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Abstract. The link between automaticity and algebraicity is well established

concerning power series in finite characteristics, decimal expansion and contin-
ued fraction expansion of real numbers. But the question of whether continued

fractions (objects in Fq [[1/x]]) defined by automatic sequences taking values

in Fq [x] are algebraic is still wide open and little studied. In this article we
approach this problem by investigating the cases of two classical automatic

sequences, namely the Thue-Morse and period-doubling sequences. For each

sequence, there are infinitely many cases because of the choice of polynomi-
als representing the terms of the sequence. We present our Guess’n’Prove

method, which is implemented to give computer generated proofs of particular

instances. We believe our method works for the general case and put forward
conjectures.

1. Introduction

1.1. Background. We are interested in the continued fractions and Stieltjes con-
tinued fractions defined by automatic sequences in finite characteristic, and more
precisely their algebraicity or transcendence. We give here the background and
motivation for studying such problems. The definitions of related notions will be
given in subsection 1.2.

The link between automaticity and algebraicity goes back to the well-known
Theorem of Christol, Kamae, Mendès France and Rauzy [9, 10] which states that a
formal power series in Fq[[x]] is algebraic over Fq(x) if and only if the sequence of its
coefficients is q-automatic. The situation is completely different for real numbers.
In 2007, Adamczewski and Bugeaud [1] proved that for an integer b ≥ 2, if the
b-ary expansion of an irrational real number ξ forms an automatic sequence, then
ξ must be transcendental. In 2013, Bugeaud [8] proved that the continued fraction
expansion of an algebraic real number of degree at least 3 is not automatic.

As with real numbers, a formal Laurent series can also be represented by a
continued fraction whose partial quotients are polynomials. Unlike for real numbers,
the continued fraction expansion of an algebraic Laurent series of degree at least 3
may or may not have automatic partial quotients [5, 6, 18, 3, 19, 14, 15, 16]; see
also the introduction of [13].

We could also ask the converse question: what can we say about the algebraicity
of a continued fraction whose partial quotients form an automatic sequence? To our
knowledge, little has been done in this direction. The authors [13] proved that the
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Stieltjes continued fractions defined by the Thue-Morse sequence and the period-
doubling sequence in Z[[x]] are congruent, modulo 4, to algebraic series in Z[[x]]. In
2020, Wu [21] obtained similar results concerning the Stieltjes continued fractions
defined by the paperfolding sequence and the Golay-Shapiro-Rudin sequence.

In this article we propose to approach this problem with two classical examples of
automatic sequences, the Thue-Morse sequence and the period-doubling sequence.
In the real case, the transcendence of the real Thue-Morse continued fraction was
first proved by Queffelec [20] in 1998 and a short proof was given by Adamczewski
and Bugeaud [2] in 2007.

1.2. Preliminaries. We introduce the necessary notions for stating the conjectures
and our main results.

1.2.1. Automatic sequnces. A sequence is said to be k-automatic if it can be gen-
erated by a k-DFAO (deterministic finite automaton with output). For an integer
k ≥ 2, a k-DFAO is defined to be a 6-tuple

M = (Q,Σ, δ, q0,∆, τ)

where Q is the set of states with q0 ∈ Q being the initial state, Σ = {0, 1, . . . , k−1}
the input alphabet, δ : Q×Σ→ Q the transition function, ∆ the output alphabet,
and τ : Q→ ∆ the output function. The k-DFAO M generates a sequence (cn)n≥0

in the following way: for each non-negative integer n, the base-k expansion of n is
read by M from right to left starting from the initial state q0, and the automaton
moves from state to state according to its transition function δ. When the end of
the string is reached, the automaton halts in a state q, and the automaton outputs
the symbol cn = τ(q).

A necessary and sufficient condition [11] for a sequence to be k-automatic is that
its k-kernel, defined as the set of subsequences

{(ukdn+j)n≥0 | d ∈ N, 0 ≤ j ≤ kd − 1},

is finite. If we let Λ
(k)
i denote the operator that sends a sequence (u(n))n≥0 to

its subsequence (u(kn + i))n≥0, then the k-kernel can be defined alternatively as

the smallest set containing u that is stable under Λ
(k)
i for 0 ≤ i < k. We write

Λi instead of Λ
(k)
i when the value of k is clear from the context. We will use

the fact that for an integer m ≥ 1, a sequence is k-automatic if and only if it is
km-automatic [11].

For a k-automatic sequence u, we can construct a k-DFAO that generates it
from its k-kernel. The set of states Q will be in bijection with the k-kernel, so we
choose to identify them. For q ∈ Q and 0 ≤ j < k, the value of the transition
function δ(q, j) is defined as Λjq; the output function τ maps q to the 0-th term
of the subsequence in the k-kernel corresponding to q. This automaton has the
property that leading 0’s in the input does not change the output. It is minimal
among k-automata with this property that generates u.

