DISTRIBUTION EULER-MAHONIENNE : UNE CORRESPONDANCE

Guo-Niu HAN

RÉSUMÉ. — Récemment Foata et Zeilberger ont démontré une conjecture due à Marleen Denert qui affirmait que deux paires de statistiques sur le groupe des permutations étaient équidistribuées. Cette Note fournit une démonstration combinatoire de ce fait.

ABSTRACT. — Recently Foata and Zeilberger have proved a conjecture due to Marleen Denert that asserted that two pairs of statistics on the permutation group were equidistributed. The present Note provides a combinatorial proof of this statement.

1. Introduction

On appelle mot sous-excédant d'ordre n tout mot $s = s_1 s_2 \dots s_n$ de longueur n dont les lettres s_i sont des entiers satisfaisant les inégalités $0 \le s_i \le i-1$ pour $i=1,2,\ldots,n$. On désigne par SE_n l'ensemble de ces mots. La somme $s_1+s_2+\cdots+s_n$ est notée tot(s), et la valeur eulérienne eul(s) d'un mot sous-excédant est définie de la façon suivante : d'abord, eul(s) := 0, si s est de longueur 1; ensuite si $s = s_1 s_2 \dots s_n$ avec $n \ge 2$:

$$eul(s_1 s_2 \dots s_n) := \begin{cases} eul(s_1 \dots s_{n-1}), & \text{si } s_n \le eul(s_1 \dots s_{n-1}); \\ eul(s_1 \dots s_{n-1}) + 1, & \text{si } s_n \ge eul(s_1 \dots s_{n-1}) + 1. \end{cases}$$

Ainsi eul(0,0,0,3) = 1, eul(0,0,0,3,2) = 2, eul(0,0,0,3,2,0,5,0,3) = 3.

On dit qu'une statistique (f, g) a la distribution euler-mahonienne, si f et g sont définies sur un ensemble fini E_n de cardinal n! et si leur fonction génératrice $\sum t^{f(\sigma)}q^{g(\sigma)}$, écrite sous la forme $\sum_{k\geq 0} A_{n,k}(q)t^k$, satisfait la relation de récurrence

$$(1.1) A_{n,k}(q) = [k+1]_q A_{n-1,k}(q) + q^k [n-k]_q A_{n-1,k-1}(q)$$

pour $1 \le k \le n-1$ avec les conditions initiales $A_{n,0}(q) = 1$ et $A_{n,k}(q) = 0$ pour $k \ge n$. Dans (1.1) on a posé $[k]_q = 0$ pour k = 0 et $(1 - q^k)/(1 - q)$ pour $k \ge 1$ (cf. [Car]).

Pour établir combinatoirement qu'une paire (f,g) définie sur E_n est euler-mahonienne, il suffit de construire une bijection $\Psi:(\pi,s_n)\mapsto\sigma$ de $E_{n-1}\times[0,n-1]$ sur E_n ayant les propriétés suivantes :

$$g(\sigma) = g(\pi) + s_n;$$

$$f(\sigma) = \begin{cases} f(\pi), & \text{si } 0 \le s_n \le f(\pi); \\ f(\pi) + 1, & \text{si } f(\pi) + 1 \le s_n \le n - 1. \end{cases}$$

Ainsi, (eul,tot) est euler-mahonienne. En appliquant Ψ itérativement, on obtient une bijection Φ de SE_n sur E_n satisfaisant les propriétés : $\operatorname{eul}(s) = f \circ \Phi(s)$, $\operatorname{tot}(s) = g \circ \Phi(s)$. La bijection inverse Φ^{-1} est appelé le codage de E_n .

L'exemple classique de statistique euler-mahonienne sur le groupe des permutations \mathfrak{S}_n est fourni par le couple (des, maj), où des et maj sont respectivement le nombre de descentes et l'indice majeur (cf. [Car], [D-F], [Raw], [G-G]). Dans ce cas, la bijection Ψ est aisée à construire. Le mot sous-excédant $\Phi_{\text{maj}}^{-1}(\sigma) (= \Phi^{-1}(\sigma))$ correspondant à σ s'appelle le maj-codage de σ (cf. [Raw]).

