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Discovering hook length formulas by expansion technique

Guo-Niu HAN

ABSTRACT. — We introduce the hook length expansion technique and
explain how to discover old and new hook length formulas for partitions
and plane trees. The new hook length formulas for trees obtained by
our method can be proved rather easily, whereas those for partitions are
much more difficult and some of them still remain open conjectures. We
also develop a Maple package HookExp for computing the hook length
expansion. The paper can be seen as a collection of hook length formulas
for partitons and plane trees. All examples are illustrated by HookExp and,
for many easy cases, expained by well-known combinatorial arguments.
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1. Introduction

The hook lengths for partitions and for plane trees play an important
role in Enumerative Combinatorics. The classical hook length formulas
for those two structures read

fλ =
n!

∏

v∈λ hv
and fT =

n!
∏

v∈T hv
,

where fλ (resp. fT ) is the number of standard Young tableaux of shape λ
(resp. of increasing labeled binary trees of shape T ). See Sections 2 and 6
for notations and explanations. From the above formulas we can derive

(1.1)
∑

λ∈P

x|λ|
∏

v∈λ

1

h2
v

= ex
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and

(1.2)
∑

T∈B

x|λ|
∏

v∈T

1

hv
=

1

1 − x
.

Formulas (1.1) and (1.2) are referred to as the basic hook length formulas,
or hook formulas, for short.

The numerous extensions or generalizations which have been proposed
in the literature led us to believe that a technical tool had to be constructed
that would make it possible to discover new hook length formulas and also
obtain the old ones in a systematic manner. The purpose of this paper is to
present such a tool that will be called hook length expansion technique. In
general, the new hook length formulas for trees produced by that technique
can be proved easily, whereas those for partitions are much more difficult
and some of them still remain open conjectures.

We also develop a Maple package HookExp for computing the hook
length expansion, which can be downloaded freely from the author’s web
site.(∗) All the examples in the paper are illustrated by HookExp and, for
many easy cases, explained by well-known combinatorial arguments.

Sections 2-5 are devoted to the hook length formulas for partitions
and Sections 6-8 for plane trees. Basic notions and classical hook length
formulas for partitions are recalled in Section 2. Then, we introduce the
hook length expansion algorithm for partitions. In Section 4 we discuss
some techniques for discovering new hook length formulas, namely the
exponent principle. The new hook formulas for partitions λ ∈ P (resp. for
binary trees T ∈ B, for complete binary trees T ∈ C, for Fibonacci trees
T ∈ F) were suggested (but not proved!) by playing with the package
HookExp. They are all collected in Section 5 (resp. Section 6, 7, 8). The
formulas we should like to single out are next stated. See Sections 5-8 for
notations, comments and/or proofs.

Theorem 1.1 [=5.5]. Let t be a positive integer and hmult(λ) be the
number of boxes v such that hv(λ) is a multiple of t. Then

∑

λ∈P

x|λ|(−1)hmult(λ) =
∏

k≥1

(1 − x4tk)t(1 − xtk)2t

(1 − x2tk)3t(1 − xk)
.

Theorem 1.2 [=5.9]. We have

∑

λ∈P

x|λ|
∏

v∈λ

(

1 − 2

h2
v

)

=
∏

k≥1

(1 − xk).

(∗) Hook length formula homepage
http://math.u-strasbg.fr/~guoniu/hook
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Theorem 1.3 [=5.8]. We have

∑

λ∈P

x|λ|
∏

v∈λ,hv even

(

1 − 2

h2
v

)

=
∏

k≥1

(1 + xk).

The most general form of the above three theorems is Theorem 5.7.
In fact, the latter theorem unifies several formulas, including the Jacobi

triple product identity, the Macdonald identities for A
(a)
ℓ , the generating

functions for partitions (2.5) and for t-cores (5.4), the Nekrasov-Okounkov
identity (5.1), Theorems 5.3-5.6 and Theorems 1.2-1.3. See [Ha08e] for the
proof and applications of Theorem 5.7.

Conjecture 1.4 [=5.2]. We have

∑

λ∈P

x|λ|
∏

v∈λ

ρ(z; hv) = ex+zx2/2,

where the weight function ρ(z; n) is defined by

ρ(z; n) =

⌊n/2⌋
∑

k=0

(

n

2k

)

zk

n

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

zk

.

Theorem 1.5 [=6.3]. We have

∑

T∈B

x|T |
∏

v∈T

1

hv2hv−1
= ex.

Theorem 1.6 [=6.6]. We have

∑

T∈B

x|T |
∏

v∈T

6

hv(hv + 2)
=

1

(1 − x)2
.

Theorem 1.7 [=6.7]. We have

∑

T∈B

x|T |
∏

v∈T

hv + 3

2hv
=

(1 −
√

1 − 4x

2x

)2
.

The most general form of Theorem 1.7 is Theorem 6.8. In fact, the
latter theorem unifies a lot of formulas, including the two classical hook
formulas (6.4) and (6.5), Postnikov’s formula (6.7) and the generalization
due to Lascoux, Du and Liu, another generalization of Postnikov’s formula
(6.10), Theorems 6.6 and 6.7.
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Theorem 1.8 [=7.2]. We have

∑

T∈C

x|T |
∏

v∈T,hv≥2

1

hv2hv−2
= ex.

Theorem 1.9 [=8.6]. We have

∑

T∈F

x|T |
∏

v∈T,hv≥2

4(2hv − 1)(2hv − 3)

(hv + 1)(5hv − 6)
=

1 −
√

1 − 4x

2x
.

For clarifying the nature of the paper we end the introduction by in-
sisting on the following facts.

1. We introduce the hook length expansion technique by means of
an explicit algorithm (Algorithm 3.1), together with the maple package
HookExp.

2. The package HookExp is used to compute the first values of the
weight functions, which, in principle, suggest hook formulas to human
mathematicians. The package itself does not output hook formulas, it
does not prove either hook formulas!

3. We list new formulas found by HookEx, but also some known formu-
las.

4. Most of the hook formulas for partitions are listed without any
proofs. Instead, we give the references containing the proofs, usually dif-
ficult and lengthy.

5. Most of the hook formulas for binary trees are listed with proofs,
even for well-known formulas, because most of them are proved in a unified
way.

6. Sometimes special cases of a master formula are also given, because
they have simpler forms with fewer parameters and show how the master
formula was found by the author.

2. Classical hook length formulas for partitions

The basic notions needed here can be found in [Ma95, p.1; St99, p.287;
La01, p.1; Kn98, p.59; An76, p.1]. A partition λ is a sequence of positive
integers λ = (λ1, λ2, · · · , λℓ) such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0. The
integers (λi)i=1,2,...,ℓ are called the parts of λ, the number ℓ of parts being
the length of λ denoted by ℓ(λ). The sum of its parts λ1 + λ2 + · · ·+ λℓ is
denoted by |λ|. Let n be an integer, a partition λ is said to be a partition
of n if |λ| = n. We write λ ⊢ n. The set of all partitions of n is denoted
by P(n). The set of all partitions is denoted by P , so that

P =
⋃

n≥0

P(n).
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Each partition can be represented by its Ferrers diagram. For example,
λ = (6, 3, 3, 2) is a partition and its Ferrers diagram is reproduced in
Fig. 2.1.

Fig. 2.1. Partition Fig. 2.2. Hook length

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Fig. 2.3. Hook lengths

For each box v in the Ferrers diagram of a partition λ, or for each
box v in λ, for short, define the hook length of v, denoted by hv(λ) or
hv, to be the number of boxes u such that u = v, or u lies in the same
column as v and above v, or in the same row as v and to the right of
v (see Fig. 2.2). The hook length multi-set of λ, denoted by H(λ), is
the multi-set of all hook lengths of λ. In Fig. 2.3 the hook lengths of
all boxes for the partition λ = (6, 3, 3, 2) have been written in each box.
We have H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}. The hook length plays
an important role in Algebraic Combinatorics thanks to the famous hook
formula due to Frame, Robinson and Thrall [FRT54]

(2.1) fλ =
n!

∏

h∈H(λ) h
,

where fλ is the number of standard Young tableaux of shape λ (see [St99,
p.376; Kn98, p.59; GNW79; RW83; Ze84; GV85; NPS97; Kr99]).

