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An explicit expansion formula for the powers of the Euler Product
in terms of partition hook lengths

Guo-Niu HAN

ABSTRACT. — We discover an explicit expansion formula for the
powers s of the Euler Product (or Dedekind η-function) in terms of hook
lengths of partitions, where the exponent s is any complex number. Several
classical formulas have been derived for certain integers s by Euler, Jacobi,
Klein, Fricke, Atkin, Winquist, Dyson and Macdonald. In particular,
Macdonald obtained expansion formulas for the integer exponents s for
which there exists a semi-simple Lie algebra of dimension s. For the type

A
(a)
l

he has expressed the (t2 − 1)-st power of the Euler Product as a
sum of weighted integer vectors of length t for any integer t. Kostant has
considered the general case for any positive integer s and obtained further
properties.

The present paper proposes a new approach. We convert the weighted

vectors of length t used by Macdonald in his identity for type A
(a)
l

to
weighted partitions with free parameter t, so that a new identity on the
latter combinatorial structures can be derived without any restrictions
on t. The surprise is that the weighted partitions have a very simple form
in terms of hook lengths of partitions. As applications of our formula, we
find some new identities about hook lengths, including the “marked hook
formula”. We also improve a result due to Kostant. The proof of the Main

Theorem is based on Macdonald’s identity for A
(a)
l

and on the properties
of a bijection between t-cores and integer vectors constructed by Garvan,
Kim and Stanton.
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Andrei Okounkov pointed out that the main identity already appeared in his joint
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reproduced in a forthcoming paper arXiv:0805.1398v1 [math.CO].
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1. Introduction

The powers of the Euler Product and the hook lengths of partitions
are two mathematical objects widely studied in the Theory of Partitions,
in Algebraic Combinatorics and Group Representation Theory. In the
present paper we establish a new connection by giving an explicit expan-
sion formula for all the powers s of the Euler Product in terms of parti-
tion hook lengths, where the exponent s is any complex number. Recall
that the Euler Product is the infinite product

∏

m≥0(1 − xm). A varia-
tion of the Euler Product, called the Dedekind η-function, is defined by
η(x) = x1/24

∏

m≥0(1 − xm). The following two formulas [Eu83; An76,
p.11, p.21] go back to Euler (the pentagonal theorem)

(1.1)
∏

m≥1

(1 − xm) =
∞
∑

k=−∞

(−1)kxk(3k+1)/2

and Jacobi (triple product identity)

(1.2)
∏

m≥1

(1 − xm)3 =
∑

m≥0

(−1)m(2m + 1)xm(m+1)/2.

Further explicit formulas for the powers of the Euler Product

(1.3)
∏

m≥1

(1 − xm)s =
∑

k≥0

fk(s)xk
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have been derived for certain integers

(1.4) s = 1, 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, . . .

by Klein and Fricke for s = 8, Atkin for s = 14, 26, Winquist for s = 10,
and Dyson for s = 24, . . . [Wi69; Dy72]. The paper entitled “Affine root
systems and Dedekind’s η-function”, written by Macdonald in 1972, is a
milestone in the study of powers of Euler Product [Ma72]. The review of
this paper for MathSciNet, written by Verma [Ve], contains seven pages!
It has also inspired several followers, see [Ka74; Mo75; Ko76; Le78; Ko04;
Mi85; AF02; CFP05; RS06]. The main achievement of Macdonald was to
unify all the well-known formulas for the integers s listed in (1.4), except
for s = 26. He obtained an expansion formula of

(1.5)
∏

m≥0

(1 − xm)dimg

for every semi-simple Lie algebra g. In the case of type A
(a)
l , i.e., type

Al with l even [Ma72, p.134], he expressed the (t2 − 1)-st power of the
Euler Product as a sum of weighted integer vectors of length t for each
odd positive integer t:

η(x)t2−1 = c0

∑

(v0,...,vt−1)

∏

i<j

(vi − vj)x
(v2

0+v2
1+···+v2

t−1)/(2t).

Following this direction it seems difficult to obtain more expansion for-
mulas for other exponents, because t is a vector length and has to be an
integer. Kostant considered the general case for positive integer s and
obtained further properties [Ko04].

The present paper proposes a new approach. The main difficulty is
to find an appropriate “other object” and convert the weighted vector
of length t in Macdonald’s identity to a weighted “other object” with
free parameter t. In fact, we find out that the “other object” is merely
the classical partition of integer and that the weighted partition has a
surprisingly simple form in terms of hook lengths.

Let us describe our Main Theorem. The basic notions needed here can
be found in [Ma95, p.1; St99, p.287; La01, p.1; Kn98, p.59; An76, p.1]. A
partition λ is a sequence of positive integers λ = (λ1, λ2, · · · , λℓ) such that
λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0. The integers (λi)i=1,2,...,ℓ are called the parts
of λ, the number ℓ of parts being the length of λ denoted by ℓ(λ). The
sum of its parts λ1 + λ2 + · · ·+ λℓ is denoted by |λ|. Let n be an integer,
a partition λ is said to be a partition of n if |λ| = n. We write λ ⊢ n. The
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set of all partitions of n is denoted by P(n). The set of all partitions is
denoted by P , so that

P =
⋃

n≥0

P(n).

Each partition can be represented by its Ferrers diagram. For example,
λ = (6, 3, 3, 2) is a partition and its Ferrers diagram is reproduced in
Fig. 1.1.

Fig. 1.1. Partition Fig. 1.2. Hook length

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Fig. 1.3. Hook lengths

For each box v in the Ferrers diagram of a partition λ, or for each
box v in λ, for short, define the hook length of v, denoted by hv(λ) or
hv, to be the number of boxes u such that u = v, or u lies in the same
column as v and above v, or in the same row as v and to the right of v
(see Fig. 1.2). The hook length multi-set of λ is the multi-set of all hook
lengths of λ. In Fig. 1.3 the hook lengths of all boxes for the partition
λ = (6, 3, 3, 2) have been written in each box. The hook length multi-set
of λ is {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}.

Theorem 1.1 [Main]. For any complex number β we have

(1.6)
∏

m≥1

(1 − xm)β−1 =
∑

λ∈P

∏

v∈λ

(

1 −
β

h2
v

)

x.

Identity (1.6) will be called “Main Identity”. Two numerical examples
are given in §2 for verifying the Main Theorem. For convenience, the
exponent s in the Euler Product has been replaced by β−1. The proof of

the Main Theorem is based on the Macdonald identities for A
(a)
l . We have

also used the properties of the bijection between t-cores and N -codings
constructed by Garvan, Kim and Stanton [GKS90] (see §5). From our
Main Theorem we derive new formulas about hook lengths, including the
“marked hook formula”. We also improve a result due to Kostant (see §7).
The five results we should like to single out are next stated. They will be
further proved in Sections 2, 6, 7 and 9.

4



Corollary 1.2 [=2.4]. For any positive integers n and k the following
expression

(1.7)
∑

λ⊢n

∏

v∈λ

(

1 −
k

h2
v

)

is an integer.

Theorem 1.3 [=6.10, marked hook formula]. We have

(1.8)
∑

λ⊢n

f2
λ

∑

v∈λ

h2
v =

n(3n − 1)

2
n!,

where fλ is the number of standard Young tableaux of shape λ (see §2.3
and §6.4).

Theorem 1.3 is to be compared with the following well-known formula

(1.9)
∑

λ⊢n

f2
λ = n!

Theorem 1.4 [=6.9]. We have

(1.10)
∑

n≥1

xn
∑

λ⊢n

(

∑

v∈λ

1

h2
v

)2
=

∏

m≥1

1

1 − xm

(

∑

k≥1

xkk−3

1 − xk
+

(

∑

k≥1

xkk−1

1 − xk

)2
)

.

Theorem 1.5 [=7.2]. Let k be a positive integer and s be a real number
such that s ≥ k2 − 1. Then (−1)kfk(s) > 0.