Nous nous proposons dans cette Note de faire une construction analogue pour la statistique bivariée (exc,den) introduite par Denert ([Den]) dont on sait qu'elle est déjà euler-mahonienne d'après le récent travail de Foata et Zeilberger ([F-Z]). La statistique "exc" est simplement le nombre classique des excédances, défini pour toute permutation $\sigma = \sigma(1)\sigma(2)\ldots\sigma(n)$ par $\exp(\sigma) := \#\{i: 1 \le i \le n, \sigma(i) > i\}$. La statistique "den" est, elle, définie par

(1.2)
$$\operatorname{den} \sigma := \#\{1 \le i < j \le n : \sigma(j) < \sigma(i) \le j\}$$

$$+ \#\{1 \le i < j \le n : \sigma(i) \le j < \sigma(j)\}$$

$$+ \#\{1 \le i < j \le n : j < \sigma(j) < \sigma(i)\}.$$

Dans cette Note on trouvera donc la construction d'un den-codage Φ_{den}^{-1} .

2. Chemins de Motzkin

Un chemin de Motzkin coloré (ou simplement chemin) de longueur n est un chemin polygonal dans le quart plan $\mathbb{N} \times \mathbb{N}$, allant de (0,0) à (n,0) dont les pas élémentaires sont de quatre sortes : \nearrow , \longrightarrow , \longrightarrow . De plus, il n'y a jamais de pas \longrightarrow sur l'axe horizontal. On identifiera un tel chemin au $mot \ w = x_1x_2 \dots x_n$, dit de Motzkin coloré, dont les lettres sont prises dans l'alphabet $\{\nearrow$, \longrightarrow , \longrightarrow , \searrow . Pour chaque x_r , la hauteur de x_r , notée $h_r(w)$, est définie par :

(2.1)
$$h_r(w) := \begin{cases} \#\{s < r : x_s = \nearrow\} - \#\{s < r : x_s = \searrow\}, \\ \text{si } x_r = \nearrow \text{ ou } \longrightarrow; \\ \#\{s < r : x_s = \nearrow\} - \#\{s < r : x_s = \searrow\} - 1, \\ \text{si } x_r = \searrow \text{ ou } \longrightarrow. \end{cases}$$

Une évaluation d'un mot w est une suite $t=t_1t_2\ldots t_n$ tel que $0\leq t_r\leq h_r(w)$ pour tout $r=1,2,\ldots,n$. Le nombre de montées, noté $\operatorname{mon}(w)$, est defini par : $\operatorname{mon} w:=|w|_{\nearrow}+|w|_{\longrightarrow}$. De plus, tout couple u=(w,t), où t est une évaluation de w, est appelé chemin (mot) évalué. L'ensemble des mots évalués de longueur n est noté U_n et le sous-ensemble de ces mots

u = (w, t) tels que mon(u) := mon(w) = k est noté $U_{n,k}$. Enfin, l'indice ind(u) de u est defini comme la somme des places des montées et de tous les t_r , c'est-à-dire $ind(u) := \sum \{r : x_r = \nearrow ou \longrightarrow \} + \sum_{r=1}^n t_r$.

Foata et Zeilberger [F-Z] ont établi une bijection Θ de \mathfrak{S}_n sur U_n , différente de la bijection classique (cf. [Vie]), ayant la propriété $\exp(\sigma) = \operatorname{mon} \Theta(\sigma)$, $\operatorname{den}(\sigma) = \operatorname{ind} \Theta(\sigma)$, pour tout $\sigma \in \mathfrak{S}_n$. Le reste de la Note va être consacré à la construction d'une bijection $\Phi_{\operatorname{den}}: SE_n \to U_n$ ayant la propriété $\operatorname{eul}(s) = \operatorname{mon} \Phi_{\operatorname{den}}(s)$, $\operatorname{tot}(s) = \operatorname{ind} \Phi_{\operatorname{den}}(s)$, et la suite des bijections