Recall that the Robinson-Schensted-Knuth correspondence (see, for ex-
ample, [Kn98, p.49-59; St99, p.324]) is a bijection between the set of or-
dered pairs of standard Young tableaux of {1, 2, . . . , n} of the same shape
and the set of permuations of order n. It provides a combinatorial proof
of the following identity.

(2.2)
∑

λ∈n

f2
λ = n!

By using (2.1) identity (2.2) can be written in the following generating
function form

(2.3)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex.
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The Robinson-Schensted-Knuth correspondence also proves the fact that
the number of standard Young tableaux of {1, 2, . . . , } is equal to the num-
ber of involutions of order n (see [Kn98b, p.47; Sch76]). In the generating
function form this means that

(2.4)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2.

The following identity is the well-known formula for the generating
function of partitions [An76, p.3].

(2.5)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1 − xk
.

In the present paper formulas (2.3), (2.4) and (2.5) are called also hook
formulas. We will find other hook formulas in the next sections.

3. Hook length expansion algorithm and HookExp

For expressing our main algorithm in a handy manner it is convenient
to introduce the following definition.

Definition 3.1. Let ρ : N
∗ → K be a map of the set of positive integers

to some field K. Also let f(x) ∈ K[[x]] be a formal power series in x with
coefficients in K such that f(0) = 1. If

(3.1)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x),

the series f(x) is called the generating function for partitions by the weight
function ρ. The left-hand side of (3.1) is called the hook length expansion
of f(x). Furthermore, when both ρ and f(x) have simple (some people
say “nice”) form, equation (3.1) is called a hook length formula, or hook
formula for short.

It is easy to see that the generating function f(x) is uniquely deter-
mined by the weight function ρ. Conversely, the weight function ρ can
be uniquely determined by f(x) in most cases. In the other cases (called
singular cases), the weight function ρ does not exist, or is not unique. We
next provide an algorithm for computing ρ when f(x) is given.

Let PL(n) be the set of partitions λ = (λ1, λ2, . . . , λℓ) of n such that
ℓ(λ) = 1 or λ2 = 1. The partitions in PL(n) are usually called hooks. The
hook length multi-set H(λ) of a hook λ of n is simply

(3.2) H(λ) = {1, 2, · · · ℓ(λ) − 1, 1, 2, · · · , n − ℓ(λ), n}.
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Let PZ(n) be the set of partitions λ = (λ1, λ2, . . . , λℓ) of n such that ℓ ≥ 2
and λ2 ≥ 2. It is easy to see that the hook length multi-set of each partition
of PZ(n) does not contain the integer n. Since P(n) = PL(n)∪PZ(n) we
have

∑

λ⊢n

∏

h∈H(λ)

ρ(h) =
∑

λ∈PL(n)

∏

h∈H(λ)

ρ(h) +
∑

λ∈PZ(n)

∏

h∈H(λ)

ρ(h)

= ρ(n)
∑

λ∈PL(n)

ℓ(λ)−1
∏

h=1

ρ(h)

n−ℓ(λ)
∏

h=1

ρ(h) +
∑

λ∈PZ(n)

∏

h∈H(λ)

ρ(h).(3.3)

The weight function ρ can be obtained by the following algorithm.

Algorithm 3.1. Let f(x) = 1+f1x+f2x
2 +f3x

3 + · · · be a power series
in x. The weight function ρ in the hook length expansion of f(x) can be
calculated in the following manner. First, let ρ(1) = f1. Then, let n ≥ 2
and suppose that all values ρ(k) for 1 ≤ k ≤ n − 1 are known and satisfy
the following condition

(3.4) D :=
∑

λ∈PL(n)

ℓ(λ)−1
∏

h=1

ρ(h)

n−ℓ(λ)
∏

h=1

ρ(h) 6= 0.

Then, by iteration, ρ(n) is given by

(3.5) ρ(n) =
fn −

∑

λ∈PZ(n)

∏

h∈H(λ) ρ(h)

D
.

We only consider the power series f(x) for which condition (3.4) holds.
This is true in most cases. If for some reason condition (3.4) fails to be true,
we try to find an extension of f(x) to avoid the singularity. More precisely,
we try to find a series F (x, t) ∈ K[[t]][[x]] such that f(x) = F (x, 0) and
condition (3.4) holds for F (x, t) (see (M.5.3) and (M.5.4) for an example).

The Maple package HookExp is developed for computing the first terms
of the generating function f(x) and the first values ρ(n) in the hook length
expansion. The underlying variable of the series is always x. The input
format for f(x) is any valid expression in Maple and the output format
for f(x) is

1 + f1x + f2x
2 + f3x

3 + f4x
4 + · · · + fnxn.

The input and output formats for ρ(n) are the list

[ρ(1), ρ(2), ρ(3), . . . , ρ(n)].
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The procedure hookgen(rho) computes the generating function f(x) for
the given weight function ρ, while the procedure hookexp(f, n) computes
the weight function ρ(k) for k = 1, 2, . . . , n. For example, let us verify
identity (2.3) by using the HookExp package.

> read("HookExp.mpl"):

> hooktype:="PA": # working on partitions

> hookexp(exp(x), 8);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64

]

> hookgen(%);

1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8

(M.3.1)

Next, verify identities (2.4) and (2.5).

> hookexp(exp(x+x^2/2), 8);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8

]

> hookgen(%);

1 + x + x2 +
2

3
x3 +

5

12
x4 +

13

60
x5 +

19

180
x6 +

29

630
x7 +

191

10080
x8

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + 30x9

(M.3.2)

4. The exponent principle

In principle, the HookExp package gives rises to “millions” of hook ex-
pansions. But experience shows that only few of them can be dutifully
named formulas. For example, with the very simple function 1/(1 − x),
we get the following expansion.
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> hookexp(1/(1-x), 8);

[

1,
1

2
,
1

2
,

7

12
,
17

25
,
447

592
,
160933

197641
,
105940688107

124616941064

]

(M.4.1)

Apparently, no simple form can be obtained for ρ(n). Next, try to expand
the generating function for the famous Catalan numbers (see, e.g., [St99,
p.220]).

> hookexp((1-sqrt(1-4*x))/(2*x), 8);

[

1, 1,
5

3
,
37

16
,
823

289
,
85028

28605
,
1055952653

323028029

]

(M.4.2)

Not lucky again.

Then, consider the generating function f(x) for the given weight func-
tion ρ(n) = 1 + 1/n.

> hookgen([seq(1+1/n, n=1..8)]);

1 + 2x + 6x2 +
40

3
x3 + 31x4 + 62x5 +

647

5
x6 +

3664

15
x7 +

98467

210
x8

(M.4.3)

No evident formula for f(x). Those three examples tell us that it is not
easy to discover hook formula even with the help of HookExp. In fact, the
author derived Algorithm 3.1 a long time ago, but never found any new
hook length formula, until he recently discovered the following exponent
principle.

The Exponent Principle. If the power series f(x) has a “nice” hook
length expansion, then there is good chance that fz(x) has a “nice” hook
length expansion too.

The exponent principle was first discovered for binary trees. In such a
case the exponent principle can be partially justified (see (6.3)). It is then
successfully applied for finding new hook length formulas for partitions.
The exponent principle for partitions has been verified by experimental ob-
servation. However, the author has no mathematical argument for proving
or even partially explaning it.

Let us illustrate the exponent principle with the exponential function
(see identity (2.3)).
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> hookexp(exp(z*x), 8);

[

z,
z

4
,
z

9
,

z

16
,

z

25
,

z

36
,

z

49
,

z

64

]

(M.4.4)

It means that the following hook length expansion

(4.1)
∑

λ∈P

x|λ|
∏

h∈H(λ)

z

h2
= ezx

holds, but it is nothing new. We simply recover (2.3). In the next section
new hook length formulas for partitions will be derived.

5. Hook length formulas for partitions

Let us apply the exponent principle to identity (2.5).

> hookexp(product(1/(1-x^k)^z, k=1..7), 7);

[

z,
z + 3

4
,
z + 8

9
,
z + 15

16
,
z + 24

25
,
z + 35

36
,
z + 48

49

]

(M.5.1)

From the above expansion we derive the following hook length formula for
the power of Euler Product.