Corollary 1.6 [=9.2]. For any positive integer n the following expression

(1.11)
1

n + 1

∑

λ⊢n

∏

v∈λ

(

1 +
n

h2
v

)

is a positive integer.

It would be interesting to find a direct proof of Corollaries 1.2, 1.6
and Theorems 1.3, 1.4. In particular, the “marked hook formula” sug-
gests that a marked Robinson-Schensted-Knuth correspondence should be
constructed between pairs of marked Young tableaux and marked permu-
tations (see §6.4).
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2. Basic consequences and specializations

2.1. Equivalent forms. With the notations recalled above for partitions
the right-hand side of the Main Identity can be written as

(2.1)
∑

λ∈P

x|λ|
∏

v∈λ

(

1 −
β

h2
v

)

=
∑

n≥0

xn
∑

λ⊢n

∏

v∈λ

(

1 −
β

h2
v

)

.

Using the identity (see [St99, p.316])

(2.2)
∏

m≥1

1

1 − xm
= exp

(

∑

k≥1

xk

k(1 − xk)

)

,

the Main Identity can be written:

(2.3)
∏

m≥1

1

1 − xm
× exp

(

−β
∑

k≥1

xk

k(1 − xk)

)

=
∑

n≥0

xn
∑

λ⊢n

∏

v∈λ

(

1 −
β

h2
v

)

or

(2.4) exp
(

(1 − β)
∑

k≥1

xk

k(1 − xk)

)

=
∑

n≥0

xn
∑

λ⊢n

∏

v∈λ

(

1 −
β

h2
v

)

.

The Main Theorem has also the following equivalent generating function
form, which can be verified by comparing the coefficients of XmY n.

Theorem 2.1. We have

∑

k≥0

Xk

1 − Y
∏

m≥1(1 − xmk)
=

∑

k≥0

∑

λ∈P

Y k

1 − Xx|λ|

∏

v∈λ

(

1 −
k + 1

h2
v

)

.

2.2. Corollaries. From the Main Theorem we immediately have the fol-
lowing results.

Corollary 2.2. Let F (β) be the function defined by

F (β) :=
∑

λ∈P

∏

v∈λ

(

1 −
β + 1

h2
v

)

x.

Then
F (β1 + β2) = F (β1)F (β2).

In particular,
F (β)F (−β) = 1.
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Corollary 2.3. For each positive integer n the following expression

n!
∑

λ⊢n

∏

v∈λ

(

1 −
β

h2
v

)

is a polynomial in β with integral coefficients.

Corollary 2.4 [=1.2]. For any positive integers n and k the following
expression

(2.5)
∑

λ⊢n

∏

v∈λ

(

1 −
k

h2
v

)

is an integer.

Note that unlike Corollary 2.3 there is no factor n! in Corollary 2.4.

2.3. Specialization for β = 0. Letting β = 0 in the Main Theorem yields
the well-known generating function for partitions (see [An76, p.3]).

Theorem 2.5. Let p(n) be the number of partitions of n. Then

(2.6)
∏

m≥1

1

1 − xm
=

∑

n≥0

p(n)xn.

Using (2.6) we can rewrite the Main Theorem as follows, which is prob-
ably the good form for finding combinatorial interpretations. It means
that there exists a bijection between one weighted-partition (right-hand
side of (2.7)) and sequences of k + 1 partitions (left-hand side of (2.7)).
When β = −k (k ∈ N), the left-hand side of the Main Identity may be
rewritten (

∑

n≥0 p(n)xn)k+1 because of (2.6). Hence the Main Theorem
may be restated as the following corollary.

Corollary 2.6. Let k ∈ N. Then

(2.7)
∑

p(n1)p(n2) · · · p(nk+1) =
∑

λ⊢n

∏

v∈λ

(

1 +
k

h2
v

)

,

where the sum on the left-hand side ranges over all positive integer vectors
(n1, n2, . . . , nk+1) such that

∑

ni = n.

2.4. Specialization for β = 1. The case β = 1 is really trivial. Every
non-empty partition λ contains at least one box v of hook length hv = 1,
so that

∏

v∈λ

(

1 −
1

h2
v

)

= 0.
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Hence
∑

n≥0

xn
∑

λ⊢n

∏

v∈λ

(

1 −
1

h2
v

)

= 1.

2.5. Specialization for β = ∞. The hook length plays an important role
in Algebraic Combinatorics thanks to the famous hook formula due to
Frame, Robinson and Thrall [FRT54]

(2.8) fλ =
n!

∏

v∈λ hv(λ)
,

where fλ is the number of standard Young tableaux of shape λ (see [St99,
p.376; Kn98, p.59; Kr99, Ze84, GNW79, NPS97, RW83]). By using the
Main Theorem we re-prove the following classical result, which is also a
consequence of the Robinson-Schensted-Knuth correspondence (see, for
example, [Kn98, p.49-59; St99, p.324]).

Theorem 2.7. We have

(2.9)
∑

λ⊢n

f2
λ = n!

Proof. Put β = −y/x in (2.4):

∑

λ∈P

∏

v∈λ

(

1 +
y/x

h2
v

)

x = exp
(

(

1 +
y

x

)

∑

k≥1

xk

k(1 − xk)

)

.

When x → 0, we get

(2.10)
∑

λ∈P

∏

v∈λ

y

h2
v

= exp(y).

Comparing the coefficients of yn yields

∑

λ⊢n

∏

v∈λ

1

h2
v

=
1

n!

or
∑

λ⊢n

( n!
∏

v∈λ hv

)2

= n!

2.6. Specialization for β = −1. Unlike the specializations β = 1, 0,∞ as
done previously, the case β = −1 does not relate to any classical result.
However, we get a surprising formula for pp(n), defined to be the number
of ordered pairs π′, π′′ of partitions such that |π′| + |π′′| = n (see [BG06;
CJW08]), as stated next.
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Corollary 2.8. We have

(2.11) pp(n) =
∑

λ⊢n

∏

v∈λ

(

1 +
1

h2
v

)

.

Again, a direct proof of Corollary 2.8 would be welcome.

2.7. Specialization for β = 2. There is no direct specialization for β = 2.
Nevertheless, by using the Euler pentagonal theorem (formula (1.1)) we
obtain another expression for the alternate sum of the pentagonal powers,
as stated in the next Proposition.

Proposition 2.9. We have

(2.12)
∑

λ∈P

∏

v∈λ

(

1 −
2

h2
v

)

x =
∞
∑

k=−∞

(−1)kxk(3k+1)/2.

Example 2.1. We see that the coefficient of x4 in (2.12) is 0, i.e.:

(2.13)
∑

λ⊢4

∏

v∈λ

(

1 −
2

h2
v

)

= 0.

There are five partitions of 4 (see. Fig. 8.1) and their hook lengths are re-
spectively {1, 2, 3, 4}, {1, 1, 2, 4}, {1, 2, 2, 3}, {1, 1, 2, 4} and {1, 2, 3, 4}. We
verify that (2.13) is true by the following calculation.

2
(

1 −
2

9

)(

1 −
2

16

)

+ 2
(

1 −
2

1

)(

1 −
2

16

)

+
(

1 −
2

4

)(

1 −
2

9

)

= 0.

This raises the question: is there a direct proof of Proposition 2.9?

2.8. Specialization for β = 25. Recall that the Ramanujan τ function is
defined by (see [Se70, p.156]):

x
∏

m≥1

(1 − xm)24 =
∑

n≥1

τ(n)xn(2.14)

= x − 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 + · · ·

Putting β = 25 in the Main Theorem yields the next proposition.

Proposition 2.10. We have

(2.15) τ(n) =
∑

λ

∏

v∈λ

(

1 −
25

h2
v

)

where the sum ranges over all 5-cores of n − 1.
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Notice that there is cancellation between a box of hook length 3 and a
box of hook length 4 in each 5-core, because

(

1 −
25

9

)(

1 −
25

16

)

= 1.