We refer the readers to [4] for a comprehensive exposition of automatic sequences.
In this article we will consider the Thue-Morse sequence and the period-doubling

sequence. For two distinct elements a and b from an alphabet, the (a, b)-Thue-Morse
sequence is the sequence t defined as the fixed point τ∞(a) of the substitution
τ : a 7→ ab, b 7→ ba, that is, it is the limit of the sequence (τ j(a))j

τ(a) = ab
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τ2(a) = abba

τ3(a) = abbabaab

τ4(a) = abbabaabbaababba

· · ·

When (a, b) = (0, 1) ∈ F2
2, the minimal polynomial of the generating series f(x) =∑∞

n=0 tnx
n is

(1 + x)3f2 + (1 + x)2f + x = 0.

The (a, b)-period-doubling sequence p is defined as the fixed point σ(a) of the
substitution σ : a 7→ ab, b 7→ aa. Its first terms are

abaaabababaaabaa . . .

When (a, b) = (0, 1) ∈ F2
2, the minimal polynomial of the generating series g(x) =∑∞

n=0 pnx
n is

(x3 + x)g2 + (x2 + 1)g + x = 0.

From the minimal polymonials we see that the generating series f(x) and g(x) are
quadratic.

1.2.2. Continued fractions. Let K be a field. Given a sequence of polynomials
aj(z) ∈ K[z]\K, we may define the infinite continued fraction

(1.1) CF(a(z)) :=
1

a0(z) +
1

a1(z) +
1

a2(z) +
1

. . .

as the limit of the finite continued fractions

(1.2) CFn(a(z)) =
1

a0(z) +
1

a1(z) +
1

. . . +
1

an(z)

∈ K((1/z)).

Note that here the index of the partial quotients begins with 0. The existence
of the limit is guaranteed by the convergence theorem, whose proof is completely
analogous to that for the classical continued fractions with positive integer partial
quotients.

Define the sequences (Pn(z)) and (Qn(z)) by
(1.3)(

Pn(z) Qn(z)
Pn−1(z) Qn−1(z)

)
:=

(
an(z) 1

1 0

)(
an−1(z) 1

1 0

)
· · ·
(
a0(z) 1

1 0

)(
0 1
1 0

)
for n ≥ 0, then

CFn(a(z)) = Pn(z)/Qn(z) ∈ K((1/z)),

for n ≥ 0. Note that here rational fractions are expanded in 1/z. The fraction
Pn(z)/Qn(z) is called the n-th convergent of CF(a(z)). All convergents are reduced
fractions: to be convinced of this, simply take the determinant of both sides of (1.3).
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Conversely, let

(1.4) f(z) = cnz
n + cn−1z

n−1 + · · ·+ c0 + c−1z
−1 + · · ·

be an arbitrary element of K((1/z)). Define the integer part of f(z) as

(1.5) [f(z)] = cnz
n + cn−1z

n−1 + · · ·+ c0.

Set f0 = f , a0 = [f0], f0 = a0 + 1/f1, a1 = [f1], f1 = a1 + 1/f2, a2 = [f1],
... Then a0 ∈ K[z] and aj ∈ K[z]\K for j ≥ 1, and f(z) admits the following
continued fraction expansion

(1.6) f(z) = a0(z) +
1

a1(z) +
1

a2(z) +
1

a3(z) +
1

. . .

.

1.2.3. Stieltjes continued fractions. Let (uj)j≥0 be a sequence taking values in K×,
then the Stieltjes continued fraction

(1.7) Stiel(x; u) :=
u0

1 +
u1x

1 +
u2x

1 +
u3x

. . .

is defined to be the limit of the finite Stieltjes continued fractions

(1.8) Stieln(x; u) :=
u0

1 +
u1x

1 +
u2x

1 +

. . .

1 + unx

∈ K[[x]].

It can be easily shown that the sequence Stieln(x; u) is convergent.
Define the sequence (Pn(x)) and (Qn(x)) by

(1.9)

(
Pn(x) Qn(x)
Pn−1(x) Qn−1(x)

)
:=

(
1 unx
1 0

)(
1 un−1x
1 0

)
· · ·
(

1 u0x
1 0

)(
0 1

1/x 0

)
for n ≥ 0. Then

Stieln(x; u) =
Pn(x)

Qn(x)
,

for n ≥ 0. The non-reduced fraction Pn(x)/Qn(x) is called the n-th convergent of
Stiel(x; u).

It should be noted that while every formal power series in K[[x]] can be expanded
as a continued fraction, only a subset can be expanded as a Stieltjes continued
fractions.
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1.3. Conjectures and main results. We put forward the following conjectures
concerning the Thue-Morse and period-doubling continued fractions and Stieltjes
continued fractions.

Conjecture 1.1. Let a, b be two distinct elements from F2[z]\F2. Let u(z) be the
(a, b)-Thue-Morse sequence. The continued fraction CF(u(z)) is algebraic of degree
4 over F2(z).

Theorem 1.2. Conjecture 1.1 holds for every distinct elements a, b in F2[z]\F2

with deg a+ deg b ≤ 7.

A more precise statement is given in Theorem 2.1 for the pair (a, b) = (z, z2 +
z + 1).