Theorem 5.1 [Nekrasov-Okounkov]. For any complex number β we
have

(5.1)
∑

λ∈P

∏

h∈H(λ)

(

1 − β

h2

)

x =
∏

k≥1

(1 − xk)β−1.

Theorem 5.1 was discovered by Nekrasov and Okounkov in the study
of the Seiberg-Witten Theory [NO06, arXiv:hep-th/0306238v2, formula
(6.12), p.55]. In an unpublised paper (available on arXiv [Ha08a]) the
author re-discovered the Nekrasov-Okounkov identity (5.1) and gave an
elementary proof by using the Macdonald identities [Ma72]. Several ap-
plications ware also derived, including the marked hook formula.

Now consider identity (2.4). The series

f(x) = ex+x2/2

is the generating function for the involutions. By the exponent principle
there is good chance that

fz(x) = ezx+zx2/2 or f1/z(zx) = ex+zx2/2
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has a “nice” hook length expansion.

> hookexp(exp(x+z*x^2/2), 9);

[

1,
1 + z

4
,

3z + 1

9 + 3z
,

z2 + 6z + 1

16 + 16z
,

5z2 + 10z + 1

5z2 + 50z + 25
,

z3 + 15z2 + 15z + 1

120z + 36z2 + 36
,

7z3 + 35z2 + 21z + 1

7z3 + 147z2 + 245z + 49
,

z4 + 28z3 + 70z2 + 28z + 1

448z2 + 64z3 + 448z + 64

]

(M.5.2)

The above values of ρ suggests that the following new hook length formula,
seen as an interpolation between permutations (2.3) and involutions (2.4),
should hold.

Conjecture 5.2. We have

(5.2)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) = ex+zx2/2,

where the weight function ρ(z; n) is defined by

(5.3) ρ(z; n) =

⌊n/2⌋
∑

k=0

(

n

2k

)

zk

n

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

zk

.

When z = 1, then ρ(1; n) = 1/n. Identity (5.2) is true thanks to
identity (2.4). When z = 0, then ρ(0; n) = 1/n2. Identity (5.2) is also
true since it becomes identity (2.3). However we cannot prove any other
special cases of Conjecture 5.2, except the above two values. For more
remarks about Conjecture 5.2, see [Ha08d].

Recall that a partition λ is a t-core if the hook length multi-set of λ
does not contain the integer t. It is known that the hook length multi-set
of each t-core does not contain any multiple of t. The generating function
of the t-cores is given by the following formula:

(5.4)
∑

λ

x|λ| =
∏

k≥1

(1 − xtk)t

1 − xk
,

where the sum ranges over all t-cores [Kn98. p.69, p.612; St99, p.468;
GKS90].
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Why do not expand the right-hand side of (5.4) by using HookExp?
There is an interesting history hidden behind formula (5.4). Since t is
a positive integer but not a free parameter, we must choose a numerical
value for t. Take t = 3, formula (5.4) says that ρ must have the following
form

(5.5) [1, 1, 0, 1, 1, ∗, 1, 1, ∗, 1, 1, ∗],

where ∗ can be any numerical number.

> product((1-x^(3*k))^3/(1-x^k), k=1..8):

> hookexp(%, 8);

Denominator is zero, no solution for n=8.

[1, 1, 0, 1, 1, r[6], r[7], 0]

(M.5.3)

We cannot obtain (5.5) directly by using HookExp. It is a sigular case. To
avoid the sigularity we replace the 3 in the exponent by a free parameter
z (see comments after Algorithm 3.1). Now hookexp does not report any
error message. Finally we replace z by 3 to recover the ρ shown in (5.5)
(see also (M.5.12) for another variation of (M.5.3)).

> product((1-x^(3*k))^z/(1-x^k), k=1..13):

> hookexp(%, 13);

[

1, 1, 1 − z

3
, 1, 1, 1 − z

12
, 1, 1, 1 − z

27
, 1, 1, 1 − z

48
, 1

]

> subs(z=3, %);

[

1, 1, 0, 1, 1,
3

4
, 1, 1,

8

9
, 1, 1,

15

16
, 1

]

(M.5.4)

Moreover, the above expansion suggests the following hook length for-
mula, which may be seen as an interpolation between identity (5.4) and a
specialization of (5.1):

(5.6)
∑

λ

x|λ|
∏

v∈λ

(

1 − t2

h2
v

)

=
∏

k≥1

(1 − xk)t2

1 − xk
.

Theorem 5.3. We have the following hook length formula

(5.7)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xtk)z

1 − xk
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where the weight function ρ(z; n) is defined by

(5.8) ρ(z; n) =

{

1; if n 6≡ 0 mod t.
1 − tz

n2 ; if n ≡ 0 mod t.

When z = t we recover identity (5.4). When t = 1 and z = t2 we
recover identity (5.6). Theorem 5.3 is a special case of Theorem 5.7, which
is proved in [Ha08e].

Now let us verify Theorem 5.3 by using hookgen for t = 2 instead of
hookexp. In addition of HookExp, we also use the Maple package qseries

developed by Frank Garvan [Ga01]. Recall that the Dedekind η-function,
is defined by η(x) = x1/24

∏

m≥0(1 − xm).

> with(qseries);

> r:=n-> if n mod 2=1 then 1 else 1-2*z/n^2 fi:

> [seq(r(i), i=1..10)];

[

1, 1 − z

2
, 1, 1 − z

8
, 1, 1 − z

18
, 1, 1 − z

32
, 1, 1 − z

50
, 1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

x1/24−z/12 η(2τ)z

η(τ)

(M.5.5)

As expected we obtain the right-hand side of (5.7) for t = 2. Next we
hope to obtain new hook formula by modifying slightly the above weight
function. Try to change the 1 in odd position by −1.

> r:=n-> if n mod 2=1 then -1 else 1-2*z/n^2 fi:

> [seq(r(i), i=1..10)];

[

−1, 1 − z

2
, −1, 1 − z

8
, −1, 1 − z

18
, −1, 1 − z

32
, −1, 1 − z

50
, −1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

x1/24−z/12 η(8τ)2−z η(4τ)−5+3z η(2τ)1−z η(τ)

(M.5.6)

The above expansion suggests the following hook length formula for par-
titions.
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Theorem 5.4. We have the following hook length formula

(5.9)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xk)(1 − x4k)3z−5

(1 − x8k)z−2(1 − x2k)z−1
.

where the weight function ρ(z; n) is defined by

(5.10) ρ(z; n) =

{−1; if n 6≡ 0 mod2.
1 − 2z

n2 ; if n ≡ 0 mod2.

Inspired by Theorem 5.4, we calculate the generating function for par-
titions by the following periodical weight function ρ.

> r:=n-> if n mod 3=0 then -1 else 1 fi:

> [seq(r(i), i=1..17)];

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

> hookgen(%): etamake(%, x, 17): simplify(%);

x1/24η(12τ)3η(3τ)6

η(6τ)9η(τ)

(M.5.7)

The above hook length expansion suggests the following formula.

Theorem 5.5 [=1.1]. Let t be a positive integer and hmult(λ) be the
number of boxes v such that hv(λ) is a multiple of t. Then

(5.11)
∑

λ∈P

x|λ|(−1)hmult(λ) =
∏

k≥1

(1 − x4tk)t(1 − xtk)2t

(1 − x2tk)3t(1 − xk)
.

In fact, Theorem 5.5 can be generalized by replacing −1 by z.

> f := k -> (1-x^(3*k))^3/(1-(z*x^3)^k)^3/(1-x^k):

> hookexp(product(f(k),k=1..15), 15);

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]

(M.5.8)

Theorem 5.6. Let t be a positive integer. Then

(5.12)
∑

λ∈P

x|λ|zhmult(λ) =
∏

k≥1

(1 − xtk)t

(1 − (zxt)k)t(1 − xk)
.
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We can unify (M.5.4) and (M.5.8) in the following manner.

