · , cn]

Proof. For b = 1 this is just a particular case of the above theorem. For general b,
it is always true that CH∗(BCn)/pb = Z/pb[η1, · · · , ηn]. Since the Galois group acts
now trivially, the ring of fixed elements remains easy to describe: it is Z/pb[s1, · · · , sn]
(notation as above). Therefore the restriction map already considered is still surjective
even if we take the coefficients in Z/pb. One concludes using induction and a cardinality
argument.

4.1.7. Back to cobordism. Since we have seen that MU∗(BGL(n, k))⊗̂MU∗Fp and
CH∗(BGL(n, k)) have the same description, it is quite easy to see (at least) that the
cycle map is an isomorphism: indeed consider the diagram:

CH∗(BGLn(C)) −−−−→ CH∗(BGL(n, k))

≈
y ycl0

MU∗(BGLn(C))⊗̂MU∗Fp −−−−→ MU∗(BGL(n, k))⊗̂MU∗Fp

The map on the left is an isomorphism because the variety of Grassmannians, ie
BGLn(C), has an algebraic cell decomposition, so CH∗(BGLn(C)) = H∗(BGLn(C),Z)
(cf [16]), while on the other hand H∗(BGLn(C),Z) = MU∗(BGLn(C))⊗̂MU∗Z because
the cohomology ring has no torsion. This would be enough to conclude that cl0 is
surjective and hence an isomorphism if we could only be sure that the diagram is com-
mutative. However this is not clear: the horizontal maps are essentially coming from
the two different maps BGL(n, k) → BGLn(C) constructed in 3.3.2 and 4.1.4, and it
would require some work to prove that they coincide, if they do at all.

Instead we take a different route, which does not even use the computation a priori of
MU∗(BGL(n, k))⊗̂MU∗Fp. It has the virtue of involving an interesting lemma, a souped-
up version of the results of Ravenel-Wilson-Yagita [36] and Hopkins-Kuhn-Ravenel [23]:

Lemma. Let G be a finite group such that K(m)∗(BG) is generated by transferred Euler
classes as a K(m)∗-module, for all m. Then GoSn has the same property, for any n ≥ 0.
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Proof. We shall make use of the fact that if A is a subgroup of the finite group H
with index prime to p, then the map K(m)∗(BH) → K(m)∗(BA) is injective whereas
the transfer is surjective (where, as always, we use Morava K-theory at the prime p).
Indeed, if you consider the spectra of BA and BH localized at p, then by looking at
cohomology with Z(p) coefficients shows that BH(p) is a retract of BA(p) (we omit the
symbol Σ∞). But localizing preserves Z(p) cohomology, hence preserves mod p coho-
mology (Five Lemma), hence preserves Morava K-theory (Atiyah-Hirzebruch spectral
sequence).

We use the same type of induction as before.

1. n = n′p. In this case the subgroup (G o Z/p) o Sn′ has index prime to p, and the
corestriction (transfer) map is surjective, so it is enough to prove the result for
this group. But G oZ/p satisfies the same property as G by [23], and we only have
to apply the induction hypothesis.

2. n is prime to p. The subgroup G × (G o Sn−1) has index prime to p, so again it
is enough to prove the result for this subgroup. The Künneth formula for Morava
K-theories gives

K(m)∗(B(G×G o Sn−1)) = K(m)∗(BG)⊗̂K∗(m)K(m)∗(B(G o Sn−1))

from which the result follows at once.

This completes the induction step.

Corollary (1). Let G be as above. Then MU∗(BG)⊗̂MU∗Fp is generated by transfered
Euler classes, and so is MU∗(B(G o Sn))⊗̂MU∗Fp.

Proof. By corollary 2.2.1 in [36], BP ∗(BG) is generated by transfers of Euler classes as
a BP ∗-module, so BP ∗(BG)⊗̂BP ∗Fp is generated by such classes as an abelian group,
and the result follows for G. But by the lemma G o Sn can replace G.

Corollary (2). For G as above (for example, G abelian), the two maps

CH∗(BG)→MU∗(BG)⊗̂MU∗Fp

and
CH∗(B(G o Sn))→MU∗(B(G o Sn))⊗̂MU∗Fp

are surjective.

Remark. In this section “generated” means “topologically generated”, and “surjective”
means “with a dense image”. The reader will check that this is of no consequence in
what follows.