Conjecture 1.3. Let k ≥ 2 be an integer. Let a, b be two distinct elements from
F×

2k . Let u be the (a, b)-Thue-Morse sequence. The Stieltjes continued fraction
Stiel(x; u) is algebraic over F2k(x). Its minimal polynomial is

p0(x) + p1(x)y + p2(x)y2 + p4(x)y4,

where

p0(x) = ((a2b4 + b6)/a4)x2 + b5/(a5 + a4b),

p1(x) = ((ab4 + b5)/a5)x+ b4/a5,

p2(x) = (b4/a5)x+ b4/(a6 + a5b),

p4(x) = (b4/(a6 + a5b))x2.

Theorem 1.4. Conjecture 1.3 holds for k = 2, 3, 4.

Based on our calculation, we believe that the period-doubling continued fractions
are also algebraic. However, the period-doubling Stieltjes continued fractions seem
to be transcendental.

Conjecture 1.5. Let a, b be two distinct elements from F2[z]\F2. Let u(z) be the
(a, b)-period-doubling sequence. The continued fraction CF(u(z)) is algebraic of
degree 4 over F2(z).

Theorem 1.6. Let (a, b) = (z3, z2 + z + 1) ∈ (F2[z]\F2)2. Let p be the (a, b)-
period-doubling sequence. The power series CF(p(z)) is algebraic over F2(z); its
minimal polynomial is

y4 + (z5 + z4 + z3)y2 + (z8 + z6 + z5 + z3)y + z5 + z3 + z2 = 0.

Conjecture 1.7. Let J ∈ F4\{0, 1}. Let u be the (1, J)-period-doubling sequence.
The Stieltjes continued fraction Stiel(x; u) is transcendental over F2(x).

1.4. Method. For the verification of conjectures 1.1 and 1.3a, we use the Guess
’n’ Prove method. We refer the reader to [12] and to [17] where the Guess ’n’ Prove
method is used in the context of automatic sequences and continued fractions,
respectively, even though the techniques involved are different.

Initially we were able to prove by hand some special cases of 1.1, each in a
different way. Then we develop a method that works for all these cases. We
implemented this method in SageMath, and checked by computer that conjecture
1.1 holds for all pairs (a, b) of elements from F2[z]\F2 such that deg a+ deg b ≤ 7,
and that conjecture 1.3a holds for all a ∈ F2k\{0, 1} for k = 2, 3, 4. This method
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cannot be used to prove directly conjecture 1.3b, because in this version of the
conjecture, the coefficients of the power series lie in F2(a), which is not a finite
field, and therefore the algorithm described in Section 5 would not terminate.

For conjecture 1.1, our program takes the pair (a, b) as input, and, for the (a, b)-
Thue-Morse sequence u, uses the Derksen algorithm for Padé-Hermite approxi-
mants (we implemented the version of the Derksen algorithm described in [7]) to
guess the minimal polynomial of CF(u(z)). If the guess does not stabilize as we
increase the precision, then the program exits with an error message. To prove that
the guess is correct, it only needs to prove the algebraicity of 16 auxiliary series. For
this, it first guesses the algebraic equations of these 16 series. Then it guesses and
proves several lemmas concerning the properties of 16 series defined by the guessed
algebraic equations and relations between these algebraic series and the auxiliary
series (namely that they are the same). The particular forms of the lemmas depend
on the choice of (a, b). In Section 2 we illustrate our method with an example of
computer generated proof. The proofs for the other pairs that we have tested can
be found on the personal web page of the authors 1.

For conjecture 1.3a (an equivalent formulation of conjecture 1.3, specified in
Section 3), the situation is similar, except that we choose to regard a as a formal
variable whenever we can. In this way we prepare a common part for all a, and to
prove that conjecture 1.3a holds for a certain a, we only need to fill in the rest of
the proof for this specific a.

In the proofs, we exploit the structure of the automata that generates the al-
gebraic series in question. The automata are used in the following way: the in-
finitely many conditions (because of the infinitely many values of u) on the series
in lemma 2.4 and lemma 4.2 are translated to finitely many conditions on the au-
tomata, which we could check directly. To obtain a k-automaton of an algebraic
series from an annihilating polynomial of it, we implement an algorithm based on
the proof of theorem 1 of [10]. In Section 5 we describe this algorithm for self-
containedness.

Our method for checking conjecture 1.1 can be adapted for the verification of
conjecture 1.5. We give an example in Section 4. We believe that our method works
for every case of conjecture 1.5 as well, even though the proofs are slightly more
complicated because the shape of the blocks in lemma 4.2 and lemma 4.3 are less
regular than that in lemma 2.4 and lemma 2.5.

Concerning the efficiency of the verification, once we observe patterns like those
found in lemma 2.4 and lemma 2.5, we are almost certain that our method works
for this case, and this step is very fast. But we still need to give a rigorous proof,
and the proofs for the equivalent of lemma 2.4 and lemma 2.3 become too slow as
the degree goes up.

We also investigated some other automatic sequences, but the continued frac-
tions that they define seem to be transcendental, or maybe more terms than our
computers can handle are needed for the Dersken algorithm to have a correct guess.