Example 2.2. Take n = 6. There are two 5-cores of 5: (3, 2) and (2, 2, 1).
Those two 5-cores have their hook length multi-sets equal to {1, 1, 2, 3, 4},
so that

τ(6) = 2
(

1 −
25

1

)(

1 −
25

1

)(

1 −
25

4

)

= −6048.

3. Specialization for β = 4

The β = 4 case is very interesting. Unlike the case for β = 2 in which
Euler’s pentagonal theorem is used, here the following well-known Jacobi
triple product formula is re-proved! (see [An76, p.21; Kn98, p.20; JS89;
FH99; FK99])

Theorem 3.1 [Jacobi]. We have

(3.1)
∏

m≥1

(1 − xm)3 =
∑

m≥0

(−1)m(2m + 1)xm(m+1)/2.

Proof. Put β = 4 in The Main Identity:

(3.2)
∏

m≥1

(1 − xm)3 =
∑

λ∈P

∏

v∈λ

(

1 −
4

h2
v

)

x.

If a partition λ contains one box v whose hook length is hv = 2, then

(3.3)
∏

v∈λ

(

1 −
4

h2
v

)

x = 0.

Otherwise λ must be a staircase partition

∆m := (m, m − 1, . . . , 3, 2, 1).

We have (see Fig. 3.1 and 3.2 for an example):

∏

v∈∆m

(

1 −
4

h2
v

)

=
((2m − 1)2 − 4

(2m − 1)2

)1

· · ·
(5

9

)m−1(−3

1

)m

= (−1)m(2m + 1).(3.4)

As |∆m| = m(m + 1)/2, we conclude that

∏

m≥1

(1 − xm)3 =
∑

m≥0

∏

v∈∆m

(

1−
4

h2
v

)

x =
∑

m≥0

(−1)m(2m+ 1)xm(m+1)/2.
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1

3 1

5 3 1

7 5 3 1

Fig. 3.1. Hook lengths hv in ∆4

−3

5
9 −3

21
25

5
9 −3

45
49

21
25

5
9 −3

Fig. 3.2. (1 − 4/h2
v) in ∆4

4. Specialization for β = 9

Recall that a partition λ is a t-core, if λ has no hook length equal to t.
[GKS90; St99, p.468]. Hence, if λ is not a 3-core,

(4.1)
∏

v∈λ

(

1 −
9

h2
v

)

x = 0.

By the Main Theorem

(4.2)
∏

m≥1

(1 − xm)8 =
∑

λ

∏

v∈λ

(

1 −
9

h2
v

)

x

where the sum ranges over all 3-cores.

Theorem 4.1. We have

∏

k≥1

(1 − qk)8 =
∑

k,m≥0

(1

2
(3k + 1)(3m + 1)(3k + 3m + 2)qk2+k+m2+m+km

−
1

2
(3k + 2)(3m + 2)(3k + 3m + 4)qk2+k+m2+m+(k+1)(m+1)

)

.

Proof. We need characterize all 3-cores. In fact, a partition is a 3-core
if and only if it has one of the forms described in Fig. 4.1 (type A) and
Fig. 4.2 (type B). Let ∆k = (k, . . . , 3, 2, 1) be a staircase partition. Define

∆2
k = (k, k, . . . , 3, 3, 2, 2, 1, 1)

and ∆2
k
′
be the transposition of ∆2

k. Then type A (resp. type B) is made

of a partition of form ∆2
k, a partition of form ∆2

m
′
and a rectangle of form
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14 11 8 5
17 14 11 8
20 17 14 11

Fig. 4.1. Type A 3-core

13 10 7 4 1
16 13 10 7 4
19 16 13 10 7
22 19 16 13 10

Fig. 4.2. Type B 3-core

2 1

5 4 2 1

8 7 5 4 2 1

Fig. 4.3. Hook lengths hv in ∆2
3
′

−5
4 −8

16
25

7
16

−5
4 −8

55
64

40
49

16
25

7
16 −5

4 −8

Fig. 4.4. (1 − 9/h2
v) in ∆2

3
′

k × m (resp. of form (k + 1) × (m + 1)). We have (see Fig. 4.3 and Fig.
4.4)

∏

v∈∆2
k

(

1 −
9

h2
v

)

= (−8)k
(

−
5

4

)k( 7

16

)k−1(16

25

)k−1

· · ·

×
((3k − 2)2 − 9

(3k − 2)2

)1((3k − 1)2 − 9

(3k − 1)2

)1

= (3k + 1)(3k + 2)/2.(4.3)

The product of 1−9/h2
v for all boxes v in the rectangle of type A (Fig. 4.1)

is:

∏

v∈A(k,m)

(

1 −
9

h2
v

)

=

m
∏

j=1

k
∏

i=1

(3i + 3j − 1)2 − 9

(3i + 3j − 1)2

=
m
∏

j=1

(3j − 1)(3j + 3k + 2)

(3j + 2)(3j + 3k − 1)

=
2(3k + 3m + 2)

(3k + 2)(3m + 2)
.(4.4)
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The product of 1−9/h2
v for all boxes v in the rectangle of type B (Fig. 4.2)

is:

∏

v∈B(k,m)

(

1 −
9

h2
v

)

=

m+1
∏

j=1

k+1
∏

i=1

(3i + 3j − 5)2 − 9

(3i + 3j − 5)2

=
−2(3k + 3m + 4)

(3k + 1)(3m + 1)
.(4.5)

Combining equations (4.3), (4.4) and (4.5) yields Theorem 4.1.

5. Proof of the Main Theorem

In this section we always suppose that t = 2t′ + 1 is an odd positive
integer.

5.1. Fundamental properties of t-cores and V -codings. Recall that a par-
tition λ is a t-core if the hook length multi-set of λ does not contain the
integer t. It is known that the hook length multi-set of each t-core does
not contain any multiple of t [Kn98. p.69, p.612; St99, p.468].

Definition 5.1. Each vector of integers (v0, v1, . . . , vt−1) ∈ Z
t is called

V -coding if the following conditions hold:
(i) vi ≡ i(mod t) for 0 ≤ i ≤ t − 1;
(ii) v0 + v1 + · · ·+ vt−1 = 0.

The V -coding can be identified with the set {v0, v1, . . . , vt−1} thanks
to condition (i). In this section we present a bijection between t-cores
and V -codings, that constitutes the crucial step in the proof of the Main
Theorem.

Theorem 5.1. There is a bijection φV : λ 7→ (v0, v1, . . . , vt−1) which
maps each t-core onto a V -coding such that

(5.1) |λ| =
1

2t
(v2

0 + v2
1 + · · ·+ v2

t−1) −
t2 − 1

24

and

(5.2)
∏

v∈λ

(

1 −
t2

h2
v

)

=
(−1)t′

1! · 2! · 3! · · · (t − 1)!

∏

0≤i<j≤t−1

(vi − vj).

We will describe the bijection φV and prove the two equalities (5.1)
and (5.2) in §5.2, §5.3 and §5.4 respectively. An example is given after the
construction of the bijection φV .
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5.2. The bijection φV and an example. Each finite set of integers A =
{a1, a2, . . . , an} is said to be t-compact if the following conditions hold:

(i) −1,−2, . . . ,−t ∈ A;
(ii) for each a ∈ A such that a 6= −1,−2, . . . ,−t, we have a ≥ 1 and

a 6≡ 0 mod t;
(iii) let b > a ≥ 1 be two integers such that a ≡ b mod t. If b ∈ A, then

a ∈ A.

Let A be a t-compact set. An element a ∈ A is said to be t-maximal if
b 6∈ A for every b > a such that a ≡ b mod t. The set of t-maximal letters
of A is denoted by maxt(A). Let λ be a t-core. The H-set of the t-core λ
is defined to be

H(λ) = {hv | v is a box in the leftmost column of λ} ∪ {−1,−2, . . .− t}.

Lemma 5.2. For each t-core λ its H-set H(λ) is a t-compact set.