fournira la correspondance $\sigma \mapsto \sigma'$ telle que $\exp(\sigma) = \deg(\sigma')$ et $\deg(\sigma) = \exp(\sigma')$. Comme déjà signalé précédemment, il nous suffira de construire une bijection

$$\Psi_{\mathrm{den}}: (v, s_n) \longmapsto u$$

$$(2.2) \qquad U_{n-1,k} \times [0, k] + U_{n-1,k-1} \times [k, n-1] \longrightarrow U_{n,k}$$

satisfaisant $\operatorname{ind}(u) = \operatorname{ind}(v) + s_n$.

3. La Bijection

Il est commode d'introduire la notion de *chemin évalué pointé*. Il y en a de deux sortes :

$$(3.1) \overline{U_{n-1,k}} := \{(u,p) : u \in U_{n-1,k}, \quad x_p = \searrow \text{ ou } \longrightarrow \};$$

(3.2)
$$\overrightarrow{U_{n-1,k-1}} := \{(u,p) : u \in U_{n-1,k-1}, x_p = \searrow \text{ ou } \longrightarrow \};$$

Puis, on définit l'indice "ind" pour les chemins évalués pointés. Si $(u,p) \in U_{n-1,k}$, on marque tous les pas \searrow ou ----> dont le nombre total est exactement k, et on les numérote $1,2,\ldots,k$ de droite à gauche. On pose alors :

$$\operatorname{ind}(u,p) := \#\{r \ge p : x_r = \searrow \text{ ou } --- \triangleright\}.$$

Le chemin inférieur de la figure 1 est un chemin évalué pointé (u,p) avec comme paramètres : $n-1=14,\ k=6,\ p=5,\ \operatorname{ind}(u,p)=5$. Si $(u,p)\in \overrightarrow{U_{n-1,k-1}}$, on marque tous les pas \searrow et \longrightarrow dont le nombre total est exactement n-k, et on les numérote $k,k+1,\ldots,n-1$ de gauche à droite. De même, on pose

$$\operatorname{ind}(u, p) := (k - 1) + \#\{r \le p : x_r = \searrow \text{ ou } \longrightarrow \}.$$

Par exemple, avec n-1=14, k-1=6, p=5, $\operatorname{ind}(u,p)=8$, on obtient le chemin inférieur de la figure 2. Pour construire l'application

 Ψ_{den} , on distingue deux cas suivant que (v, s_n) , avec $v = (w, t) = (x_1 x_2 \dots x_{n-1}, t_1 t_2 \dots t_{n-1})$, appartient à $U_{n-1,k} \times [0, k]$ ou à $U_{n-1,k-1} \times [k, n-1]$ (cf. (2.2)).

Premier cas. — Supposons $(v, s_n) \in U_{n-1,k} \times [0, k]$. D'abord si $s_n = 0$, on définit $u = \Psi_{\text{den}}(v, s_n) := (x_1 x_2 \dots x_{n-1} \to , t_1 t_2 \dots t_{n-1} 0)$. Par contre, si $s_n \neq 0$, d'après la définition de ind, on sait qu'il existe dans $U_{n-1,k}$ un chemin évalué pointé unique (v, p) tel que ind $(v, p) = s_n$. On fait alors correspondre un chemin $w' = y_1 y_2 \dots y_n$ et une suite $t' = l_1 l_2 \dots l_n$ de la façon suivante :