1 http://irma.math.unistra.fr/~guoniu/frconj/
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2. Thue-Morse Continued Fraction

Our program tests conjecture 1.1 for a given pair of distinct elements (a, b) from
F2[z]\F2. We have checked that the conjecture holds in the case where deg a +
deg b ≤ 7.

The following is an example of proof that conjecture 1.1 holds for (a, b) = (z, z2+
z+1). Both the statement of the theorem and its proof are generated automatically
by our program. The exact statement of theorem 2.1, lemma 2.4 and 2.5 depends
on the choice of (a, b). In the proof, for a series f(x) =

∑∞
j=0 fjx

j , the notation

f [m : n] means
∑n−1
j=m fjx

j and f [: n] means
∑n−1
j=0 fjx

j .

2.1. Statement of the theorem for (a, b) = (z, z2 + z + 1).

Theorem 2.1. Let (a, b) = (z, z2 + z + 1) ∈ (F2[z]\F2)2. Let t be the (a, b)-
Thue-Morse sequence, and t̄, the (b, a)-Thue-Morse sequence. The two power series
CF(t(z)) and CF(t̄(z)) are algebraic over F2(z), with minimal polynomials of the
form

p4(z)y4 + p3(z)y3 + p2(z)y2 + p1(z)y + p0(z) = 0.

For CF(t(z))

p0(z) = z9 + z7 + z6 + z5 + z4 + z + 1,

p1(z) = z11 + z10 + z8 + z6 + z5 + z3 + z2 + z,

p2(z) = z12 + z10 + z2,

p3(z) = z11 + z10 + z8 + z6 + z5 + z3 + z2 + z,

p4(z) = z10 + z9 + z7 + z6 + z5 + z2 + z,

and for CF(t̄(z))

p0(z) = z9 + z8 + z7 + z6 + z5 + z4 + z,

p1(z) = z11 + z10 + z8 + z6 + z5 + z3 + z2 + z,

p2(z) = z12 + z10 + z2,

p3(z) = z11 + z10 + z8 + z6 + z5 + z3 + z2 + z,

p4(z) = z10 + z9 + z8 + z7 + z6 + z5 + z2 + z + 1.

2.2. Proof. Define

Mn(x) = xdeg(t2n−1)

(
t2n−1(1/x) 1

1 0

)
xdeg(t2n−2)

(
t2n−2(1/x) 1

1 0

)
· · ·

xdeg(t0)

(
t0(1/x) 1

1 0

)
and

Wn(x) = xdeg(t̄2n−1)

(
t̄2n−1(1/x) 1

1 0

)
xdeg(t̄2n−2)

(
t̄2n−2(1/x) 1

1 0

)
· · ·

xdeg(t̄0)

(
t̄0(1/x) 1

1 0

)
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where t̄ is the (b, a)-Thue-Morse sequence. By the property of the Thue-Morse
sequence, we have for all n ≥ 0

Mn+1(x) = Wn(x) ·Mn(x),

Wn+1(x) = Mn(x) ·Wn(x).

Define x := 1/z. For an non-zero polynomial P (z), we define P̃ (x) to be P (1/x).
Then

CFn(t(z)) =
Pn(z)

Qn(z)
=
P̃n(x)

Q̃n(x)
∈ F2((x)) = F2((1/z)).

Comparing the definition of Mn(x) with definition (1.3), we see that

Mn(x)0,1 = xdn P̃2n−1(x),

Mn(x)0,0 = xdnQ̃2n−1(x),

for some positive integer dn, and

CF22n−1(t(z)) =
P̃22n−1(x)

Q̃22n−1(x)
=
M2n(x)0,1

M2n(x)0,0
.(2.1)

Our strategy is to first prove that both M2n(x)0,1 and M2n(x)0,0 converge to
algebraic series in F2[[x]], and then use their minimal polynomials to obtain that
of CFn(t(z)).

Actually, we will prove that for all i, j in {0, 1}, the four sequences (M2n(x)i,j)n,
(M2n+1(x)i,j)n, (W2n(x)i,j)n, and (W2n+1(x)i,j)n converge to algebraic series in
F2[[x]]. For this purpose, we define four 2 × 2 matrices Me,Mo,W e,W o as fol-
lows: For each T ∈ {Me,Mo,W e,W o} and i, j in {0, 1}, Ti,j is defined to be the
unique root in F2[[x]] of the polynomial φ(T, i, j) with prescribed first terms of its
expansion.