Proof. Let c = tk + r (k ≥ 1, 0 ≤ r ≤ t − 1) be an element in H(λ)
and a be the maximal letter in H(λ) such that a < t(k − 1) + r. We
must show that t(k − 1) + r is also in H(λ). If it were not the case, let
z > t(k − 1) + r, y1, y2, . . . , yd be the hook lengths as shown in Fig. 5.1,
where only the relevant horizontal section of the partition diagram has
been represented. We have y1 = c − a− 1 ≥ tk + r − t(k − 1) − r = t and
yd = c− z +1 ≤ tk + r− t(k− 1)− r = t; so that there is one hook yi = t.
This is a contradiction since λ is supposed to be a t-core.

a

z

c y1 y2 · · · yd

Fig. 5.1. Hook length and t-compact set

Construction of φV . Let λ be a t-core and H(λ) be its H-set. The
U -coding of λ is defined to be the set U := maxt(H(λ)), which can be
identified with the vector (u0, u1, . . . , ut−1) such that u0 = −t, ui > −t
and ui ≡ i mod t for 1 ≤ i ≤ t − 1. In general,

S := u0 + u1 + · · ·+ ut−1 6= 0.

The integer S is a multiple of t because

S =
∑

ui =
∑

(tki + i) = t
∑

ki + t(t − 1)/2

14



(remember that t = 2t′ + 1 is an odd integer). The V -coding φV (λ) is the
set V obtained from U by the following normalization:

(5.3) φV (λ) = V := {u − S/t : u ∈ U}.

In fact, we can prove that S/t = ℓ(λ) − t′ − 1 (see (5.8)). The set V can
be identified with a vector V -coding because

∑

vi =
∑

(ui − S/t) =
∑

ui − S = 0.

Example 5.1. Consider the 5-core

λ = (14, 10, 6, 6, 4, 4, 4, 2, 2, 2).

The H-set of λ (see Fig. 5.2)

H(λ) = {23, 18, 13, 12, 9, 8, 7, 4, 3, 2,−1,−2,−3,−4,−5}

is 5-compact. The U -coding of λ is U = max5(H(λ)) = {23, 12, 9,−4,−5},
or in vector form

(u0, u1, u2, u3, u4) = (−5,−4, 12, 23, 9).

As S =
∑

ui = 35, the V -coding is given by

V = {−5 − 7,−4 − 7, 12 − 7, 23− 7, 9 − 7} = {−12,−11, 5, 16, 2},

or in vector form

φV (λ) = (v0, v1, v2, v3, v4) = (5, 16, 2,−12,−11).

We have

|λ| =
1

2t
(v2

0 + v2
1 + · · · + v2

t−1) −
t2 − 1

24

=
1

2 · 5
(52 + 162 + 22 + (−12)2 + (−11)2) −

52 − 1

24
= 54.

and

∏

v∈λ

(

1 −
52

h2
v

)

=
1

1! · 2! · 3! · · · (t − 1)!

∏

0≤i<j≤t−1

(vi − vj)

= (−11)(3)(17)(16) · (14)(28)(27) · (14)(13) · (−1)/288

= 60035976.

Notice that, as expected, the above two numbers are positive integers.
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2 2

3 3

4 4

7 0 1 2

8 3

9 4

12 0 1 2

13 3

18 4 0 1 2 3

23 4 0 1 2 3

Fig. 5.2. U -coding and N -coding of t-core

©©
©©

© ©
© ©

© ©

0 -5

1 -4

2 -3

3 -2

4 -1

0

r = −2

r = −1

r = 0

r = 1

r = 2

r = 3

5.3. Proof of (5.1). A vector of integers (n0, n1, . . . , nt−1) ∈ Z
t is said to

be an N -coding if n0 +n1 + · · ·+nt−1 = 0. Garvan, Kim and Stanton have
defined a bijection φN between N -codings and t-cores. We now recall its
definition using their own words [GKS90,p.3] (see also [BG06]).

Let λ be a t-core. Define the vector (n0, . . . , nt−1) = φN (λ) in the
following way. Label a box in the i-th row and j-column of λ by j−i mod t.
We also label the boxes in column 0 (in dotted lines in Fig. 5.2) in the
same way, and call the resulting diagram the extended t-residue diagram.
A box is called exposed if it is at the end of a row of the extended t-residue
diagram. The set of boxes (i, j) satisfying t(r − 1) ≤ j − i < tr of the
extended t-residue diagram of λ is called region and numbered r. In Fig.
5.2 the regions have been bordered by dotted lines. We now define ni to
be the maximum region r which contains an exposed box labeled i.

In Fig. 5.2 the labels of all boxes lying on the maximal border strip
(but the leftmost one) have been written in italic. This includes all the
exposed boxes: 3,3,3,2,4,3,2,4,3,2,4,3,2,1,0, when reading from bottom to
top. We have (n0, n1, n2, n3, n4) = (−2,−2, 1, 3, 0).
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Theorem 5.3 [Garvan-Kim-Stanton]. The bijection

φN : λ 7→ (n0, n1, . . . , nt−1)

has the following property:

(5.4) |λ| =
t

2

t−1
∑

i=0

n2
i +

t−1
∑

i=0

ini.

Let t′ = (t − 1)/2 and let

φN
V : (n0, n1, . . . , nt−1) 7→ (v0, v1, . . . , vt−1)

be the bijection that maps each N -coding onto the V -coding defined by

(5.5) vi =

{

tni+t′ + i if 0 ≤ i ≤ t′;
tni−t′−1 + i − t if t′ + 1 ≤ i ≤ t − 1

or in set form

(5.6) {vi | 0 ≤ i ≤ t − 1} = {tni + i − t′ | 0 ≤ i ≤ t − 1}.

The bijective property is easy to verify. More essentially, the bijection φV

defined in §5.2 is the composition product of the two previous bijections
as is now shown.

Lemma 5.4. We have φV = φN
V ◦ φN .

Proof. Let (v0, . . . , vt−1) = φV (λ), (n0, . . . , nt−1) = φN (λ) and

(v′
0, . . . , v

′
t−1) = φN

V (n0, . . . , nt−1).

We need prove that vi = v′
i. The number ni in the N -coding is defined

to be the maximum region r which contains an exposed box labelled i.
This exposed box is called critical italic box. In Fig. 5.2, a circle is drawn
around the label of each critical italic box. On the other hand, the U -
coding is defined to be the set maxt(H(λ)), where H(λ) is the H-set of λ.
A box in the leftmost column whose hook length is an element of the U -
coding is called critical roman box. In Fig. 5.2, a circle is drawn around
the hook length number of each critical roman box. Let us write the labels
of all the exposed boxes (the vector L = (Li)) with its region numbers (the
vector R = (Ri)) and the H-set of λ (the vector H = (Hi) = H(λ)), read
from bottom to top.

L = 3© 3 3 2© 4© 3 2 4 3 2 4 3 2 1© 0©
R = 3© 2 1 1© 0© 0 0 -1 -1 -1 -2 -2 -2 -2© -2©
H = 23© 18 13 12© 9© 8 7 4 3 2 -1 -2 -3 -4© -5©
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It is easy to see that Lj = (Hj − ℓ(λ)) mod t and Rj = ⌊(Hj − ℓ(λ))/t⌋+1.
This means that Li has a circle symbol if and only if Hi has a circle
symbol. We then have a natural bijection

(5.7) f : ui 7→ ⌊(ui − ℓ(λ))/t⌋ + 1 = n(ui−ℓ) mod t

between the set {u0, . . . , ut−1} and {n0, . . . , nt−1}. By (5.6) and (5.7) we
have

{v′
i} = {tni + i − t′}

= {tn(ui−ℓ) mod t + (ui − ℓ) mod t − t′}

= {t(⌊(ui − ℓ)/t⌋ + 1) + (ui − ℓ) mod t − t′}

= {ui − ℓ + t′ + 1}.