4.1.8 Theorem. Let k be a finite field of characteristic l 6= p and assume that p is odd.
Then the map

CH∗(BGL(n, k))→MU∗(BGL(n, k))⊗̂MU∗Fp

is an isomorphism.
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Proof. Recall that GL(n, k) has a subgroup Cm (product of m cyclic groups) which is
normalized by some subgroup N , such that the restriction map induces an isomorphism
CH∗(BGL(n, k)) → (CH∗(BCm))N , the subring of fixed elements. Now consider the
following commutative diagram:

CH∗(BGL(n, k))
i∗0−−−−→ CH∗(B(C o Sm))

j∗0−−−−→ CH∗(BCm)y cl

y φ

y≈
MU∗(BGL(n, k))⊗̂MU∗Fp

i∗1−−−−→ MU∗(B(C o Sm))⊗̂MU∗Fp
j∗1−−−−→ MU∗(BCm)⊗̂MU∗Fp

We have just indicated the image of the composition j∗0 ◦ i∗0.
The maps i∗0 and i∗1 are injective for index reasons, and j∗0 is known to be injective.

By (4.1.7, corollary (2)), the map cl is surjective, and it follows that j∗1 is injective.
Also, because the isomorphism φ above (Cm being abelian) is natural with respect

to maps induced by homomorphisms of groups, it induces also an isomorphism between
the subrings of fixed elements under the action of N . This describes the image of j∗1 ◦ i∗1
(namely, all of the fixed subring), and concludes the proof.

§4.2. Reducing to the simply-connected case

We turn our attention again to a general Chevalley group G. From now on, p is assumed
to be odd. Our first task is to explain how to go from semi-simple to simply-connected.

So assume that G is semi-simple and consider now the universal cover G̃ of G, ie
the unique Chevalley group such that G̃C is the universal cover of GC. The centre of
a semi-simple Chevalley group is finite and contained in any maximal torus, hence is a
product of groups µa (a-th roots of unity). These groups have the peculiarity that all
subgroups of µa(C) are defined over Z, and the same can be said thus of the subgroups of
the centre Z(C) of G̃C. In particular π1(GC) can be seen as a finite and central subgroup
π of G̃, defined over Z. Now, the groups G̃/π and G agree over C, and hence agree over
Z, by the structure theorem for Chevalley groups, cf [2], exposé XXV, théorème 1.1.

The map G̃(k) → G(k), where as always k is finite, may not be as nice as one
would expect it to be (eg it is almost never surjective). Its kernel, at least, is certainly a
subgroup of π(k), so it is central. The order of µa(k) divides that of µa(C), and it follows
that |π(k)| divides |π(C)| = |π1(GC)| (this is a result that holds for more general groups,
but it is trivial to check it directly here). Now let Tors(G) denote the set of prime
numbers l such that H∗(BGC,Z) has l-torsion. All prime numbers dividing the order of
π1(GC) are in Tors(G), in fact Tors(G) = Tors(G̃) ∪ {l : l divides |π1(GC)|}: see [40],
1.3.1 to 1.3.4, and the references there, in particular [6]. So our standing assumption
that H∗(BGC,Z) have no p-torsion implies that the order of π(k), and thus that of the
kernel of G̃(k)→ G(k), is prime to p.

We also have to note that |G̃(k)| = |G(k)|: this is very specific to finite fields, and
is proved in [7], proposition 16.8. It follows that the image of G̃(k) in G(k) has index
prime to p.

We note:
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Lemma. Let Γ be given as a quotient Γ̃/C where C is a central subgroup of the finite
group Γ̃. Assume that the order of C is prime to p. Then H∗Γ = H∗Γ̃ and CH∗BΓ =
CH∗BΓ̃.

Proof. A spectral sequence argument gives the result immediately for cohomology. The
result for Chow rings follows from remark 1.3.6, but of course it is preferable to find
an elementary argument (even if we only use the easier part of 1.3.6). We let S̃ and S
denote Sylow subgroups of Γ̃ and Γ respectively. Clearly S̃ maps isomorphically to (a
conjugate of) S under the quotient map; we now use proposition 1.3.5. To prove that
the stable subgring for S is sent isomorphically onto the stable subring for S̃ under the
isomorphism CH∗BS → CH∗BS̃, things come down to checking the following: if x̃ ∈ S̃
and if g̃ ∈ G̃(k), then g̃x̃g̃−1 is in S̃ if and only if gxg−1 is in S, where x and g correspond
to x̃ and g̃ under the projection Γ̃→ Γ. To see the non-trivial part of this, assume that
gxg−1 ∈ S and write g̃x̃g̃−1 = c · s with c ∈ π(k) and s ∈ S̃. Writing o(σ) for the order
of an element σ, we have o(c · s) = o(c)o(s) because c and s commute and have coprime
orders. But o(c · s) is a power of p, as this element is conjugate to x̃. Therefore o(c) = 1
and c = 1.