All 16 polynomials are of the form

p0(x) + p3(x)y3 + p6(x)y6 + p9(x)y9 + p12(x)y12,

and the 8 first terms of Ti,j suffice to determine a unique root.
We give the explicit form φ(Me, 0, 0) below; the others can be found on the web

page of the authors.

p0(x) = x66 + x64 + x62 + x60 + x58 + x56 + x52 + x50 + x36 + x32 + x30

+ x20 + x16 + x14 + x12,

p3(x) = x62 + x60 + x58 + x56 + x52 + x50 + x48 + x44 + x42 + x38 + x36

+ x32 + x28 + x22 + x20 + x18 + x14 + x12,

p6(x) = x56 + x44 + x40 + x38 + x36 + x32 + x30 + x26 + x20 + x18 + x16

+ x14 + x2 + 1,

p9(x) = x64 + x62 + x58 + x56 + x54 + x52 + x48 + x42 + x32 + x30 + x26

+ x20 + x18 + x14 + x12 + x10 + x8 + x2,

p12(x) = x64 + x56 + x40 + x32 + x16 + x8 + 1,

and the first terms of Me
0,0 are 1 + x8 + x10 + x14 + x20 + · · · . In order to uniquely

determine the root, we only need to know that Me
0,0 = 1 +O(x8).
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We will prove that these four matrices, whose components are algebraic by def-
inition, are the limits of (M2n(x))n, (M2n+1(x))n, (W2n(x))n, and (W2n+1(x))n.

Let us explain how the polynomials φ(T, i, j) are found, and how many first terms
are to be specified in order to guarantee the existence and unicity of the root. For
i, j in {0, 1}, the the coefficients of the polynomial φ(Me, i, j) (resp. φ(Mo, i, j),
φ(W e, i, j), and φ(W o, i, j)) are the Padé-Hermite approximants of type

(75, 75, 75, 75, 75)

of the vector

(1, f3, f6, f9, f12),

where f = M12,i,j (resp. M11,i,j , W12,i,j , and W11,i,j). See Chapter 7 of [7] for a
description of the Derksen algorithm that is used here to find the Padé-Hermite
approximants. These 16 polynomials together with the first 8 terms of the corre-
sponding polynomial f satisfy the conditions of the following lemma, so that the
root exists and is unique.

Lemma 2.2. Let P (x, y) be a polynomial in F2[x, y]. If for some polynomial∑n−1
j=0 ajx

j in F2[x], P (x,
∑n−1
j=0 ajx

j) = O(xn) and Q(x, y) := P (x,
∑n−1
j=0 ajx

j +

xny) can be written as xm
∑N
j=0 qj(x)yj where m and N are integers and qj(x) are

polynomials for j ≥ 0, q1(0) = 1, and qj(0) = 0 for j > 1, then there exists a unique

series f(x) ∈ F2[[x]] whose first terms are
∑n−1
j=0 ajx

j and P (x, f(x)) = 0.

Proof. The conclusion of the lemma can be rephrased as: there is a unique series
g(x) in F2[[x]] such that P (x,

∑n−1
j=0 ajx

j + xng(x)) = 0. But this is equivalent to

saying that g(x) is the unique root of Q(x, y), and therefore of the polynomial

N∑
j=0

qj(x)yj .

Let us plug in the expression of g(x) = g0+g1x+g2x
2+· · · in the above polynomial.

We get

q0(x) + q1(x)(g0 + g1x+ g2x
2 + · · · ) + · · ·+ qN (x)(g0 + g1x+ g2x

2 + · · · )N = 0.

For all integer n, let cn denote the coefficient of xn in the left hand side of the
above identity, then cn is a polynomial of g0, g1, . . . , gn. The condition qj(0) = 0
for j > 1 implies that there is only one term in cn that contains gn, namely q1(0)gn,
and this term is not zero because q1(0) = 1. This shows that gn can be expressed
in terms of g0, g1, . . . , gn−1 and q0(x), q1(x), . . . , qN (x). Thus we have established
the existence and unicity of g(x), and therefore that of f(x). �

We state two lemmas concerning the four matrices Me,Mo,W e,W o. The first
one is about relations between them; the second, about the structure of each matrix.

Lemma 2.3. We have

Me = W o ·Mo,(2.2)

Mo = W e ·Me,(2.3)

W e = Mo ·W o,(2.4)

W o = Me ·W e.(2.5)
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Proof. We give the proof of the identity

Me
0,0 = W o

0,0M
o
0,0 +W o

0,1M
o
1,0,

the proofs of the others being similar.
First, we compute the minimal polynomials of W o

0,0M
o
0,0 and W o

0,1M
o
1,0. We know

that

P (x, y) = Resz
(
φ(W o, 0, 0)(x, z), z12 · φ(Mo, 0, 0)(x, y/z)

)
is an annihilating polynomial of W o

0,0M
o
0,0; here Resz means the resultant with

respect to the variable z (see Chapter 6 of [7]). We use Padé-Hermite approximation
to find a candidate for the minimal polynomial of W o

0,0M
o
0,0, that will be called

φ0(x, y). To prove that φ0(x, y) is indeed the minimal polynomial, it suffices to
prove that it is an irreducible factor of P (x, y) of multiplicity m and that Q(x, y) :=
P (x, y)/φ0(x, y)m is not an annihilating polynomial of W o

0,0M
o
0,0. We verify the

first point directly. For the second point, we truncate W o
0,0M

o
0,0 to order 270 and

substitute it for y in Q(x, y). We get a series of valuation less than 270, which
proves that Q(x, y) is not an annihilating polynomial of W o

0,0M
o
0,0. We find the

minimal polynomial φ1(x, y) of W o
0,1M

o
1,0 in a similar way.