On the other hand, (v′
i) is a V -coding, because v′

i ≡ i mod t and
∑

v′
i =

t
∑

ni +
∑

i − t(t − 1)/2 = 0; so that

(5.8) (
∑

i

ui)/t = ℓ − t′ − 1.

Hence

{v′
i} = {ui − ℓ + t′ + 1} = {ui − (

∑

i

ui)/t} = {vi}.

Take again the same partition as in Example 5.1; the N -coding is

(n0, n1, n2, n3, n4) = (−2,−2, 1, 3, 0).

We verify that

(v′
0, v

′
1, v

′
2, v

′
3, v

′
4)

= (1 × 5 + 0, 3 × 5 + 1, 0 × 5 + 2, −2 × 5 − 2, −2 × 5 − 1).

= (5, 16, 2,−12,−11) = (v0, v1, v2, v3, v4).

Proof of (5.1) in Theorem 5.1. From (5.6) we have
∑

v2
i =

∑

(tni + i − t′)2

=
∑

(

(tni)
2 + 2tini − 2tt′ni + i2 + t′2 − 2it′

)

= t2
∑

n2
i + 2t

∑

ini +
(t − 1)t(2t − 1)

6
+ tt′2 − t′t(t − 1)

= t2
∑

n2
i + 2t

∑

ini +
t(t2 − 1)

12
.

Hence

1

2t

∑

v2
i =

t

2

∑

n2
i +

∑

ini +
t2 − 1

24
= |λ| +

t2 − 1

24
.
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5.4. Proof of (5.2). We first etablish the following two lemmas.

Lemma 5.5. For any t-compact set A we have

(5.9)
∏

a∈A,a>0

(

1 −
t2

a2

)

=
∏

a∈maxt(A),a6=−t

a + t

a
.

Example 5.2. Take t = 5. Then the set

A = {−5,−4,−3,−2,−1, 2, 3, 4, 7, 8, 9, 12, 13, 18, 23}

is 5-compact. We have maxt(A) = {−5,−4, 9, 12, 23}. Hence

(5.10)
∏

a∈A,a>0

(

1 −
25

a2

)

=
1 · 14 · 17 · 28

(−4) · 9 · 12 · 23
.

Proof. Write
∏

a∈A,a>0

(

1 −
t2

a2

)

=
∏

a∈A,a>0

(a − t) · (a + t)

a · a
,

then delete the common factors in numerator and denominator, as illus-
trated by means of Example 5.2.

1
−4

(a ≡ 1 mod5)

2
−3

−3
2 × 7

2
2
7 × 12

7
7
12 × 17

12 (a ≡ 2 mod5)

3
−2

−2
3

× 8
3

3
8
× 13

8
8
13

× 18
13

13
18

× 23
18

18
23

× 28
23

(a ≡ 3 mod5)

4
−1

−1
4 × 9

4
4
9 × 14

9 (a ≡ 4 mod5)

The product (a−5)(a+5)/a2 for a > 0 is reproduced in the row determined
by a mod5 in the above table, except for the leftmost column. But the
product of the factors in the leftmost column is equal to 1 because t is
an odd integer; so that the left-hand side of (5.10) is the product of the
factors in the above table. After deleting the common factors, it remains
the rightmost fraction in each row.

Lemma 5.6. Let λ be a t-core and (u0, u1, . . . , ut−1) be its U -coding
(defined in the body of the construction of φV ). Let λ′ be the t-core
obtained from λ by erasing the leftmost column of λ and (u′

0, u
′
1, . . . , u

′
t−1)

be its U -coding. Then

∏

0≤i<j≤t−1

ui − uj

u′
i − u′

j

=

t−1
∏

j=1

uj + t

uj
.
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Example 5.3. Take the 5-core λ given in Example 5.1. The U -coding of λ
is (u0, u1, u2, u3, u4) = (−5,−4, 12, 23, 9). We have

λ′ = (13, 9, 5, 5, 3, 3, 3, 1, 1, 1).

The U -coding of λ′ is (u′
0, u

′
1, u

′
2, u

′
3, u

′
4) = (−5, 11, 22, 8,−1). Now, con-

sider the cyclic rearrangement

(u′′
0 , u′′

1 , u′′
2 , u′′

3 , u′′
4) = (−1,−5, 11, 22, 8)

of (u′
0, u

′
1, u

′
2, u

′
3, u

′
4). We have

∏

(u′
i − u′

j) =
∏

(u′′
i − u′′

j ) because t is an
odd integer. Moreover u′′

i = ui − 1 for all 1 ≤ i ≤ 4. Hence

∏

0≤i<j≤t−1

ui − uj

u′′
i − u′′

j

=

t−1
∏

j=1

u0 − uj

u′′
0 − u′′

j

=
(−5 + 4)(−5 − 12)(−5 − 23)(−5 − 9)

(−1 + 5)(−1 − 11)(−1 − 22)(−1 − 8)

=
(−4 + 5)(12 + 5)(23 + 5)(9 + 5)

(−4)(12)(23)(9)
.

Proof. We suppose that λ contains δ parts equal to 1. Its H-set H(λ)
(viewed as a vector in decreasing order if necessary) can be split into six
segments H(λ) = A1A2A3A4A5A6 defined by (see Fig. 5.3)

(i) a ≥ δ + 2 for each a ∈ A1;
(ii) A2 = (δ, δ − 1, . . . , 3, 2, 1);
(iii) A3 = (−1,−2,−3, . . . , δ + 2 − t);
(iv) A4 = (δ + 1 − t);
(v) A5 = (δ − t, δ − 1 − t, . . . , 1 − t);
(vi) A6 = (−t).

On the other hand the H-set H(λ′) of λ′ is split into five segments
H(λ′) = A′

1A
′
2A

′
3A

′
4A

′
5 defined by

(i’) A′
1 = {a − δ − 1 : a ∈ A1};

(ii’) A′
2 = {a − δ − 1 : a ∈ A2} = (−1,−2, . . . ,−δ);

(iii’) A′
3 = (−δ − 1);

(iv’) A′
4 = {a − δ − 1 : a ∈ A3} = (−δ − 2,−δ − 3, . . . ,−t + 1);

(v) A′
5 = (−t).

Notice that some segments Ai and A′
i may be empty. More precisely,







A2 = A5 = A′
2 = ∅, if δ = 0;

A3 = A′
4 = ∅, if δ = t − 2;

A3 = A4 = A′
3 = A′

4 = ∅, if δ = t − 1.
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−t
1 − t...

δ − 1 − t
δ − t −t

δ + 1 − t 1 − t
δ + 2 − t

...... −δ − 3
−2 −δ − 2
−1 −δ − 1
1 −δ
2

...... −2
δ −1

A6

A5

A′
5

A4

A′
4

A3

A′
3

A2 A′
2

A1 A′
1

Fig. 5.3. Comparison the hook lengths of λ and λ′

The basic facts are:
(i) a 6∈ maxt(H(λ)) for every a ∈ A5; because {a mod t : a ∈ A5} =

{a mod t : a ∈ A3}. In other words the set A5 is masked by A3.
(ii) δ + 1 − t ∈ maxt(H(λ)); because a 6≡ 0 mod t for every a ∈ A′

1 so
that a 6≡ δ+1 mod t for every a ∈ A1. It is easy to see that a 6≡ δ+1 mod t
for every a ∈ A2 ∪ A3.

(iii) −δ − 1 ∈ maxt(H(λ′)); because a 6≡ 0 mod t for every a ∈ A1 ∪ A2

so that a 6≡ −δ − 1 mod t for every a ∈ A′
1 ∪ A′

2.
(iv) Since that a 7→ a − δ − 1 is a bijection between A1 ∪ A2 ∪ A3 and

A′
1 ∪ A′

2 ∪ A′
4, it is also a bijection between maxt(H(λ)) \ {−t, δ − t + 1}

and maxt(H(λ′)) \ {−t,−δ − 1}.