Applying this with Γ taken to be the image of G̃(k) in G(k) shows that CH∗BG(k)
is a direct summand in CH∗BG̃(k) (in Uev). So if CH∗BG̃(k) is reduced or Nil-closed,
so is CH∗BG(k). In fact, we can say something more precise.

Letting Γ be as above, we claim that G(k) is the product of T (k) and Γ (although
these subgroups have a non-trivial intersection, of course). To see this, let K be an
algebraic closure of k; we may assume to have chosen a maximal torus T̃ in G̃ such that
p(T̃ (K)) = T (K), where p : G̃→ G is the natural map. Since T̃ (k) contains the kernel
C of the map G̃(k)→ G(k), it follows easily that the image E of T̃ (k) in T (k) is all of
Γ ∩ T (k). Moreover, since T̃ (k) and T (k) have the same order (by the result already
quoted, or directly), it follows that [T (k) : E] = [G(k) : Γ] (in turn these indices equal
the order of C). Consequently, the number of products γ · t with γ ∈ Γ and t ∈ T (k) is

|Γ| · |T (k)|
|Γ ∩ T (k)|

= |Γ| · [T (k) : E] = |Γ| · [G(k) : Γ] = |G(k)|

Thus G(k) = Γ · T (k), as claimed. We apply now the double coset formula (see the
appendix), which gives here:

i∗T (k)→G(k) ◦ i
Γ→G(k)
∗ = i

E→T (k)
∗ ◦ i∗E→Γ

Since E has index prime to p in the abelian group T (k), it is clear that iE→T (k)
∗ is an

isomorphism. The transfer iΓ→G(k)
∗ is surjective for index reasons. Thus we see from

the formula above that the surjectivity of CH∗BG(k) → (CH∗BT (k))W is equivalent
to that of CH∗BΓ → (CH∗BE)W . From the last lemma applied to Γ and E, this is
also equivalent to G̃ satisfying (2). Summarizing:

Proposition. Let G̃ be the universal cover of the semi-simple Chevalley group G. If G̃
satisfies (1), resp. (2), then G satisfies (1), resp. (2). Moreover if G satisfies (2), then
so does G̃.
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Remark. It is clear from the discussion above that the proposition holds a bit more
generally: if G̃ → G is an isogeny (over Z) whose kernel C is central and has |C(k)|
prime to p, then the conclusion of the proposition holds.

Remark (on notation). The simply-connected group Spinn has a central subgroup
µ2, and the quotient Spinn/µ2 is the orthogonal group SOn. Note that the group
we call SOn(k) is usually denoted SO+

n (k), while SO2n(R) sometimes goes under the
name SO(n, n) (and SO2n+1(R) can be SO(n+1, n)). The familiar group of orthogonal
motions of Rn with determinant 1, normally denoted SO(n), is the compact form of the
group we consider.

§4.3. Examples

4.3.1. When p does not divide |W |. We assume that G is semi-simple and as usual
that the characteristic of k is not p. Under these hypotheses, a theorem of Springer-
Steinberg ([41] 5.19) asserts that a p-Sylow S of G(k) normalises a maximal torus T ′

defined over k. This T ′ does not have to be split; however if we suppose further that
p does not divide the order of the Weyl group of G, it follows that S ⊂ T ′(k), and in
particular S is abelian. If we denote its normaliser in G(k) by NS , we have by Swan’s
lemma (1.3.7)

CH∗BG(k) = (CH∗BS)NS

Now, let S′ be the maximal p-elementary subgroup of S. We have CH∗BS = CH∗BS′.
Let NS′ denote the normaliser of S′ in G(k). Clearly NS ⊂ NS′ (since S′ is precisely the
subgroup of S of elements of order p, it is preserved by any automorphism of S) and
thus (CH∗BS′)NS′ ⊂ (CH∗BS′)NS . However since there are isomorphisms

CH∗BG(k)→ (CH∗BS)NS → (CH∗BS′)NS

we obtain the reverse inclusion, and CH∗BG(k) = (CH∗BS′)NS′ .
Now, S′ being a p-elementary subgroup of S of maximal rank, it is also of maximal

rank in G(k); since (by 3.4) we know that S′ is (conjugated to) a subgroup of T (k)
where T is our fixed, split maximal torus, we deduce that S′ is precisely the maximal
elementary abelian subgroup of T (k) and that CH∗BT (k) = CH∗BS′.