> N:=14: t:=3:

> r:=n-> if n mod t=0 then y*(1-t*z/n^2) else 1 fi:

> fk := k-> ((1-x^(t*k))^t)/((1-(y*x^t)^k)^(t-z))/(1-x^k):

> [seq(r(i), i=1..N)];

[

1, 1, y − yz

3
, 1, 1, y − yz

12
, 1, 1, y − yz

27
, 1, 1, y − yz

48
, 1, 1

]

> hookgen(%) - product(fk(k), k=1..N):

> series(%,x,N+1): simplify(%);

O(x15)

(M.5.9)

The above expansion suggests the following hook length formula.

Theorem 5.7. We have

(5.13)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xtk)t

(1 − (yxt)k)t−z(1 − xk)
,

where the weight function ρ(z; n) is defined by

(5.14) ρ(z; n) =

{

1; if n 6≡ 0 mod t.
y − tyz

n2 ; if n ≡ 0 mod t.

The proof of Theorem 5.7, as well as some applications can be found
in [Ha08e]. Let us single out the very simple case when t = 2, y = z = 1.

> hookexp(product(1+x^k, k=1..14),14);

[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

(M.5.10)

Theorem 5.8 [=1.3]. We have the following hook length formula

(5.15)
∑

λ∈P

x|λ|
∏

h∈H(λ),h even

(

1 − 2

h2

)

=
∏

k≥1

(1 + xk).

The above theorem is to be compared with the following specialization
of Theorem 5.7 when z = 2, y = t = 1.
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Theorem 5.9 [=1.2]. We have the following hook length formula

(5.16)
∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1 − 2

h2

)

=
∏

k≥1

(1 − xk).

There are also other hook formulas that are not specialization of The-
orem 5.7. Consider the weight function ρ that counts the corners (their
hook lengths are 1) of partitions.

> [z,seq(1, i=1..7)];

[z, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (2z + z2)x3 + (3z + 2z2)x4 + (2z + 5z2)x5

+ (4z + 6z2 + z3)x6 + (2z + 11z2 + 2z3)x7 + (4z + 13z2 + 5z3)x8

(M.5.11)

The above generating function corresponds to the sequence A116608 in
the on-line encyclopedia of integer sequences [Slo] and is equal to the
right-hand side of (5.17) below.

Theorem 5.10. We have

(5.17)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=1

z =
∏

k≥1

1 + (z − 1)xk

1 − xk
.

On the other hand, take (M.5.3) and change the “−” in the numerator
by “+”, we get

> product((1+x^(3*k))^3/(1-x^k), k=1..8):

> hookexp(%, 8);

[1, 1, 2, 1, 1, 1, 1, 1]

(M.5.12)

The above expansion suggests the following formula.

Theorem 5.11. We have

(5.18)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=t

2 =
∏

k≥1

(1 + xtk)t

1 − xk
.

In [Ha08e] we proved the following unified form of Theorems 5.10 and
5.11 by using the properties of a classical bijection which maps each par-
tition to its t-core and t-quotient [Ma95, p.12; St99, p.468; JK81, p.75;
GSK90].
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Theorem 5.12. For any complex number z we have

(5.19)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=t

z =
∏

k≥1

(1 + (z − 1)xtk)t

1 − xk
.

6. Hook length formulas for binary trees

The basic notions for binary trees can be found in [St97,p.295; Kn98a,
p.308-313; Vi81]. A binary tree T with n vertices is defined recursively
as follows. Either T is empty, or else one specially designated vertex v is
called the root of T , and the remaining vertices (excluding the root) are
put into an ordered pair (T ′, T ′′) of binary trees (possibly empty), which
are called subtrees of the root v. The hook length of the root v, denoted by
hv(T ) or hv, is just the number of vertices n, which is also denoted by |T |.
Each vertex is called leaf if his two subtrees are both empty. The hook
length multi-set H(T ) = {hv | v ∈ T} of T is defined to be the multi-set
of hook lengths of all vertices v of T . Finally, let B (resp. B(n)) denote
the set of all binary trees (resp. all binary trees with n vertices), so that

B =
⋃

n≥0

B(n).

For example, there are five binary trees with n = 3 vertices.

�
�

�
�

•
1

•
2

•
3

T1

@
@

�
�

• 1
•

2
•

3

T2

@
@

�
�

•
1

• 2
• 3

T3

@
@

@
@• 1

• 2
• 3

T4

�
�@

@•
1

• 1
•

3

T5

We have H(T1) = H(T2) = H(T3) = H(T4) = {1, 2, 3} and H(T5) =
{1, 1, 3}.

As done for the partitions in Definition 3.1 we define the hook length
expansion for binary trees by

(6.1)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) = f(x),

where f(x) ∈ K[[x]] is a power series in x with coefficients in K such that
f(0) = 1. See Section 3 for other related definitions and comments about
hook length expansion. For computing the weight function ρ, we need
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find an analogue of Algorithm 3.1 for binary trees. No surprise, it is much
easier to find a formula for computing ρ, since the binary tree structure is
more simple compared with the partition structure.

Let f(x) = 1 + f1x + f2x
2 + f3x

3 + · · · be the generating function for
binary trees by the weight function ρ. With each T ∈ B(n) (n ≥ 1) we
can associate a triplet (T ′, T ′′, v), where T ′ ∈ B(k) (0 ≤ k ≤ n − 1),
T ′′ ∈ B(n − 1 − k) and the root v of T whose hook length hv = n. Hence
(6.1) is equivalent to

(6.2) ρ(n)

n−1
∑

k=0

fkfn−1−k = fn (n ≥ 1).

Formula (6.2) can be used to calculate f(x) for a given ρ, or to calculate
ρ for a given f(x). It has also the equivalent form

(6.3) ρ(n) =
[xn]f(x)

[xn−1]f2(x)
,

where [xn]f(x) means the coefficient of xn in the power series f(x). From
(6.3) we may say that finding a hook length formula is equivalent to finding
a formal power series f(x) such that [xn]f(x)/[xn−1]f2(x) has a “nice”
form in n.

Next we use the maple package HookExp to find hook formulas for binary
trees. The syntax of the two procedures hookexp and hookgen are the
same as for partitions. The rest of this section contains some sessions, and
each session contains three parts: (i) experiment with HookExp; (ii) hook
formula suggested by the experiment; (iii) proof and/or comments of the
hook formula. All proofs of the hook formulas presented in this section
are always based on relation (6.3).

> hooktype:="BT": # working on binary trees

> hookexp(1/(1-x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

(M.6.1)

Theorem 6.1. We have

(6.4)
∑

T∈B

x|T |
∏

h∈H(T )

1

h
=

1

1 − x
.

18



Proof. From (6.3)

ρ(n) =
[xn]1/(1 − x)

[xn−1]1/(1 − x)2
= 1/n.

Remark. It is well-known [Kn98b,p.67; St75] that the number of ways to
label the vertices of T with {1, 2, . . . , n}, such that the label of each vertex
is less than that of its descendants (called increasing labeled binary trees, or
labeled binary trees for short), is equal to n! divided by the product of the
hv’s (v ∈ T ). On the other hand, each labeled binary tree with n vertices
is in bijection with a permutation of order n [St97,p.24;FS73;Vi81], so that

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!

This gives a combinatorial proof of Theorem 6.1.

> hookexp((1-sqrt(1-4*x))/(2*x), 9);

[1, 1, 1, 1, 1, 1, 1, 1]

(M.6.2)

Theorem 6.2. We have

(6.5)
∑

T∈B

x|T |
∏

h∈H(T )

1 =
1 −

√
1 − 4x

2x
.

Proof. Let f(x) be the right-hand side of (6.5). Then

[xn−1]f2(x) = [xn−1](f(x) − 1)/x = [xn]f(x).

Remark. Formula (6.5) implies that the number of binary trees with n
vertices is equal to the n-th Catalan number (see, e.g., [St99, p.220])

∑

T∈B(n)

1 =
1

n + 1

(

2n

n

)

.

In the following experiments we make use of the maple package Guess,
translated by Béraud and Gauthier [BG04] from the Mathematica package
Rate devoloped by Krattenthaler [Kr01].
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> with(GUESS):

> guess:=proc(r) subs({ i[0]=n, i[1]=k, i[2]=m}, Guess(r)):

simplify(%); op(%); end:

> hookexp(exp(x), 9);

[

1,
1

4
,

1

12
,

1

32
,

1

80
,

1

192
,

1

448
,

1

1024
,

1

2304

]

> guess(%);
21−n

n

(M.6.3)

Theorem 6.3. We have

(6.6)
∑

T∈B

x|T |
∏

h∈H(T )

1

h2h−1
= ex.