The above facts enable us to derive the U -coding of λ′ from the U -
coding of λ as follows. Let

(ui) = (u0 = −t, u1, u2, . . . , uk−1, δ + 1 − t, uk+1, uk+1, . . . , ut−1)

be the U -coding of λ and define

(u′′
i ) = (u′′

0 = −δ − 1, u′′
1 , u′′

2 , . . . , u′′
k−1,−t, u′′

k+1, u
′′
k+1, . . . , u

′′
t−1)

where u′′
i = ui − δ − 1 for i ≥ 1. Then, the U -coding of λ′ is simply

(u′
i) = (u′

0 = −t, u′′
k+1, u

′′
k+1, . . . , u

′′
t−1,−δ − 1, u′′

1 , u′′
2 , . . . , u′′

k−1).
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We have
∏

(u′
i − u′

j) =
∏

(u′′
i − u′′

j ) because t is an odd integer. On the
other hand, u′′

i − u′′
j = ui − uj for all 1 ≤ i < j ≤ t − 1. Hence

∏

0≤i<j≤t−1

ui − uj

u′
i − u′

j

=
∏

0≤i<j≤t−1

ui − uj

u′′
i − u′′

j

=
t−1
∏

j=1

u0 − uj

u′′
0 − u′′

j

=
t−1
∏

j=1

−t − uj

−δ − 1 − u′′
j

=
t−1
∏

j=1

uj + t

uj
.

Proof of (5.2) in Theorem 5.1. Because the U -coding and V -coding
of λ only differ by the normalization given in (5.3) and t is an odd integer,
we have

∏

(vi − vj) =
∏

(ui − uj). By Lemmas 5.6 and 5.5 we have

∏

0≤i<j≤t−1

(ui − uj) =

t−1
∏

j=1

uj + t

uj
×

∏

0≤i<j≤t−1

(u′
i − u′

j)

=
∏

a∈H(λ),a>0

(

1 −
t2

a2

)

×
∏

0≤i<j≤t−1

(u′
i − u′

j)

= · · · = K ×
∏

v∈λ

(

1 −
t2

h2
v

)

.

Taking λ as the empty t-core, the U -coding of λ is (−t,−t + 1,−t +
2, . . . ,−3,−2,−1). We then obtain K = (−1)t′1! · 2! · 3! · · · (t − 1)!

5.5. Enf of the proof of the Main Theorem. Recall that the Dedekind
η-function is defined by

(5.11) η(x) = x1/24
∏

m≥1

(1 − xm).

Let t = 2t′+1 be an odd integer. Macdonald obtained the following result
[Ma72] (see comments in §1).

Theorem 5.7 [Macdonald]. We have

(5.12) η(x)t2−1 = c0

∑

(v0,...,vt−1)

∏

i<j

(vi − vj)x
(v2

0+v2
1+···+v2

t−1)/(2t),

where the sum ranges over all V -codings (v0, v1, . . . , vt−1) (see Definition
5.1) and c0 is a numerical constant.

Consider the term of lowest degree in the above power series. We
immediately get

(5.13) c0 =
(−1)t′

1! · 2! · 3! · · · (t − 1)!
.
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Proof of the Main Theorem. Let n ≥ 0 be a positive integer. The
coefficient Cn(β) of xn on the left-hand side of the Main Identity is a
polynomial in β of degree n. The coefficient Dn(β) of xn on the right-
hand side of the Main Identity is also a polynomial in β of degree n thanks
to (2.3). For proving Cn(β) = Dn(β), it suffices to find n + 1 explicit
numerical values β0, β1, . . . , βn such that Cn(βi) = Dn(βi) for 0 ≤ i ≤ n
by using the Lagrange interpolation formula. The basic fact is that

∏

v∈λ

(

1 −
t2

h2
v

)

= 0

for every partition λ which is not a t-core. By comparing Theorems 5.1
and 5.7 we see that the Main Identity is true when β = t2 for every odd
integer t, i.e.,

∑

λ∈P

x|λ|
∏

v∈λ

(

1 −
t2

h2
v

)

=
∏

m≥1

(1 − xm)t2−1,

so that Cn(β) = Dn(β) for every complex number β.

Note that Kostant already observed that Cn(β) is a polynomial in β,
but did not mention any explicit expression [Ko04].

6. New formulas about hook lengths

In Sections 2-4 we have taken special numerical values for β. In this
section we compare the coefficients of βk to derive further identities.

6.1. Comparing the coefficients of β.

Proposition 6.1. We have

(6.1)
∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1

h2
v

=
∏

m≥1

1

1 − xm
×

∑

k≥1

xk

k(1 − xk)
.

Proof. Identity (6.1) follows from (2.3) by comparing the coefficients
of β1 on both sides.

6.2. The Stanley-Elder-Bessenrodt-Bacher-Manivel Theorem. We also
have a second proof of Proposition 6.1 that is direct and provides a more
general result about the power sum of the hook lengths.

Theorem 6.2. We have

(6.2)
∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

hα
v =

∏

m≥1

1

1 − xm
×

∑

k≥1

xkkα+1

1 − xk
.
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Recall that σα(n) =
∑

d|n dα is the α-th power sum of all positive

divisors of n (see [Se70, p.149]) whose generating function is classically
given by

(6.3)
∑

k≥1

xkkα

1 − xk
=

∑

n≥1

σα(n)xn.

Using (6.3) identity (6.2) can be rewritten as

(6.4)
∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

hα
v =

∏

m≥1

1

1 − xm
×

∑

n≥1

σα+1(n)xn.

The proof of Theorem 6.2 is based on an elegant result about the multi-
set of hook lengths and the multi-set of parts of all partitions of n. Many
studies have been done along those lines [Be98, BM02, Ho86, St04, KS82,
We1, We2]. Each hook length hv can be split into hv = av+lv +1 where av

is the arm length and lv is the leg length (see [St99, p.457]). The ordered
pair (av, lv) is called a hook type.

Theorem 6.3 [Stanley-Elder-Bessenrodt-Bacher-Manivel]. Let
n ≥ k ≥ 1 be two integers. Then for every positive j < k the total
number of occurrences of the part k among all partitions of n is equal to
the number of boxes whose hook type is (j, k − j − 1).

We now state a weaker form of the SEBBM Theorem, much easier to
figure out. Let A be a multi-set of positive integers. Define Ȧ to be the
multi-set derived from A by replacing each element a of A by a copies of a.
For instance, with A = {1, 1, 2, 5} we obtain Ȧ = {1, 1, 2, 2, 5, 5, 5, 5, 5} =
{11, 11, 22, 55}.

Proposition 6.4. Let H(n) (resp. G(n)) be the multi-set of all hook
lenghts (resp. the parts) of all partitions of n. Then

(6.5) H(n) = Ġ(n).

For example, the set of all partitions of 4 with their hook length multi-
sets is reproduced in Fig. 6.1. We see that H(4) = {17, 26, 33, 44}. On
the other hand, G(4) = {1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 4}. We have Ġ(4) =
{17, 26, 33, 44} = H(4). Notice that Ġ(4) can be represented as in Fig. 6.2.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

Fig. 6.1. The multi-set H(4) of hook lengths
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1
1
1
1

1
1
2 2

2 2
2 2

1
3 3 3 4 4 4 4

Fig. 6.2. The multi-set Ġ(4) of parts with duplications

Theorem 6.3 can be used to evaluate the power sum of the hook lengths.
We obtain immediately the following Theorem, which means that the r-th
power sum of the hook lengths is equal to the (r + 1)-st power sum of the
parts.

Corollary 6.5. For each positive integer n and each complex number α
we have

(6.6)
∑

λ⊢n

∑

v∈λ

hα
v =

∑

λ⊢n

∑

i

λα+1
i .

By Corollary 6.5, we see that Theorem 6.2 is equivalent to the next
Theorem.

Theorem 6.6. We have

(6.7)
∑

n≥1

xn
∑

λ⊢n

∑

i

λα
i =

∏

m≥1

1

1 − xm
×

∑

k≥1

xkkα

1 − xk
.