Finally, the group of automorphisms of CH∗BS′ induced by NS′ is the same as that
induced by NT (k) (or W ), by (3.1.2, lemma). Thus:

Proposition. Suppose G is semi-simple. If p does not divide |W |, then CH∗BG(k) is
Nil-closed, ie

CH∗BG(k) = (CH∗BT (k))W

Example. Consider the five exceptional Lie groups G2, F4, E6, E7 and E8. Their Weyl
groups have orders 12, 27.32, 27.34.5, 210.34.5.7 and 214.35.52.7 respectively. The primes
which give torsion in their integral cohomology are {2} for G2, {2, 3} for F4, E6 and E7,
and {2, 3, 5} for E8 (see [40]). In other words, we can say that CH∗BG(k) is always
Nil-closed when G is exceptional and does not have p-torsion, except possibly in finitely
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many cases, namely when (G, p) is either (G2, 3), (E6, 5), (E7, 5), (E7, 7), or (E8, 7).
Restricting attention to p > 7 rules out these cases.

4.3.2. Chern classes. Another case of interest is that of a group G such that H∗BGC
is generated by Chern classes of (finitely many) representations of GC. In this case we
have:

Proposition. Suppose that H∗BGC is generated by Chern classes, and let p be odd.
Then the map

CH∗BG(k)→MU∗(BG(k))⊗̂MU∗Fp

is surjective, as is
CH∗BG(k)→ (CH∗BT (k))W

Proof. By assumption there is a surjective map⊗
i

H∗BGL(ni,C)→ H∗BGC

The representations of GC must be defined over Z (essentially because irreducible repre-
sentations of G over Z are classified by their highest weights, just like those of GC over
C; and as G is split, the weights are the same over Z or C. Alternatively, appeal to [2],
XXV, 1.1.). Consider the following commutative diagram:⊗

CH∗BGL(ni, k) −−−−→ CH∗BG(k) c−−−−→ (CH∗BT (k))W

a

y≈ b

y y≈⊗
MU∗(BGL(ni, k))⊗̂MU∗Fp

d−−−−→ MU∗(BG(k))⊗̂MU∗Fp
e−−−−→ (MU∗(BT (k))⊗̂MU∗Fp)W

The map a is an isomorphism, as we have seen. Moreover d is surjective by the remark
just made and the results of loc cit. It follows that b is surjective. Finally, e is an
isomorphism by (3.4), so c is surjective.

Example. Groups such that H∗BGC is generated by Chern classes include SLn, Spn,
and SO2n+1 for odd p’s. Here again we point out that SO2n+1 has 2-torsion in its integral
cohomology, so the restriction that p be odd in the above proposition is not important
anyway; however for SLn and Spn, we are leaving out cases where the conclusion of the
proposition might still be true.

4.3.3. The orthogonal groups. We have already established that, with some restric-
tions on p, all simple, simply connected groups satisfy condition (2), with the notable
exception of Spin2n. Replacing this group by SO2n as we may, we can use an ad hoc
argument.

We have seen in the previous chapter that a certain continuous map BSO2n(k) →
BSO2nC induces isomorphisms

MU∗(BSO2nC)⊗̂MU∗Fp
≈−−−−→ MU∗(BSO2n(k))⊗̂MU∗Fp

≈−−−−→ (MU∗(BT (k))⊗̂MU∗Fp)W

Each of these rings is a polynomial ring over Fp on variables c2i (1 ≤ i ≤ n−1) and e. By
definition then, these classes are the Pontryagin classes and the Euler class of the oriented
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bundle E → BSO2n(k) induced by the classifying map BSO2n(k) → BSO2nC. Now if
this bundle were algebraic, it would have Pontryagin and Euler classes in CH∗BSO2n(k)
which would restrict to the elements with the same name in CH∗BT (k), proving that (2)
holds (recall that CH∗BT (k) = MU∗(BT (k))⊗̂MU∗Fp, of course, and that the cobordim
modules are Nil-closed, cf 3.4). However E need not be algebraic.

The Pontryagin classes are Chern classes and one can argue as in 4.3.2 to prove that
they exist in CH∗BSO2n(k). We need more work for the Euler class.

So let S be a p-Sylow of SO2n(k). It is proved in [10] that any map BP → BG, where
p is a finite p-group and G a compact Lie group, comes from a homomorphism P → G,
up to homotopy. Therefore the composition BS → BSO2n(k)→ BSO2nC is homotopic
to a map coming from a homomorphism S → SO2nC. As S is finite, this is automatically
a map of algebraic groups, and the map BS → BSO2nC is algebraic. Using this map to
pull back the universal vector bundle over BSO2nC, we get an algebraic vector bundle
over BS carrying a quadratic form and which is equivalent to E (or rather, to the pull
back of E over BS). By [12], this bundle has an Euler class in the Chow ring, ie there is
a class in CH∗BS mapping under the cycle map to the Euler class in MU∗(BS)⊗̂MU∗Fp