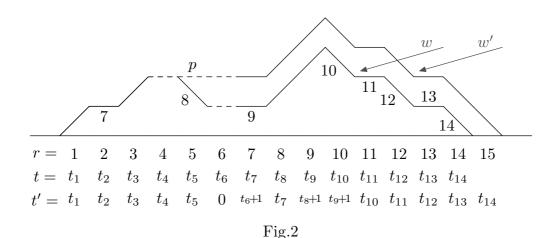
- (W1) $y_r = x_r$, si $r \le n 1$ et $r \ne p$;
- (W2) $y_p = \longrightarrow$, si $x_p = \searrow$; $y_p = \nearrow$, si $x_p = \longrightarrow$;
- (W3) $y_n = \searrow$;
- (T1) $l_r = t_r$, si $r \le p 1$;
- (T2) $l_p = h_p(w')$;
- (T3) $l_{r+1} = t_r$, si $p \le r \le n-1$, et $x_r = \searrow$ ou \longrightarrow ; $l_{r+1} = t_r + 1$, si $p \le r \le n-1$, et $x_r = \nearrow$ ou \longrightarrow .



Fig.1

Second cas. — Supposons $(v, s_n) \in U_{n-1,k-1} \times [k, n-1]$. De même, il existe dans $\overrightarrow{U_{n-1,k-1}}$ un chemin évalué pointé unique (v,p) tel que $\operatorname{ind}(v,p) = s_n$. On fait alors correspondre un chemin $w' = y_1 y_2 \dots y_n$ et une suite $t' = l_1 l_2 \dots l_n$ de la façon suivante :

- (W1') $y_r = x_r$, si $r \le n 1$ et $r \ne p$;
- (W2') $y_p = ----$, si $x_p = \chi$; $y_p = \nearrow$, si $x_p = ---\gamma$;
- (W3') $y_n = \searrow$;
- (T1') $l_r = t_r$, si $r \leq p$;
- (T2') $l_{p+1} = 0;$



(T3')
$$l_{r+1} = t_r$$
, si $p+1 \le r \le n-1$, et $x_r = \emptyset$ ou \longrightarrow ; $l_{r+1} = t_r+1$, si $p+1 \le r \le n-1$, et $x_r = \emptyset$ ou \longrightarrow .

PROPOSITION 3.1. — On $a:(w',t') \in U_{n,k}$ et $\operatorname{ind}(w',t') = \operatorname{ind}(v) + s_n$.

On pose alors $u = \Psi_{\text{den}}(v, s_n) := (w', t')$. L'entier p est dit la place de changement par rapport à u.

Pour le premier cas, on reprend l'exemple de la figure 1. La place de changement est p=5. On a $5=h_p(w')+3$ et on obtient le chemin supérieur de la figure 1. Pour le second cas, on reprend l'exemple de la figure 2, la place de changement étant p=5. On a 8=p+3 et on obtient le chemin supérieur representé dans la figure 2.

Proposition 3.2. — L'application $\Psi_{\rm den}$ ainsi construite est inversible.

BIBLIOGRAPHIE

- [Car] L. CARLITZ. q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), pp. 332–350.
- [Den] M. Denert. The genus zeta function of hereditary orders in central simple algebras over global fields, *Math. Comp.*, **54** (1990), pp. 449–465.
- [D-F] J. DÉSARMÉNIEN ET D. FOATA. Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France, 113 (1985), pp. 3–22.
- [F-Z] D. FOATA ET D. ZEILBERGER. Denert's Permutation Statistic Is Indeed Euler-Mahonian, Studies in Appl. Math., 83 (1990), pp. 31–59.
- [F-S] D. FOATA ET M.-P. SCHÜTZENBERGER. Major Index and Inversion Number of Permutations, Math. Nachr., 83 (1978), pp. 143–159.
- [G-G] A. Garsia et I. Gessel. Permutation Statistics and Partitions, Adv. in Math., 31 (1979), pp. 288–305.
- [Raw] D. RAWLINGS. Generalized Worpitzki Identites with Applications to Permutation Enumeration, Europ. J. Comb., 2 (1981), pp. 67–78.
- [Vie] G. Viennot. Une Théorie Combinatoire des Polynômes Orthogonaux Généraux, Notes conf. Univ. Québec à Montréal, 1984.

I.R.M.A. UMR 7501 Université Louis Pasteur et CNRS, 7, rue René-Descartes F-67084 Strasbourg, France guoniu@math.u-strasbg.fr