Proof. By (6.3)

ρ(n) =
[xn]ex

[xn−1]e2x
=

1/n!

2n−1/(n − 1)!
=

1

n2n−1
.

Remark. We do not have any combinatorial proof of Theorem 6.3. See
also [Ha08b].

> [seq(1+1/n, n=1..7)];

[

2,
3

2
,
4

3
,
5

4
,
6

5
,
7

6
,
8

7

]

> f:=hookgen(%);

1 + 2x + 6x2 +
64

3
x3 +

250

3
x4 +

1728

5
x5 +

67228

45
x6 +

2097152

315
x7

(M.6.4)

Theorem 6.4 [Postnikov]. We have

(6.7)
∑

T∈B

x|T |
∏

h∈H(T )

(

1 +
1

h

)

=
∑

n≥0

(n + 1)n−1 (2x)n

n!
.

Proof. Let G(x) be a power series such that

(6.8) G(x) = exp(xG(x)).
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By the Lagrange inversion formula G(x)z has the following explicit expan-
sion:

(6.9) G(x)z =
∑

n≥0

z(n + z)n−1 xn

n!
.

The right-hand side of (6.7) is G(2x). By (6.3)

ρ(n) =
[xn]G(2x)

[xn−1]G2(2x)
=

(n + 1)n−12n/n!

2(n + 1)n−22n−1/(n − 1)!
= 1 +

1

n
.

Further combinatorial proofs and extensions have been proposed by several
authors [Po04, CY08, DL08, GS06, MY07, Se08, Ha08c].

> [seq(1+1/n, n=1..9)];

[

2,
3

2
,
4

3
,
5

4
,
6

5
,
7

6
,
8

7
,
9

8
,
10

9

]

> f:=hookgen(%): hookexp(f^z, 7): map(factor, %);

[

2z,
2 + z

2
,
(z + 3)2

6z + 6
,

(z + 4)3

4(2z + 3)2
,

(z + 5)4

40(2 + z)3
,

(z + 6)5

6(2z + 5)4
,

(z + 7)6

224(z + 3)5
]

(M.6.5)

Theorem 6.5. We have

(6.10)
∑

T∈B

x|T |
∏

v∈T

(z + h)h−1

h(2z + h − 1)h−2
=

∑

n≥0

z(z + n)n−1 (2x)n

n!
.

Proof. From (6.3), (6.8) and (6.9) we have

ρ(n) =
[xn]Gz(2x)

[xn−1]G2z(2x)
=

z(n + z)n−12n/n!

2z(n + 2z − 1)n−22n−1/(n − 1)!

=
(z + n)n−1

n(2z + n − 1)n−2
.

Remark. We do not have any combinatorial proof of Theorem 6.5. See
also [Ha08c].

> hookexp(1/(1-x)^2, 9);

[

2,
3

4
,
2

5
,
1

4
,

6

35
,
1

8
,

2

21
,

3

40
,

2

33

]

> guess(%);
6

n(n + 2)

(M.6.6)
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Theorem 6.6. We have

(6.11)
∑

T∈B

x|T |
∏

v∈T

6

n(n + 2)
=

1

(1 − x)2
.

More generally,

(6.12)
∑

T∈B

x|T |
∏

h∈H(T )

∏h−1
i=1 (z + i)

2h
∏h−2

i=1 (2z + i)
=

1

(1 − x)z

or
∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (z + i)

2h
∏h−2

i=1 (2z + i)
=

1

n!

n−1
∏

i=0

(z + i).

Proof. By (6.3)

ρ(n) =
[xn]1/(1 − x)z

[xn−1]1/(1 − x)2z
=

(

n+z−1
n

)

(

n+2z−2
n−1

) .

> hookexp(((1-sqrt(1-4*x))/(2*x))^2, 10);

[

2,
5

4
, 1,

7

8
,
4

5
,
3

4
,
5

7
,
11

16

]

> guess(r);
n + 3

2n

(M.6.7)

Theorem 6.7. We have

(6.13)
∑

T∈B

x|T |
∏

h∈H(T )

h + 3

2h
=

(1 −
√

1 − 4x

2x

)2
.

More generally,

(6.14)
∑

T∈B

x|T |
∏

h∈H(T )

∏h−1
i=1 (z + 2h − i)

2h
∏h−2

i=1 (2z + 2h − 2 − i)
=

(1 −
√

1 − 4x

2x

)z
,

or

(6.15)
∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (z + 2h − i)

2h
∏h−2

i=1 (2z + 2h − 2 − i)
=

z

n!

n−1
∏

i=1

(2n − i + z).
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Theorem 6.5, 6.6 and 6.7 can be derived from the next Theorem by
taking a = 1, a = 0 and a → ∞ respectively.

> [seq(a+1/n, n=1..7)];

[

a + 1, a +
1

2
, a +

1

3
, a +

1

4
, a +

1

5
, a +

1

6
, a +

1

7

]

> f:=hookgen(%): hookexp(f^z, 5): map(factor, %);

[

z(a + 1),
za + 3a + z + 1

4
,

(za + 5a + z + 1)(za + 4a + z + 2)

18a + 12za + 6 + 12z
,

(za + z + 2 + 6a)(za + z + 1 + 7a)(za + z + 3 + 5a)

16(2za + 5a + 1 + 2z)(za + 2a + z + 1)
,

(za + z + 4 + 6a)(za + z + 1 + 9a)(za + z + 3 + 7a)(za + z + 2 + 8a)

20(2za + 2z + 3 + 5a)(za + 3a + z + 1)(2za + 2z + 1 + 7a)

]

(M.6.8)

Theorem 6.8. Let

∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (za + z + (2h − i)a + i)

2h
∏h−2

i=1 (2za + 2z + (2h − 2 − i)a + i)

=
z(a + 1)

n!

n−1
∏

i=1

(za + z + (2n − i)a + i).(6.16)

Proof. Let f(x) be a power series in x defined by

f(x) = 1 + (a − 1)xf(x)2a/(a−1)

and Un(z, a) be the right-hand side of (6.16). Let g(x) = f(x) − 1, then

g(x) = (a − 1)x(g(x) + 1)2a/(a−1).

By the Lagrange inversion formula we have

[xn](g(x) + 1)z =
1

n
[xn−1]

(

z(x + 1)z−1(a − 1)n(x + 1)2an/(a−1)
)

=
z(a − 1)n

n
[xn−1](x + 1)z−1+2an/(a−1)

=
z(a − 1)n

n(n − 1)!

n−2
∏

i=0

(

z − 1 +
2an

a − 1
− i

)

.

=
z(a − 1)

n!

n−1
∏

i=1

(

z(a − 1) + 2an − i(a − 1)
)

,
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so that

[xn]f(x)z((a+1)/(a−1) =
z(a + 1)

n!

n−1
∏

i=1

(

z(a+1)+2an− i(a−1)
)

= Un(z, a).

By (6.3) we have

ρ(n) =
[xn]f(x)z(a+1)/(a−1)

[xn−1]f(x)2z(a+1)/(a−1)
=

Un(z, a)

Un−1(2z, a)
.

Remark. Theorem 6.8 unifies a lot of formulas, including the two clas-
sical hook formulas (6.4) and (6.5), Postnikov’s formula (6.7) and the
generalization due to Lascoux, Du and Liu, another generalization of Post-
nikov’s formula (6.10), Theorems 6.6 and 6.7.

> hookexp(tan(x)+sec(x), 8);

[

1,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16

]

> hookexp(z*tan(x)+sec(x), 8);

[

z,
1

4z
,

z

3 + 3z2
,

1

8z
,

z

5 + 5z2
,

1

12z
,

z

7 + 7z2
,

1

16z

]

(M.6.9)

Theorem 6.9. We have

(6.17)
∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

and

(6.18)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) = z tan(x) + sec(x),

where

ρ(n) =











z, if n = 1;
1

2nz , if n is even;
z

n(1+z2)
, if n ≥ 3 is odd.