(up to scalar multiplication by a power of 2, but we are still assuming that p is odd).
Call this x ∈ CH∗BS, put e′ = i

S→SO2n(k)
∗ (x), and finally let e = i∗T (k)→SO2n(k)(e

′). To
prove that this is the Euler class defined above (and justify the notation), it is enough
to check this in MU∗(BT (k))⊗̂MU∗Fp, that is, after applying the cycle map. But in
cobordism we have Euler classes for topological bundles, and x = i∗S→SO2n(k)(y) for
some y ∈MU∗(BSO2n(k))⊗̂MU∗Fp, so that e′ = y up to a nonzero scalar (we abuse the
notations x and e′ here). It follows that e is indeed the Euler class that we want.

4.3.4. Condition (1) and wreath products. The Weyl groups of the simple, simply-
connected Lie groups have a lot in common. Namely, for the classical groups at least,
W always contains a copy of the symmetric group acting on the torus by permuting the
eigenvalues. This often gives NT (k) a tractable group structure. The following lemma
is trivial, but it is remarkable to note how often it applies.

Lemma. Suppose that G(k) contains a subgroup of index prime to p which is of the
form Sr n T (k) = Sr o k∗ (here r is the rank of G). Then the restriction map:

CH∗BG(k)→ CH∗BT (k)

is injective.

Proof. (Compare with 2.2.12.) The restriction to Sr ok∗ is injective for index reasons, and
it follows from (4.1.3, lemma 2), that Sr o k∗ possesses a collection of abelian p-groups
which detect the Chow ring. Thus the Chow ring is also detected by the family of
elementary abelian p-subgroups. As observed above, these are conjugated to subgroups
of T (k).

Remark. The reader will have noticed that an easy induction based on 2.2.12 will
suffice to prove that Sr o k∗ has a reduced Chow ring. However, as remarked at the end

Compiled on April 3, 2005



4.3 Examples 59

of 4.1.3, the argument above also shows that this group possesses a subgroup H of index
prime to p whose Chow ring is reduced and which satisfies (*). Since two such groups
H1 and H2 have a Künneth formula, in the sense that

CH∗BH1 ×BH2 = CH∗BH1 ⊗ CH∗BH2,

it follows that if the lemma applies for two Chevalley groups G1 and G2, then their
product also has a reduced Chow ring.

Example (1). It is easily seen that the lemma applies, for odd p, for the groups Spn

and Spinn.

Example (2). In some cases we can also deal with SLn. Here NT (k) is of the form
T (k) o Sn, but the action of Sn is trickier: if we see T (k) as {(x1, · · · , xn) ∈ (k∗)n :
x1 · · ·xn = 1} (that is, as a subgroup of the maximal torus for GLn), then Sn acts by
permutation of the xi’s. However, when n is prime to p, then we can have a look at
the subgroup T oSn−1 where Sn−1 sits in Sn as the subgroup which fixes, say, the n-th
coordinate. This subgroup is indeed a wreath product Sn−1 o k∗ of index prime to p
in NT (k), and when p is also assumed to be odd then NT (k) has order prime to p in
SLn(k).

4.3.5. Conclusion.

Ye shall know the truth, and the truth shall make you mad.
Aldous Huxley

Let us put together the information gathered so far. First of all, there is the

Theorem. Let G be a Chevalley group, let p be a prime number, and let k be a finite
field of characteristic 6= p containing the p-th roots of unity. Assume that G has no
p-torsion. Then CH∗BG(k) is Nil-closed in Uev if G is locally isomorphic to a product
of the following groups:

• Type An−1: GLn for p > 2; SLn if n is prime to p and p > 2;

• Type Bn or Dn: Spinn for p > 2;

• Type Cn: Spn for p > 2;

• Exceptional type: G2 for p > 3; F4 for p > 3; E6 for p > 5; E7 for p > 7; E8 for
p > 7.

Here “locally isomorphic” refers to the situation in 4.2 (see the remark following
the proposition there: this is why it makes sense to include GLn, which is not simply-
connected, in the list).

Our main omission with simply-connected groups is SLn when p divides n. If one
could prove the result in this case as well, we would be able to say that CH∗BG(k) is
Nil-closed for any semi-simple group (and say, for p > 7).

Nevertheless, we have

Compiled on April 3, 2005



60 Chapter 4 Chevalley groups: Chow ring

Proposition. Let G be any semi-simple Chevalley group having no p-torsion, and let
k be any finite field of characteristic 6= p. Let K be the finite field obtained from k by
adjoining the p-roots of unity and let r = [K : k].