Now we prove that φ(Me, 0, 0) is the minimal polynomial ofW o
0,0M

o
0,0+W o

0,1M
o
1,0.

We know that

S(x, y) = Resz (φ0(x, z), φ1(x, y + z))

is an annihilating polynomial of W o
0,0M

o
0,0 + W o

0,1M
o
1,0. We verify that φ(Me, 0, 0)

is an irreducible factor of S(x, y) of multiplicity µ, and that the quotient Q(x, y) :=
S(x, y)/φ(Me, 0, 0)µ is not an annihilating polynomial of W o

0,0M
o
0,0 +W o

0,1M
o
1,0. To

see the last point, we truncate W o
0,0M

o
0,0 +W o

0,1M
o
1,0 to order 330 and substitute it

for y in Q(x, y). We get a series of valuation less than 330, and therefore Q(x, y) is
not an annihilating polynomial of W o

0,0M
o
0,0 +W o

0,1M
o
1,0.

Finally, the first 8 terms of Me
0,0 and W o

0,0M
o
0,0 + W o

0,1M
o
1,0 coincide. As these

first terms determine a unique root of φ(Me, 0, 0), we know that the two series are
one and the same. �

Define

Re =

(
1 0
0 1

)
and Ro =

(
1 0
0 1

)
.

Lemma 2.4. For all integers k ≥ 2 and u = 22k−1, the following identities hold.

Me[:6u] = Me[:3u] + xuMe[:2u] + xuMe[:3u] + x2uMe[:2u] + x2uMe[:3u]

+ x3uMe[:2u] + (x3u + x4u + x5u)Re,

W e[:6u] = W e[:3u] + xuW e[:2u] + xuW e[:3u] + x2uW e[:2u] + x2uW e[:3u]

+ x3uW e[:2u] + (x3u + x4u + x5u)Re.

For all integers k ≥ 2 and u = 22k,

Mo[:6u] = Mo[:3u] + xuMo[:2u] + xuMo[:3u] + x2uMo[:2u] + x2uMo[:3u]

+ x3uMo[:2u] + (x3u + x4u + x5u)Ro,

W o[:6u] = W o[:3u] + xuW o[:2u] + xuW o[:3u] + x2uW o[:2u] + x2uW o[:3u]

+ x3uW o[:2u] + (x3u + x4u + x5u)Ro.
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Proof. To prove Lemma 2.4 we first construct an automaton for each sequence
concerned, and then transform the conditions on infinitely many k’s into finitely
many conditions on the states of the automaton. In the following, we will prove
that for T = Mo

1,0, for all integer k ≥ 2 and u = 22k,

T [:6u] = T [:3u] + xuT [:2u] + xuT [:3u] + x2uT [:2u] + x2uT [:3u] + x3uT [:2u].

The proofs of the other 15 cases are similar. Being in characteristic 2, sums of the
same segment of T cancel out, so that we may break down the above identity into 3
parts:

0 = x3uT [:u] + xuT [2u :3u] + T [3u :4u],

0 = x3uT [u :2u] + x2uT [2u :3u] + T [4u :5u],

0 = T [5u :6u],

which can be rewritten as

0 = T [[w]2] + T [[10w]2] + T [[11w]2],(2.6)

0 = T [[1w]2] + T [[10w]2] + T [[100w]2],(2.7)

0 = T [[101w]2],(2.8)

for all binary words w of length 2k, where [w]2 denotes the integer whose binary
expansion is w.

First we calculate a 2-automaton that generates T from its minimal polynomial
and its first terms. This automaton has 124 states; its transition function and
output function can be found on the web page of the authors. Let A(s, w) denote
the state reached after reading w from right to left starting from the state s, and τ
the output function. Let i be the initial state. Define

E2k = {A(i, w) : |w| = 2k}.

Identities (2.6) through (2.8) can be written as

0 = τ(A(s, ε)) + τ(A(s, 10)) + τ(A(s, 11)),(2.9)

0 = τ(A(s, 1)) + τ(A(s, 10)) + τ(A(s, 100)),(2.10)

0 = τ(A(s, 101))(2.11)

for all s ∈ E2k. We find that (A(i, 024), E24) = (A(i, 016), E16), so that we only
have to verify that identities (2.9) through (2.11) hold for 2 ≤ k ≤ 12, which turns
out to be true. �

In the following lemma, we express M2k, M2k+1, W2k, and W2k+1 in terms of
Me, Mo, W e, and W o.

Lemma 2.5. For all integer k ≥ 2, and u = 22k−1,

M2k = Me[:3u] + xuMe[:2u] + x3uRe,

W2k = W e[:3u] + xuW e[:2u] + x3uRe.

For all integer k ≥ 2, and u = 22k,

M2k+1 = Mo[:3u] + xuMo[:2u] + x3uRo,

W2k+1 = W o[:3u] + xuW o[:2u] + x3uRo.