Proof. Let

(6.8) F (k) :=
∑

nk,nk+1,...≥0

xknk+(k+1)nk+1+···(nkkα + nk+1(k + 1)α + · · ·).

We have

F (k) =
∑

nk

xknknkkα ×
∑

nk+1,...

x(k+1)nk+1+··· +
∑

nk

xknkF (k + 1)

=
kα

(1 − xk+1)(1 − xk+2) · · ·

∑

n

xknn +
1

1 − xk
F (k + 1)

=
1

(1 − xk)(1 − xk+1) · · ·

kαxk

1 − xk
+

1

1 − xk
F (k + 1).(6.9)

Let

(6.10) F ′(k) =
1

(1 − x)(1 − x2) · · · (1 − xk−1)
F (k).
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Then identity (6.9) becomes

(6.11) F ′(k) =
1

(1 − x)(1 − x2) · · ·

kαxk

1 − xk
+ F ′(k + 1).

By iteration

(6.12) F ′(1) =
∏

m≥1

1

1 − xm
×

∑

k≥1

xkkα

1 − xk
.

Thus, the left-hand side of (6.7) is equal to F (1) = F ′(1).

Putting α = 0 and α = −1 we obtain the following specializations.

Corollary 6.7. We have

∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1 =
∏

m≥1

1

1 − xm
×

∑

k≥1

xkk

1 − xk

= x
d

dx

∏

m≥1

1

1 − xm
(6.13)

and

∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1

hv
=

∏

m≥1

1

1 − xm
×

∑

k≥1

xk

1 − xk

=
∑

m≥1

mxm

(1 − x)(1 − x2) · · · (1 − xm)
.(6.14)

For the second equality of (6.14), see [Slo, A006128].

Historical Remarks about the SEBBM theorem. In the present paper we
do not give the proof of the SEBBM theorem. We only want to make the
following historical remarks. Stanley proved the case j = 0 in 1972. Inde-
pendent discoveries and proofs were given by Kirdar and Skyrme (1982),
Paul Elder (1984) and Hoare (1986) (see [We1, We2, St04, KS82, Ho86]).
This result is called Elder’s Theorem. Bessenrodt [Be98] proved the gen-
eral case of Theorem 6.3 in 1998. The final version of this result was given
by Bacher and Manivel [BM02] in 2002. In fact, when we re-discovered
Theorem 6.3, as will be further explained, we noticed that Elder’s The-
orem, stated in this hook length language, was just the particular case
j = 0 of Theorem 6.3.
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When preparing the present paper we rediscovered Theorem 6.3 in the
following manner. First, we obtained Proposition 6.1, as mentioned ear-
lier by comparing the coefficients of β in the Main Theorem. We then
expanded the right-hand side of (6.1) and calculated the first terms:

(6.15)
∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1

h2
v

= x + 5
x2

2!
+ 29

x3

3!
+ 218

x4

4!
+ 1814

x5

5!
+ · · ·

When searching for the sequence 1, 5, 29, 218, 1814, . . . in The On-Line
Encyclopedia of Integer Sequences [Slo] we got the sequence A057623,
that referred to “n! * (sum of reciprocals of all parts in unre-

stricted partitions of n).” Next we calculated

∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1

hv
= x + 3x2 + 6x3 + 12x4 + 20x5 + 35x6 + · · ·

by enumerating all partitions. Going back to the The On-Line Encyclope-
dia the sequence (1, 3, 6, 12, 20, 35, . . .) referred to the sequence A006128
with the following description: “Total number of parts in all par-

titions of n.” Those facts led us to discover equality (6.6), and then
Theorem 6.3.

6.3. Comparing the coefficients of β2. By selecting the coefficients of β2

in our Main Identity we obtain the following equality about hook lengths.
Unlike Theorem 6.2 the following results can not be derived from the
SEBBM theorem.

Proposition 6.8. We have

(6.16)
∑

n≥2

xn
∑

λ⊢n

∑

{u,v}

1

h2
uh2

v

=
1

2

∏

m≥1

1

1 − xm
×

(

∑

k≥1

xk

k(1 − xk)

)2

,

where the third sum ranges over all unordered pairs {u, v} such that u, v ∈
λ and u 6= v.

By Theorem 6.7 and Proposition 6.1, we have

(6.17)
∑

n≥2

xn
∑

λ⊢n

∑

(u,v)

1

h2
uh2

v

=
∏

m≥1

(1 − xm) ×
(

∑

n≥1

xn
∑

λ⊢n

∑

v∈λ

1

h2
v

)2

,

where the third sum ranges over all ordered pairs (u, v) such that u, v ∈ λ
and u 6= v.
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Theorem 6.9 [=1.4]. We have

(6.18)
∑

n≥1

xn
∑

λ⊢n

(

∑

v∈λ

1

h2
v

)2
=

∏

m≥1

1

1 − xm

(

∑

k≥1

xkk−3

1 − xk
+

(

∑

k≥1

xkk−1

1 − xk

)2
)

.

Proof. For each partition λ we have

(

∑

v∈λ

1

h2
v

)2
=

∑

v∈λ

1

h4
v

+ 2
∑

{u,v}

1

h2
uh2

v

and conclude in view of Theorem 6.2 and Proposition 6.8.

6.4. Comparing the coefficients of βnxn and βn−1xn. Recall that fλ is the
number of standard Young tableaux of shape λ. Comparing the coefficients
of (−β)nxn on both sides of the Main Theorem (see, for example (2.3)),
we get

(6.19)
∑

λ⊢n

f2
λ = n!

Theorem 6.10 [=1.3, marked hook formula]. We have

(6.20)
∑

λ⊢n

f2
λ

∑

v∈λ

h2
v =

n(3n − 1)

2
n!

Proof. Selecting the coefficients of (−β)n−1xn on the right-hand side of
equation (2.3) we obtain

[(−β)n−1xn]
∏

m≥1

1

1 − xm
× exp

(

−β
∑

k≥1

xk

k(1 − xk)

)

=[xn]
1

(n − 1)!

∏

m≥1

1

1 − xm
×

(

∑

k≥1

xk

k(1 − xk)

)n−1

=[x1]
1

(n − 1)!

1

1 − x
×

( 1

1 − x
+

x

2(1 − x2)

)n−1

=
n(3n − 1)

2n!
.(6.21)

Selecting the coefficients of (−β)n−1xn on the left-hand side of equa-
tion (2.3) we get

(6.22)
∑

λ⊢n

∑

u∈λ

∏

v 6=u

1

h2
v

=
∑

λ⊢n

∏

u∈λ

1

h2
u

∑

v∈λ

h2
v =

∑

λ⊢n

f2
λ

n!2

∑

v∈λ

h2
v.
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Remark. Is there a combinatorial proof of the marked hook formula
(6.20), analogous to the Robinson-Schensted-Knuth correspondence for
proving (6.19) ? Let T be a standard Young tableau of shape λ (see
[Kn98, p.47]), u be a box in λ and m an integer such that 1 ≤ m ≤ hu(λ).
The triplet (T, u, m) is called a marked Young tableau of shape (λ, u). The
number of marked Young tableaux of shape (λ, u) is then fλhu. On the
other hand, call marked permutation each triplet (σ, j, k) where σ ∈ Sn,
1 ≤ j ≤ n and 1 ≤ k ≤ n + j − 1. We say that the letter j within the
permutation σ is marked k. The total number of marked permutations of
order n is

n
∑

j=1

(n + j − 1)n! =
n(3n − 1)

2
n!

Example. The sequence 6 4 9 5k 7 1 2 8 3 with 1 ≤ k ≤ 13 is a marked
permutation, whose letter 5 is marked k. The following two diagrams are
two marked Young tableaux of the same shape, where 1 ≤ i, j ≤ 3.

5 9

2 8

1 4 7
i

8 9

4 5

1 3 7

j

For proving the marked hook formula we need find a marked Robinson-
Schensted-Knuth correspondence between pairs of marked Young tableaux
and marked permutations.