Proof. Let f(x) = z tan(x) + sec(x). Then

f2(x) =
1 + z2 sin2(x)

cos2(x)
+

2z sin(x)

cos2(x)
.
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It is easy to verify that ρ(1) = z. For each k ≥ 1,

[x2k] f2(x) = [x2k]
1 + z2 sin2(x)

cos2(x)
− 1 = [x2k]

1 + z2 sin2(x) − cos2(x)

cos2(x)

= (1 + z2)[x2k] tan2(x) =
1 + z2

z
[x2k] z tan2(x)

=
1 + z2

z
[x2k] (z tan(x))′ − z)

=
1 + z2

z
(2k + 1)[x2k+1] (z tan(x)).

So that

ρ(2k + 1) =
[x2k+1]f(x)

[x2k]f2(x)
=

z

(2k + 1)(1 + z2)
.

On the other hand,

[x2k−1]
2z sin(x)

cos2(x)
= 2z[x2k−1]sec(x)′ = 2z(2k)[x2k]sec(x),

hence

ρ(2k) =
[x2k]f(x)

[x2k−1]f2(x)
=

1

2z(2k)
.

Remark. Formula (6.17) has a combinatorial interpretation due to
Foata, Schützenberger and Strehl [FS73; FS74; Vi81; FH01] by using the
model of André permutations. Note the difference with Theorem 7.1.

> hookexp((1+x)/(1+x^2), 9);

[

1,
−1

2
, 1,

−1

4
, 1,

−1

6
, 1,

−1

8
, 1

]

(M.6.10)

Theorem 6.10. We have

(6.19)
∑

T∈B

x|T |
∏

h∈H(T ),h even

−1

h
=

1 + x

1 + x2
.

Proof. Let

f(x) =
1

1 + x2
+

x

1 + x2
.

Then

f(x)2 =
1

1 + x2
+

2x

(1 + x2)2
.
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We have

[x2k−1]
2x

(1 + x2)2
= −[x2k−1]

( 1

1 + x2

)′
= −(2k)[x2k]

1

1 + x2
,

so that

ρ(2k) =
[x2k]f(x)

[x2k−1]f2(x)
= − 1

2k

and

ρ(2k + 1) =
[x2k+1]f(x)

[x2k]f2(x)
= 1.

> hookexp((1+x)/(1+x^3), 12);

[

1, 0, −1,
1

2
, 0,

−1

2
,

1

3
, 0,

−1

3
,

1

4
, 0,

−1

4

]

(M.6.11)

Theorem 6.11. We have

(6.20)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) =
1 + x

1 + x3

where

ρ(n) =







1/k; if n = 3k − 2,
0; if n = 3k − 1,
−1/k; if n = 3k.

Proof. Let

f(x) =
1

1 + x3
+

x

1 + x3
.

Then

f(x)2 =
1

(1 + x3)2
+

2x

(1 + x3)2
+

x2

(1 + x3)2
.

Thus

[x3k−1]
x2

(1 + x3)2
= −1

3
[x3k−1]

( x

1 + x3

)′
= −k[x3k]

1

1 + x3
.(6.21)

It is easy to see that ρ(3k − 1) = 0 and

ρ(3k) =
[x3k]f(x)

[x3k−1]f2(x)
= −1

k
.
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On the other hand,

[x3k−2]
x

1 + x3
= [x3k−3]

1

1 + x3
= −[x3k]

1

1 + x3

and by (6.25)

[x3k−3]
1

(1 + x3)2
= [x3k−1]

x2

(1 + x3)2
= −k[x3k]

1

1 + x3
.

Finally,

ρ(3k − 2) =
[x3k−2]f(x)

[x3k−3]f2(x)
=

1

k
.

Consider the weight function ρ that counts the leaves of binary trees.

> [1, seq(2, i=1..7)];

[1, 2, 2, 2, 2, 2, 2, 2]

> hookgen(%);

1 + x + 4x2 + 18x3 + 88x4 + 456x5 + 2464x6 + 13736x7 + 78432x8

(M.6.12)

The above generating function corresponds to the sequence A068764 in the
on-line encyclopedia of integer sequences [Slo]. It is equal to the generating
function of the generalized Catalan numbers.

Theorem 6.12. We have

(6.22)
∑

λ∈B

x|λ|
∏

h∈H(λ),h≥2

2 =
1 −

√

1 − 8x(1 − x)

4x
.

More generally,

> [z, seq(1, i=1..7)];

[z, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (2z + z2)x3 + (3z + 2z2)x4 + (2z + 5z2)x5

+ (4z + 6z2 + z3)x6 + (2z + 11z2 + 2z3)x7 + (4z + 13z2 + 5z3)x8

(M.6.13)

The coefficient of xnzj in the above generating function is the number
of binary trees with n vertices and j leaves, it is given by the following
formulas [Pr96].
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Theorem 6.13 [Prodinger]. We have

(6.17)
∑

λ∈B

x|λ|
∏

h∈H(λ),h=1

z =
∑

n≥0,j≥1

An,jx
nzj ,

where

An,j =
2n+1−2j(n − 1)!

j!(j − 1)!(n + 1 − 2j)!
.

7. Hook length formulas for complete binary trees

A complete binary tree T is a binary tree such that the two subtrees
of each vertex v are either both empty or both non-empty, except when
v is the latest vertex in the so-called inorder [Kn98a,p.319; Vi81]. For
example, there are five complete binary trees with n = 7 vertices.
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We have the hook length multi-sets H(T1) = H(T2) = H(T3) = H(T4) =
{1, 1, 1, 1, 3, 5, 7} and H(T5) = {1, 1, 1, 1, 3, 3, 7}. There are also five com-
plete binary trees with n = 6 vertices.
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We have H(T6) = H(T7) = {1, 1, 1, 3, 5, 6}, H(T8) = {1, 1, 1, 3, 4, 6},
H(T9) = {1, 1, 1, 2, 4, 6} and H(T10) = {1, 1, 1, 2, 3, 6}.

Let C (resp. C(n)) denote the set of all complete binary trees (resp. all
complete binary trees with n vertices), so that

C =
⋃

n≥0

C(n).

Again, define the hook length expansion for complete binary trees by

(7.1)
∑

T∈C

x|T |
∏

h∈H(T )

ρ(h) = f(x),
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where f(x) ∈ K[[x]] is a power series in x with coefficients in K such
that f(0) = 1. See Sections 5 and 6 for more comments about the hook
length expansion. Let f(x) = 1+f1x+f2x

2 +f3x
3 + · · · be the generating

function for complete binary trees by the weight function ρ. With each
T ∈ C(n) (n ≥ 1) we can associate a triplet (T ′, T ′′, v), where T ′ ∈ C(k)
(0 ≤ k ≤ n − 1 and k is an odd integer), T ′′ ∈ C(n − 1 − k) and the root
v of T whose hook length hv = n. Hence, (7.1) is equivalent to

(7.2) ρ(n)

n−1
∑

k=0,k odd

fkfn−1−k = fn (n ≥ 1).

Formula (7.2) can be used to calculate f(x) for a given ρ, or to calculate
ρ for a given f(x). It also has the equivalent form

(7.3) ρ(n) =
[xn]f(x)

[xn−1](f(x) − f(−x))f(x)/2
,

because
∑

k≥1,k odd

fkxk = (f(x) − f(−x))/2.

Next we use the maple package HookExp to find hook formulas for com-
plete binary trees, whose proofs are always based on (7.3).

> hooktype:="CBT":

# working on complete binary trees

> hookexp(tan(x)+sec(x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

> hookexp(z*tan(x)+sec(x), 9);

[

z,
1

2z
,

1

3z
,

1

4z
,

1

5z
,

1

6z
,

1

7z
,

1

8z
,

1

9z

]

(M.7.1)

Theorem 7.1. We have

(7.4)
∑

T∈C

x|T |
∏

h∈H(T )

1

h
= tan(x) + sec(x).