12 YINING HU AND GUO-NIU HAN

Proof. Call the four identities in Lemma 2.5 also by the name M2k, W2k, M2k+1,
and W2k+1. For k = 2, the identities can be verified directly. For k ≥ 2, we claim
that

“M2k and W2k” implies “M2k+1 and W2k+1”,

“M2k+1 and W2k+1” implies “M2k+2 and W2k+2”.

We give the proof of

(2.12) “M2k and W2k” implies M2k+1,

the proofs of the other ones being similar. Set u = 22k and v = 22k−1. By definition
and induction hypothesis, the left side of identity M2k+1 is equal to

W2kM2k =
(
W e[:3v] + xvW e[:2v] + x3uRe

)
×
(
Me[:3v] + xvMe[:2v]

+ x3uRe
)
.(2.13)

Call this expression lhs. Note that both sides of identity M2k+1 have the same
term of highest degree x6vRo. Therefore we only need to prove that their difference
is O(x6v). Using Lemma 2.3 it can be seen that the right side of identity M2k+1 is
congruent, modulo x6v, to

W e[:6v]Me[:6v] + x2vW e[:4v]Me[:4v].

For all n ≤ 6, replace the occurrences of W e[: n · v] and Me[: n · v] in the above
expression by the reduction modulo xn·v of the right side of the corresponding
identity in Lemma 2.4 and get a new expression, which we call rhs. Define

X := xv,

an := W e[n · v : (n+ 1) · v]/Xn,

bn := Me[n · v : (n+ 1) · v]/Xn,

c := Re.

Using the notation introduced above, we can represent the expressions lhs (2.13)
and rhs as polynomials in F2[a1, ..., a6, b1, ..., b6, c][X]. Note that it is not a problem
that aj commutes with bk while W e does not commute with Me, because in the
expressions concerned, the products of W e-terms and Me-terms are always in the
same order. We let the computer do the simplification and check that the difference
between these two polynomials is indeed O(X6), which completes the proof. �

Proof of Theorem 2.1. We prove the theorem for CF(t(z)); for CF(t̄(z)), the proof
is similar. By Lemma 2.5, we have For all j, k in {0, 1},

lim
n→∞

M2n,j,k = Me
j,k,

lim
n→∞

M2n+1,j,k = Mo
j,k,

lim
n→∞

W2n,j,k = W e
j,k,

lim
n→∞

W2n+1,j,k = W o
j,k.

Let z = 1/x. By the convergence theorem and identity (4.1),

CF(t(z)) =
Me

0,1(x)

Me
0,0(x)

.
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By definition, that φ(Me, 0, 1) and φ(Me, 0, 0) are minimal polynomials of Me
0,1

and Me
0,0. Therefore

P (x, y) = Rest
(
φ(Me, 0, 1)(x, t), y12φ(Me, 0, 1)(x, t/y)

)
is an annihilating polynomial of f(x) = Me

0,1/M
e
0,0.

Define

Q(x, y) = q4(x)y4 + q3(x)y3 + q2(x)y2 + q1(x)y + q0(x),

where

q0(x) = x12 + x11 + x8 + x7 + x6 + x5 + x3,

q1(x) = x11 + x10 + x9 + x7 + x6 + x4 + x2 + x,

q2(x) = x10 + x2 + 1,

q3(x) = x11 + x10 + x9 + x7 + x6 + x4 + x2 + x,

q4(x) = x11 + x10 + x7 + x6 + x5 + x3 + x2.

The polynomial Q(x, y) is the candidate for the minimal polynomial of f(x) found
by Padé-Hermite approximation. To prove that it is indeed the minimal polynomial
of f(x), we only need to prove that it is an irreducible factor of P (x, y) of multiplicity
m and R(x, y) := P (x, y)/Q(x, y)m is not an annihilating polynomial of f(x). We
verify the first point directly. For the second point, we find that when we truncate
f(x) to order 96, and substitute it for y in R(z, y), we get a series with valuation
smaller than 96, which proves that R(z, y) is not an annihilating polynomial of
f(x). Finally, z12Q(1/z, y) is the minimal polynomial of CF(t(z)) = f(1/z). �

3. Thue-Morse Stieltjes Continued Fraction

Let v be the (a/b, 1)-Thue-Morse sequence, then

Stiel(x; u) = b · Stiel(bx; v).

Therefore conjecture 1.3 admits the following equivalent form:

Conjecture 1.3a. Let k ≥ 2 be an integer. Let a be an element from F×
2k distinct

from 1. Let u be the (a, 1)-Thue-Morse sequence. The Stieltjes continued fraction
Stiel(x; u) is algebraic over Fk2(x). Its minimal polynomial is

p0(x) + p1(x)y + p2(x)y2 + p4(x)y4,

where

p0(x) = ((a2 + 1)/a4)x2 + 1/(a5 + a4),

p1(x) = ((a+ 1)/a5)x+ 1/a5,

p2(x) = (1/a5)x+ 1/(a6 + a5),

p4(x) = (1/(a6 + a5))x2.