Then the map
CH∗BG(k)→MU∗(BG(k))⊗̂MU∗Fp

is surjective. Moreover for a certain Brauer lift BG(k)→ BGC, the image of H∗BGC →
H∗BG(k) coincides with the image of the Chow ring under the cycle map. Writing
H∗BGC = Fp[s1, · · · , sn], this image is

Fp[si : 2r divides |si|].

Proof. The point is that we have established (2) for any simply-connected group, hence
for any semi-simple group by 4.2. The first statement follows immediately from this
and 3.4, at least for K; but the map MU∗(BG(K))⊗̂MU∗Fp → MU∗(BG(k))⊗̂MU∗Fp

is always surjective.
Everything else in the proposition has already been proved, see in particular 3.5.

Compiled on April 3, 2005



chapter

five

Perspectives

It is not necesssary to understand things in order to argue about them.
Caron de Beaumarchais

§5.1. A1 homotopy

Morel and Voevodsky have defined the A1 homotopy of schemes, which allows one to
“do homotopy” in the category of schemes. In this setting the classifying space of an
algebraic group shows up naturally, whereas as far as we are concerned in this thesis,
CH∗BG is not the Chow ring of an object BG. The way in which classifying spaces
arise in Morel-Voevodsky’s category has a subtle aspect, and it is probably worth giving
a few details.

Let V be the category of manifolds and smooth maps, or any category of locally con-
tractible topological spaces and continuous maps. We describe an alternative treatment
of homotopy in V, which will have the advantage of applying in great generality. Let M

(for models) be the category of simplicial sheaves on V – contravariant functors from V
to the category of simplicial sets satisfying the “sheaf condition”, a crucial point which
we shall discuss below. We can embed V into M by viewing a manifold V as the sheaf
U 7→ HomV(U, V ).

There is a notion of homotopy in M which uses the unit interval ∆1 seen as a constant
sheaf; call this simplicial homotopy. Two manifolds V and W are never simplicially
homotopic unless they are equal, as they are “simplicially constant” sheaves in M. To
circumvent this, the next idea is thus to force A1 = R to be homotopic to a point, as
follows. There is a closed model category structure on M, the weak equivalences being
maps of sheaves inducing weak equivalences of simplicial sets on the stalks. We then
take the associated homotopy category Hs and localize further with respect to the class
of maps V × A1 → V (see for example [9]). Call the resulting category H(V).

Now if V is reduced to a point (and forgetting about A1 which in this case is not
even in V), then it is clear that H(point) is the usual homotopy category (of simplicial
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sets). But in general now, one can see as an easy consequence of the definitions that two
homotopic spaces V and W in V are isomorphic in H(V); based on this simple obser-
vation, since we assume that the spaces in V are built of pieces which are contractible
(homotopic to points), one can show without too much trouble ([28], prop 3.3.3) that
H(V) is always isomorphic to the usual homotopy category.

But there is more. It is in fact the case, if we denote by [V,W ] the usual homotopy
classes of maps between V and W , that

[V,W ] = HomH(V)(V,W ).

A priori this is not obvious, and we only know that

[V,W ] = HomH(V)(V
′,W ′)

for some spaces (simplicial sets) V ′ and W ′. But if one sends V ∈ V to H(V) not as
above but via Sing(V ) ∈ H(point) (the singular simplicial set associated to V ) and then
via the equivalence of categories H(point) → H(V), one gets an object isomorphic to
V , or so we claim. Granting this, we have reduced the statement to the classical result
that the functor Sing induces an equivalence of homotopy categories.

Briefly, one proves the claim as follows. For any open cover U of V , one considers
the simplicial sheaf Č(U) which in degree n is (represented by) the disjoint union of all
n-fold intersections of open sets in U . It is easy to see that for any simplicial sheaf X·
over V :

Hom(X·, Č(U)) = Hom(X0, V )

where the first Hom is in the category of simplicial sheaves over V , and the second is for
sheaves. Hence the object Č(U) converts the complexity of V as a sheaf into a simplicial
sheaf that might be represented by very simple (contractible) spaces, while the equality
above also ensures that Č(U) and V are isomorphic in H(V). Now, for a carefully chosen
cover U (related to a smooth triangulation), Č(U) is essentially the same as the singular
simplicial set associated to V .

What is the point of all this? Quite simply, the idea is to replace V by any category
in which there is no notion of homotopy at hand, and perform the same construction
as above to get one. In particular, Morel and Voevodsky consider the category Smk of
smooth schemes over the field k, and build ∆op(Shv(Smk)), the category of simplicial
sheaves over Smk, where they consider simplicial homotopy and localizations with re-
spects to the maps V ×A1 → V . The resulting homotopy category is denoted by H(k).
The discussion above shows that it is the “right” thing to do since in the case of smooth
manifolds one obtains the right homotopy category.