(7.5)
∑

T∈C

x|T |
∏

h∈H(T ),h=1

z
∏

h∈H(T ),h≥2

1

zh
= z tan(x) + sec(x).
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Proof. By (7.3)

ρ(n) =
[xn]z tan(x) + sec(x)

[xn−1]z tan(x)(z tan(x) + sec(x))

=
[xn]z tan(x) + sec(x)

z[xn−1](z tan(x) + sec(x))′ − z

=
[xn] tan(x) + sec(x)

z[xn]n(tan(x) + sec(x))
=

1

zn
.

Remark. Recall that the n-th Euler number is the coefficient of xn/n!
in the expansion of the series tan(x) + sec(x) (see, e.g. [Vi81]). It is well-
known that En is equal to the number of alternating permutations of order
n, which, in turn, is equal to the number of increasing labeled complete
binary trees (See Theorem 6.1). So that

∑

T∈C(n)

n!
∏

v∈T

1

hv
= En.

This gives a combinatorial proof of Theorem 7.1. Note that Theorem 6.9
also involves the Euler numbers, but the combinatorial argument is totally
different.

> hookexp(exp(x), 9);

[

1,
1

2
,
1

6
,

1

16
,

1

40
,

1

96
,

1

224
,

1

512
,

1

1152

]

(M.7.2)

Theorem 7.2. We have

(7.6)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

1

h2h−2
= ex.

Proof. From (7.3)

ρ(n) =
[xn]ex

[xn−1](ex − e−x)ex/2
=

2[xn]ex

[xn−1]e2x − 1

=
2/n!

2n−1/(n − 1)!
=

1

n2n−2
.

Remark. We do not have any combinatorial proof of Theorem 7.2.
See also [Ha08b]. It can be viewed as a complete binary tree version of
Theorem 6.3.
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> hookexp(1/(1-x), 14);

[

1, 1, 1,
1

2
,
1

2
,
1

3
,
1

3
,
1

4
,
1

4
,
1

5
,
1

5
,
1

6
,
1

6
,
1

7

]

(M.7.3)

Theorem 7.3. We have

(7.7)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1

1 − x
,

where

(7.8) ρ(n) =







1, if n = 1;
1/k, if n = 2k + 1 (k ≥ 1);
1/k, if n = 2k (k ≥ 1).

Proof. Since

x

(1 − x)(1 − x2)
=

x + x2

(1 − x2)2
= (x + x2)

∑

k≥0

(k + 1)x2k,

we have

[x2k]
x

(1 − x)(1 − x2)
= [x2k−1]

x

(1 − x)(1 − x2)
= k.

By (7.3)

ρ(n) =
[xn]1/(1 − x)

[xn−1](1/(1 − x) − 1/(1 + x))/(1 − x)/2

=
1

[xn−1]x/(1 − x)/(1 − x2)
.

Remark. For each complete binary tree T of 2k or 2k + 1 vertices we
obtain, in a bijective manner, a binary tree T ′ of k vertices by deleting
all leaves of T [Kn98a, p.399]. This gives a combinatorial proof of Theo-
rem 7.3 via Theorem 7.1.

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+x), 9);

[1, 1, 1, 1, 1, 1, 1]

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+z*x), 9);

[

z,
1

z
,
1

z
,
1

z
,
1

z
,
1

z
,
1

z

]

(M.7.4)
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Theorem 7.4. We have

(7.9)
∑

T∈C

x|T |
∏

h∈H(T )

1 =
1 −

√
1 − 4x2

2x2
(1 + x)

and

(7.10)
∑

T∈C

x|T |
∏

h∈H(T ),h=1

z
∏

h∈H(T ),h≥2

1

z
=

1 −
√

1 − 4x2

2x2
(1 + zx)

Proof. Let f(x) be the right-hand side of (7.10). We can verify

(f(x)− f(−x))f(x)

2
× x

z
= f(x) − 1 − zx.

ρ(n) =
[xn]f(x)

[xn−1](f(x)− f(−x))f(x)/2
=

1

z
.

Remark. The bijection between binary trees and complete binary trees
described in Theorem 7.3 gives a combinatorial proof of Theorem 7.4 via
Theorem 6.2.

> hookexp( (1+x)/(1+x^2), 11);

[

1,−1,−1,
−1

2
,
−1

2
,
−1

3
,
−1

3
,
−1

4
,
−1

4
,
−1

5
,
−1

5

]

(M.7.5)

Theorem 7.5. We have

(7.11)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1 + x

1 + x2
,

where

(7.12) ρ(n) =







1, if n = 1;
−1/k, if n = 2k + 1 (k ≥ 1);
−1/k, if n = 2k (k ≥ 1).

Proof. Let f(x) be the right-hand side of (7.11)

f(x) :=
1 + x

1 + x2
= (1 + x)

∑

k≥0

(−1)kx2k
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and

F (x) :=
(f(x) − f(−x))f(x)

2
=

x + x2

(1 + x2)2
= (x + x2)

∑

k≥0

(k + 1)(−1)kx2k.

We have

[x2k+1]f(x) = [x2k]f(x) = (−1)k;

[x2k]F (x) = [x2k−1]F (x) = (−1)k−1k.

By (7.3)

ρ(n) =
[xn]f(x)

[xn−1]F (x)
= −1

k
.

> hookexp( (1+x)/(1+x^4), 4);

Denominator is zero, no solution for n=4.

> hookexp( (1+x)/(1+x^3), 16);

[

1, 0, −1, 1, 0, −1, 1, 0,
−1

2
,

1

2
, 0,

−1

2
,

1

2
, 0,

−1

3
,

1

3

]

(M.7.6)

Theorem 7.6. We have

(7.13)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1 + x

1 + x3
,

where

(7.14) ρ(n) =











1, if n = 1;
0, if n = 3k − 1 (k ≥ 1);
−1/k, if n = 6k − 3 or n = 6k (k ≥ 1);
1/k, if n = 6k − 2 or n = 6k + 1 (k ≥ 1).

Proof. Let f(x) be the right-hand side of (7.13)

f(x) :=
1 + x

1 + x3
= (1 + x)

∑

k≥0

(−1)kx3k

and

F (x) :=
(f(x) − f(−x))f(x)

2

=
x + x2 − x3 − 2x4 − x5 + x6 + x7

(1 − x6)2

= (x + x2 − x3 − 2x4 − x5 + x6 + x7)
∑

k≥0

(k + 1)x6k.
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We have

[x3k+2]f(x) = 0;

[x3k+1]f(x) = [x3k]f(x) = (−1)k;

[x6k+2]F (x) = [x6k+6]F (x) = k + 1;

[x6k+3]F (x) = [x6k+5]F (x) = −(k + 1);

[x6k+4]F (x) = −2(k + 1).

By (7.3)

ρ(n) =
[xn]f(x)

[xn−1]F (x)
.

8. Hook length formulas for Fibonacci trees

A Fibonacci tree T is a binary tree such that the right subtree of each
vertex v is a binary tree with 0 or 1 vertex [St75, SY89]. For example,
there are five Fibonacci trees with n = 4 vertices.
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We have the hook length multi-sets H(T1) = H(T2) = {1, 2, 3, 4}, H(T4) =

H(T5) = {1, 1, 2, 4} and H(T3) = {1, 1, 3, 4}.
Let F (resp. F(n)) denote the set of all Fibonacci trees (resp. all

Fibonacci trees with n vertices), so that

F =
⋃

n≥0

F(n).

As for binary trees, we define the hook length expansion for Fibonacci trees
by

(8.1)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) = f(x),

where f(x) ∈ K[[x]] is a power series in x with coefficients in K such
that f(0) = 1. See Sections 5 and 6 for more comments about the hook
length expansion. Let f(x) = 1+f1x+f2x

2 +f3x
3 + · · · be the generating

34



function for Fibonacci trees by the weight function ρ. By definition of
Fibonacci trees formula (8.1) is equivalent to

(8.2) fn = ρ(n)fn−1 + ρ(n)ρ(1)fn−2.

Formula (8.2) can be used to calculate f(x) for a given ρ, or to calculate
ρ for a given f(x). Next we use the maple package HookExp to find hook
formulas for Fibonacci trees, whose proofs are always based on (8.2).

> hooktype:="FT" # working on Fibonacci trees

> hookexp(1/(1-x-x^2), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

(M.8.1)

Theorem 8.1. We have

(8.3)
∑

T∈F

x|T |
∏

h∈H(T )

1 =
1

1 − x − x2
.