6.5. Comparing the coefficients of βn−2xn and βn−3xn. In the same
manner as in the proof of the marked hook formula we obtain the following
results by selecting the coefficients of (−β)n−2xn and (−β)n−3xn in (2.3).

Proposition 6.11. We have

∑

λ⊢n

f2
λ

∑

{u,v}

h2
uh2

v =
n(n − 1)(27n2 − 67n + 74)

24
n!,

where the second sum ranges over all unordered pairs {u, v} such that
u, v ∈ λ and u 6= v.

Proposition 6.12. We have

∑

λ⊢n

f2
λ

∑

{u,v,w}

h2
uh2

vh2
w =

n(n − 1)(n − 2)(27n3 − 174n2 + 511n − 600)

48
n!,

where the second sum ranges over all unordered distinct triplets {u, v, w}
of boxes of the partition λ.
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7. Improvement of a result due to Kostant

Let

(7.1)
∏

n≥1

(1 − xn)s =
∑

k≥0

fk(s)xk.

Kostant proved the following result [Ko04, Th. 4.28].

Theorem 7.1 [Kostant]. Let k and m be two positive integers such that
m ≥ max(k, 4). Then fk(m2 − 1) 6= 0.

The condition m > 1 in the original Theorem of Kostant should be
replaced by m ≥ 4, as, for example, we have f3(8) = 0 (see Theorem 7.3).

Theorem 7.2 [=1.5]. Let k be a positive integer and s be a real number
such that s ≥ k2 − 1. Then (−1)kfk(s) > 0.

Remarks. We extend Kostant’s result in two directions: first, we claim
that (−1)kfk(s) > 0 instead of fk(s) 6= 0; second, s is any real number
instead of an integer of the form m2 − 1.

Proof. By the Main Theorem we may write

(7.2) (−1)kfk(s) =
∑

λ⊢k

W (λ),

where

(7.3) W (λ) =
∏

v∈λ

(s + 1

h2
v

− 1
)

=
∏

v∈λ

(s + 1 − h2
v

h2
v

)

.

For each λ ⊢ k and v ∈ λ we have hv(λ) ≤ k, so that W (λ) ≥ 0. This
means that there is no cancellation in the sum (7.2). If s > k2 − 1 then
W (λ) > 0. If s = k2 − 1 ≥ 15 we have k ≥ 4. In that case there is at
least one partition λ, whose hook lengths are strictly less than k. Hence
W (λ) > 0.

Here is another result of Kostant [Ko04, Th.4.27].

Theorem 7.3 [Kostant]. We have

f4(s) = 1/4! s(s − 1)(s − 3)(s − 14);

−f3(s) = 1/3! s(s − 1)(s − 8);

f2(s) = 1/2! s(s − 3).

Even though we do not see how to factorize each fk(s), the occurrences
of some factors in the above formulas have some relevance in terms of hook
lengths. Every partition contains one hook length hv = 1, so that fk(s)
has the factor s + 1 − h2

v = s (see (7.3)). Every partition of 3 contains a
hook length hv = 3, so that f3(s) has the factor s − 8. Every partition
of 2 or 4 has a hook length hv = 2, so that s − 3 is a factor of f2(s) and
f4(s).
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8. The magic partition formula

Let sλ be the Schur functions corresponding to the partition λ (see
[Ma95, p.40; St99, p.308; La01, p.8]). Let X = {x1, x2, . . .} and Y =
{y1, y2, . . .} be two alphabets. The famous Cauchy formula is stated as
follows (see [Ma95, p.63; St99, p.322; La01, p.13; Kn70]):

Theorem 8.1 [Cauchy].

(8.1)
∏

i,j

1

1 − xiyj
=

∑

λ∈P

sλ(X)sλ(Y ).

Let d be a positive integer. Taking

X = {x, x2, x3, . . .} and Y = {1, 1, . . . , 1} = {1d},

we get the following specialization:

(8.2)
∏

m≥1

( 1

1 − xm

)d

=
∑

λ∈P

sλ(x, x2, . . .)sλ(1d).

Also recall the classical hook-content formula [Ro58; St99, p.374]:

Theorem 8.2. For any partition λ and positive integer n we have

(8.3) sλ(1, x, x2, . . . , xn−1) = xb(λ)
∏

v∈λ

1 − xn+c(v)

1 − xhv

where b(λ) =
∑

i(i − 1)λi and c(v) = j − i if v = (i, j) ∈ λ.

By Theorem 8.2 we then have

sλ(x, x2, x3, . . .) = x|λ|+b(λ)
∏

v∈λ

1

1 − xhv

,(8.4)

sλ(1d) =
∏

v∈λ

d + c(v)

hv
.(8.5)

Theorem 8.3. For any complex number β we have

(8.6)
∏

m≥1

(1 − xm)β =
∑

λ∈P

x|λ|+b(λ)
∏

v∈λ

c(v) − β

hv(1 − xhv )
.

Proof. From (8.2), (8.4) and (8.5) we see that (8.6) is true for any
negative integer β. Thus (8.6) is true for any complex number β (see the
explanation given in the proof of the Main Theorem, §5.5).
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Remark 8.1. Theorem 8.3 appears to be another formula for all the
powers of the Euler Product. Although its form is analogous with the
Main Theorem, it has fewer applications. As the variable x occurs in the
denominator on the right-hand side of (8.6), it becomes cumbersome to
select specific coefficients of xn. There are apparently no specialization
leading to Macdonald identities.

Remark 8.2. When β is given the value 1 in (8.6) we recover the fol-
lowing identity due to Euler [An76, p.11].

Corollary 8.4 [Euler]. We have

∏

m≥1

(1 − xm) =
∑

n≥0

(−1)nxn(n+1)/2

(1 − x)(1 − x2) · · · (1 − xn)
.

Combining Thorem 8.3 and the Main Theorem we get the following
result, called magic partition formula because the sum and the product
on both sides range over the same sets λ ∈ P and v ∈ λ.

Theorem 8.5 [Magic partition formula]. For any complex number β
we have

(8.7)
∑

λ∈P

x|λ|+b(λ)
∏

v∈λ

c(v) + 1 − β

hv(1 − xhv )
=

∑

λ∈P

x|λ|
∏

v∈λ

h2
v − β

h2
v

.

9. Reversion of the Euler Product

Let y(x) be a formal power series satisfying the following relation

x = y(1 − y)(1 − y2)(1 − y3) · · ·(9.1)

= y − y2 − y3 + y6 + y8 − y13 − y16 + · · ·

The first coeficients of the reversion series in (9.1) are the following

(9.2) y(x) = x + x2 + 3 x3 + 10 x4 + 38 x5 + 153 x6 + 646 x7 + · · ·

They are referred to as the first values of the sequence A109085 in The
On-Line Encyclopedia of Integer Sequences [Slo].

Theorem 9.1. We have the following explicit formula for the reversion
of (9.1) in terms of hook lengths:

(9.3) y(x) =
∑

n≥1

xn

n

∑

λ⊢n−1

∏

v∈λ

(

1 +
n − 1

h2
v

)

.
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Proof. Rewrite (9.1) as y = xφ(y) where φ(y) =
∏

m≥1(1 − ym)−1. By
the Lagrange inversion formula and the Main Theorem we have

[xn] y =
1

n
[xn−1] φ(x)n

=
1

n
[xn−1]

∏

m≥1

(1 − ym)−n

=
1

n
[xn−1]

∑

λ∈P

∏

v∈λ

(

1 +
n − 1

h2
v

)

x

=
1

n

∑

λ⊢n−1

∏

v∈λ

(

1 +
n − 1

h2
v

)

.

As the coefficients of y(x) are all positive integers we have the following
result.

Corollary 9.2 [=1.6]. For any positive integer n the following expression

1

n + 1

∑

λ⊢n

∏

v∈λ

(

1 +
n

h2
v

)

is a positive integer.
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