Now here comes a delicate point. A sheaf is not only a contravariant functor, but
also satisfies a certain glueing property which is supposed to be the analog of the familiar
condition for sheaves in the naive sense (on the category of open sets of a topological
space). To make this precise it is necessary to introduce a Grothendieck topology on
our category, ie a notion of covering (the category is then called a site). For V one may
just take “covering” in the usual sense. For Smk though, we can choose between Zariski
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coverings, étale coverings, or Nisnevich coverings. Accordingly, we obtain a category
Hτ (k) with τ = Zar, Nis, or et. (In V one may try to introduce these topologies, but
the local inversion theorem says that they are equivalent.)

It turns out that the Nisnevich topology is technically much more convenient than
the others. One example is that Postnikoff towers only have the desirable properties
when τ = Nis (see the discussion in [28], section 3). The bottom line is that the right
definition of the homotopy category of schemes is HNis(k).

However, it is hard to deny that the étale topology is a more natural thing to
consider, and if we have indeed the right category in which to do algebraic geometry,
then it should have something to say about étale coverings. Consider for example group
sheaves – the definition should be obvious – and simplicial principal bundles or torsors
– likewise. Again “sheaves” will depend on the topology, and étale torsors are certainly
interesting objects. For any τ then, we may define an object BGτ in the appropriate
category exactly as one does for topological groups: in degree n, BGτ is (represented
by) Gn, with the usual simplicial structure (in other words, the simplicial structure is
the same as that of the nerve of the category with one object and a morphism for each
g ∈ G). With this definition, BGτ is easy to handle, and as one would hope, it classifies
G-torsors in the sense that for any smooth scheme X the set of isomorphism classes of
G-torsors above X is in bijection with HomHτ (k)(X,BGτ ).

Now, it is perfectly legitimate to study étale torsors in ∆op(ShvNis(Smk)). This is
achieved by means of the morphism of sites π from the category Smk endowed with
the étale topology to itself equipped with the Nisnevich topology and the corresponding
push-forward functor π∗ from étale sheaves to Nisnevich sheaves (similarly, a morphism
f : X → Y of schemes defines a push-forward homomorphism f∗ which relies solely on
the operation f−1 pulling back open sets in Y to open sets in X; in the abstract setting,
a morphism of sites π is defined in terms of an operation π−1, in our case the forgetful
functor from Nisnevich coverings to étale coverings). This functor does not preserve
homotopy and we have to use its total right derived functor Rπ∗ to define BetG =
Rπ∗(BGet). It is an object in ∆op(ShvNis(Smk)) which can be seen to classify étale
G torsors; in symbols, HomHNis(k)(X,BetG) = H1

et(X,G). (To be perfectly rigorous we
should consider pointed objects and maps).

There is less control over the object BetG than there is over BGτ . However, it is
proved in [28] that BetG is in fact homotopic to Totaro’s definition of BG. That is,
if one performs in ∆op(ShvNis(Smk)) the construction that we did in the introduction
in the category of topological spaces, namely by embedding G into a general linear
group and dividing the Steifel variety by the action of G (which is Totaro’s idea for
some particular representations), one gets an object isomorphic to BetG in HNis(k). In
particular, any space in HNis(k) having a well-defined Chow ring, the ring CH∗BG we
have been studying is CH∗BetG.

There are a number of natural questions related to BetG. For example, the A1

homotopy groups πA1

n (BetG) are not known, and the 0-th group might be the most
interesting (if only because it is not trivial which is perhaps counterintuitive). For
instance when G is finite, πA1

0 (BetG) is the sheafification of U 7→ H1
et(U,G).

Also, there is a natural map BGNis → BetG and Morel conjectures that this map is
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the inclusion of the connected component corresponding to 0 (the trivial torsor).

§5.2. Algebraic cobordism

Morel and Levine have defined algebraic cobordism, which provides a different, perhaps
more enlightening proof of the factorization

CH∗X →MU∗X ⊗MU∗ Z→ H∗(X,Z)

for a complex variety X.
They start by introducing algebraic cohomologies, which are functors from smooth

schemes over a field k to graded rings satisfying a few axioms similar to the Steenrod-
Eilenberg axioms, although weaker. In fact they are essentially the axioms satisfied by
the Chow ring functor – such as the homotopy invariance as described in the Foreword or
the existence of well-behaved Chern classes. We may call these axioms weaker than the
usual ones because if one works over the complex numbers and considers a cohomology
theory h∗, then it is also an algebraic cohomology; but not conversely, of course.