Proof. Let f(x) = 1 +
∑

n≥1 fnxn be the right-hand side of (8.3), then

fn = fn−1 + fn−2. Relation (8.2) is verified.
Remark. The number of Fibonacci trees with n vertices is the n-th

Fibonacci number.

> hookexp( exp(x), 9);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64
,

1

81

]

(M.8.2)

Theorem 8.2. We have

(8.4)
∑

T∈F

x|T |
∏

h∈H(T )

1

h2
= ex.

Proof. It suffices to verify relation (8.2).

(8.5)
1

n!
=

1

n2

1

(n − 1)!
+

1

n2

1

(n − 2)!
.

Remark. The number of ordered pairs of increasing labeled Fibonacci
trees on {1, 2, . . . , n} of the same shape (i.e., the same Fibonacci tree) is
equal to n! (See, e.g., [St75, SY89]).
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> hookexp( exp(x+x^2/2), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

(M.8.3)

Theorem 8.3. We have

(8.6)
∑

T∈F

x|T |
∏

h∈H(T )

1

h
= exp(x + x2/2).

Proof. Let f(x) = 1 +
∑

n≥1 fnxn be the left-hand side of (8.6). From
(8.2) we have

(8.7) fn =
1

n
fn−1 +

1

n
fn−2.

On the other hand, let
∑

n≥0 anxn/n! be right-hand side of (8.6). We
know that an is equal to the number of involutions of order n. Thus

(8.8) an = (n − 1)an−2 + an−1.

Comparing (8.7) and (8.8) yields fn = an/n!
Remark. The number of increasing labeled Fibonacci trees on [n] is

equal to the number of involutions of order n (see [St75, SY89]).

> hookexp(1/(1-x), 9);

[

1,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]

(M.8.4)

Theorem 8.4. We have

(8.9)
∑

T∈F

x|T |
∏

h∈H(T ),h≥2

1

2
=

1

1 − x
.

Proof. We check relation (8.2):

1 =
1

2
+

1

2
.

> hookexp(1/(1-x)^z, 6): map(factor, %);

[

z,
1 + z

4
,
(z + 2)(1 + z)

9z + 3
,
(z + 3)(z + 2)

16z + 8
,
(z + 4)(z + 3)

25z + 15
,
(z + 5)(z + 4)

36z + 24

]

(M.8.5)
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Theorem 8.5. We have

(8.10)
∑

T∈F

x|T |
∏

h∈H(T )

(h + z − 1)(h + z − 2)

h(hz + h − 2)
=

1

(1 − x)z

or

(8.11)
∑

T∈F(n)

∏

h∈H(T )

(h + z − 1)(h + z − 2)

h(hz + h − 2)
=

(

n + z − 1

z − 1

)

.

Proof. We check relation (8.2):
(

n + z − 1

z − 1

)

=
(n + z − 1)(n + z − 2)

n(nz + n − 2)
(

(

n + z − 2

z − 1

)

+ z

(

n + z − 3

z − 1

)

).

> hookexp( (1-sqrt(1-4*x))/(2*x), 15);

[

1, 1,
5

3
, 2,

42

19
,
33

14
,
143

58
,
130

51
,
34

13
,
323

121
,
19

7
,
322

117
,
1150

413
,
45

16

]

> guess(%);
4(2n − 3)(2n − 1)

(n + 1)(5n − 6)

(M.8.6)

Theorem 8.6. We have

(8.12)
∑

T∈F

x|T |
∏

h∈H(T ),h≥2

4(2h − 1)(2h − 3)

(h + 1)(5h− 6)
=

1 −
√

1 − 4x

2x

or

(8.13)
∑

T∈F(n)

∏

h∈H(T ),h≥2

4(2h − 1)(2h − 3)

(h + 1)(5h − 6)
=

1

n + 1

(

2n

n

)

.

Proof. We check relation (8.2):

1

n + 1

(

2n

n

)

=
4(2n − 1)(2n − 3)

(n + 1)(5n − 6)
(
1

n

(

2n − 2

n − 1

)

+
1

n − 1

(

2n − 4

n − 2

)

).

> hookexp( ((1-sqrt(1-4*x))/(2*x))^z, 7):

[

z,
3 + z

4
,

(z + 5)(z + 4)

9z + 9
,

(z + 5)(z + 7)(z + 6)

8(2z + 5)(z + 2)
,

(z + 9)(z + 8)(z + 7)(z + 6)

5(5z + 14)(z + 5)(3 + z)
,

(z + 10)(z + 9)(z + 8)(z + 11)

36(z + 4)(3 + z)(z + 6)

]

(M.8.7)
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Theorem 8.7. We have

(8.14)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(z; n) =
(1 −

√
1 − 4x

2x

)z

,

where

ρ(z; n) =
(z + 2n − 4)(z + 2n − 3)(z + 2n − 2)(z + 2n − 1)

n(z + n − 2)(z + n)(nz + 4n − 6)
.

In other words,

(8.15)
∑

T∈F(n)

∏

h∈H(T )

ρ(z; n) =
z

n!

n−1
∏

i=1

(2n − i + z).

Proof. As for the proof of Theorem 8.6, we check relation (8.2).

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+z*x), 11);

[

z,
1

2z
,

z

1 + z2
,

1

z
,

2z

z2 + 2
,

5

4z
,

5z

2z2 + 5
,

7

5z
,

14z

5z2 + 14
,

3

2z

]

(M.8.8)

Theorem 8.8. We have

(8.16)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) =
1 −

√
1 − 4x2

2x2
(1 + zx),

where

(8.17) ρ(n) =











z, if n = 1;
2k−1

(k+1)z , if n = 2k (k ≥ 1);

2(2k−1)z
(k+1)z2+2(2k−1) , if n = 2k + 1 (k ≥ 1).

In an equivalent manner, it means that

∑

T∈F(2k+1)

∏

h∈H(T )

ρ(h) =
z

k + 1

(

2k

k

)

;

∑

T∈F(2k)

∏

h∈H(T )

ρ(h) =
1

k + 1

(

2k

k

)

.
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Proof. Relation (8.2) is being verified when n is odd (resp. even)

z

k + 1

(

2k

k

)

=
2(2k − 1)z

(k + 1)z2 + 2(2k − 1)
(

1

k + 1

(

2k

k

)

+ z
z

k

(

2k − 2

k − 1

)

)

(resp.
1

k + 1

(

2k

k

)

=
2k − 1

(k + 1)z
(
z

k

(

2k − 2

k − 1

)

+ z
1

k

(

2k − 2

k − 1

)

)).

> hookexp( (1+x)/(1+x^2), 4);

Denominator is zero, no solution for n=3.

> hookexp( (1+x)/(1+x^3), 16);

[1, 0,−1, 1, 0,−1, 1, 0,−1, 1, 0,−1, 1, 0,−1, 1]

(M.8.9)

Theorem 8.9. We have

(8.18)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) =
1 + x

1 + x3
,

where

ρ(n) =

{

1, if n ≡ 1 mod3;
0, if n ≡ 2 mod3;
−1, if n ≡ 0 mod3.

Proof. Let
∑

n≥0

fnxn =
1 + x

1 + x3
=

1

1 − x + x2
.

We have f3k−1 = 0, f3k = (−1)f3k−2 and f3k−2 = f3k−3. Relation (8.2)
is then verified.

In fact, there is another generalization of Theorem 8.4. Consider the
weight function ρ that counts the leaves of Fibonacci trees.

> [z,seq(1, i=1..6)];

[z, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (z2 + 2z)x3 + (3z2 + 2z)x4 + (z3 + 5z2 + 2z)x5

+ (4z3 + 7z2 + 2z)x6 + (z4 + 9z3 + 9z2 + 2z)x7

(M.8.10)

The above generating function corresponds to the sequence A129710 in
the on-line encyclopedia of integer sequences [Slo] and is equal to the
right-hand side of (8.19) below.
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Theorem 8.10. We have

(8.19)
∑

λ∈F

x|λ|
∏

h∈H(λ),h=1

z =
1 + (z − 1)x

1 − x − zx2
.
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