Then Morel and Levine proceed to prove the existence of a universal algebraic coho-
mology Ω∗, which they call algebraic cobordism in reference to the universality of MU∗.
In a few words, what they do is associate a formal group to an algebraic cohomology,
much as one does for oriented cohomologies, and then define Ω∗ by forcing its formal
group to be Lazard’s universal example. As it turns out, the formal groups contain
enough information about the cohomologies themselves for this construction to work.

In particular, over C, one has a natural transformation Ω∗(X)→MU∗(X), which is
not an isomorphism as MU∗ is not universal among algebraic cohomologies, only among
oriented ones. Nonetheless, there is also a natural homomorphism

Ω∗(X)⊗Ω∗ Z→MU∗X ⊗MU∗ Z.

Finally, Morel and Levine prove that

Ω∗(X)⊗Ω∗ Z = CH∗X

and also
Ω∗(X)⊗Ω∗ Z[t, t−1] = K0(X)[t, t−1]

which proves that the Chow ring (resp. localized K-theory) is the universal example of
a cohomology whose formal group is a module over the additive (resp. multiplicative)
formal group. (The homomorphism Ω∗ → Z (resp. Ω∗ → Z[t, t−1]) is Lazard’s map
classifying the additive (resp. multiplicative) formal group.)

In particular, these results together imply Totaro’s factorization of the cycle map.

§5.3. Chow rings of projective varieties

The Chow ring of a general projective variety is far from being understood. There are
examples for which the Chow ring is not countable, or not even parametrized by an
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algebraic variety. Thus it is worth getting one’s hands on projective varieties with a
Chow ring that is nontrivial but computable.

There is a conjecture of Totaro’s ([47], conjecture 5.1) which asserts that certain
complete intersections in projective space have the same Chow rings as classifying spaces
of given (arbitrary) algebraic groups. Given this, our computations in this thesis could
be used to exhibit projective varieties with interesting Chow rings.

The conjecture amounts to (or at least would follow from) a version of the Lefschetz
theorem for Chow rings, which seems far out of reach even with the tools of A1 homotopy.
However it is fairly reasonable to hope for it to be true, in view of other conjectures
(Hartshorne, Nori), and because Totaro in loc. cit. is able to prove a weaker variant.

It is also strongly related to the paper of Atiyah-Hirzebruch ([3]) which disproves
the Hodge conjecture over Z. Namely, there it is shown that given a group G, there
is a particular complete intersection X (originally considered by Serre) that has the
same n-homotopy type as BG × BS1 for n less than the dimension of X. Totaro
conjectures that the Chow ring of X also coincides with that of BG × BS1 in small
codimensions. In turn, if one could prove this, one would disprove thereby a variant of
the Hodge conjecture, as explained by Soulé. In the 2003 conference in Edinburgh on
Hodge theory, Soulé pointed out that the example X used by Atiyah and Hirzebruch,
which carried a p-torsion cohomology class not coming from the Chow ring (unlike what
Hodge predicted), had a very large dimension compared to p. He suggested that for
projective varieties of a given dimension, the property described by Hodge might be
true for all large p. However he also remarked that Totaro’s conjecture would imply the
existence of a counterexample to this.
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Compiled on April 3, 2005



Epilogue

An expert is someone who knows more and more about less and less, until eventually
he knows everything about nothing.

Anonymous

Là, se rencontrent encore plus de causes pour la destruction physique et morale
que partout ailleurs. Ces gens vivent, presque tous, en d’infectes études, en des salles
d’audience empestées, dans de petits cabinets grillés, passent le jour courbés sous le poids
des affaires, se lèvent dès l’aurore pour être en mesure, pour ne pas se laisser dévaliser,
pour tout gagner ou pour ne rien perdre, pour saisir un homme ou son argent, pour
emmancher ou démancher une affaire, pour tirer parti d’une circonstance fugitive, pour
faire pendre ou acquitter un homme. [...] Quelle âme peut rester grande, pure, morale,
généreuse, et conséquemment quelle figure demeure belle dans le dépravant exercice d’un
métier qui force à supporter le poids des misères publiques, à les analyser, les peser, les
estimer, les mettre en coupe réglée? Ces gens-là déposent leur coeur, où?... je ne sais;
mais ils le laissent quelque part, quand ils en ont un, avant de descendre tous les matins
au fond des peines qui poignent les familles.

Honoré de Balzac, La fille aux yeux d’or.

I don’t want to achieve immortality through my work. I want to achieve it through
not dying.

Woody Allen

Good-bye. I am leaving because I am bored.

George Saunders, last words
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