Or still

Conjecture 1.3b. We regard a as a formal variable. Let u be the (a, 1)-Thue-
Morse sequence. Then the Stieljtes continued fraction Stiel(x; u) ∈ F2(a)[[x]] is
algebraic over F2(a)(x). Its minimal polynomial is

p0(x) + p1(x)y + p2(x)y2 + p4(x)y4,
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where

p0(x) = ((a2 + 1)/a4)x2 + 1/(a5 + a4),

p1(x) = ((a+ 1)/a5)x+ 1/a5,

p2(x) = (1/a5)x+ 1/(a6 + a5),

p4(x) = (1/(a6 + a5))x2.

It is clear that conjecture 1.3b implies conjecture 1.3a, noticing that the only
roots of the denominators of the coefficients of pj(x), j = 0, 1, 2, 4, are 0 and 1. On
the other hand, if conjecture 1.3b does not hold, then

0 6= p0(x) + p1(x) Stiel(x; u) + p2(x) Stiel(x; u)2 + p4(x) Stiel(x; u)4 =:

∞∑
n=0

cn(a)xn,

and there exists an n ∈ N for which cn(a) ∈ F2(a) is not zero. Necessarily there
exists a k ≥ 2 and an element u ∈ F2k\{0, 1} that is not a root of the numerator of
cn(a), and consequently conjecture 1.3a does not hold for a = u.

Using our program, we checked that conjecture 1.3a holds for all a ∈ F2k\{0, 1}
for k = 2, 3, 4. In this section we present our method.

3.1. Testing of the conjecture. For k ≥ 2, instead of all a in F2k\{0, 1}, we only
need to test one a in each of the orbits of the Frobenius morphism φ : a 7→ a2,
because if we let t denote the (a, 1)-Thue-Morse sequence and φ(t) the (φ(a), 1)-
Thue-Morse sequence, then

Stiel(x;φ(t)) = φ(Stiel(x; t)),

and they are either both algebraic or both transcendental.
For example, F8

∼= F2[u]/ < u3 + u+ 1 > is partitioned into orbits

{0}, {1}, {ū, ū2, ū4}, and {ū3, ū6, ū5}.
Therefore for F8, we only have to test the conjecture for a = ū and a = ū3.
Furthermore, we only have to test those a in F2k\{0, 1} whose orbit contains k
elements, because elements whose orbit has size l < k are already tested in F2l . For
example, for F16

∼= F2[u]/ < u4 + u + 1 >, the orbit of a = ū5 contains only itself
and a2. This means that a4 = a, and therefore it is already treated in F4.

3.2. Our method. The same method for testing conjecture 1.1 can be used here
to test conjecture 1.3a for a ∈ F2k\{0, 1} (k ≥ 2), with only slight modifications.
As most of the following have a uniform expression for all a, we first regard a as a
formal variable.

As in Section 2, we define

(3.1) Mn =

(
1 t2n−1x
1 0

)(
1 t2n−2x
1 0

)
· · ·
(

1 t0x
1 0

)
,

and

(3.2) Wn =

(
1 t̄2n−1x
1 0

)(
1 t̄2n−2x
1 0

)
· · ·
(

1 t̄0x
1 0

)
,

where t is the (a, 1)-Thue-Morse sequence, and t̄, (1, a)-Thue-Morse sequence. We
have Mn+1 = Wn ·Mn and Wn+1 = Mn ·Wn for all n.

We define four 2 × 2 matrices Me, Mo, W e and W o as follows: For all T ∈
{Me,Mo,W e,W o}, and all i, j ∈ {0, 1}, Ti,j is defined to be the unique root in
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F2(a)[[x]] of the polynomial φ(T, i, j) with prescribed first terms of its expansion.
The polynomials φ(T, i, j) and first terms can be found on the web page of the
authors. The reason for defining these matrices and how the polynomials φ(T, i, j)
and initial conditions are found are similar to those given in Section 2.

As expected, the following Lemma holds:

Lemma 3.1.

Me = W o ·Mo,(3.3)

Mo = W e ·Me,(3.4)

W e = Mo ·W o,(3.5)

W o = Me ·W e.(3.6)

Proof. Similar to the proof of Lemma 2.3. �

We have the following observation concerning the structure of the four matrices,
where I2 denote the 2× 2 identity matrix.

Observation 3.2. For k ≥ 2 and u = 22k−1 the following identities hold:

Me[u :2u] = xu · (au + 1) ·Me[:u] + au/2xu · I2,(3.7)

W e[u :2u] = xu · (au + 1) ·W e[:u] + au/2xu · I2;(3.8)

for k ≥ 2 and u = 22k,

Mo[u :2u] = xu · (au + 1) ·Mo[:u] + au/2xu · I2,(3.9)

W o[u :2u] = xu · (au + 1) ·W o[:u] + au/2xu · I2.(3.10)

Observation 3.3. For k ≥ 2 and u = 22k−1,

M2k = Me[:u] + au/2xu · I2,

W2k = W e[:u] + au/2xu · I2;

for k ≥ 2 and u = 22k,

M2k+1 = Mo[:u] + au/2xu · I2,

W2k+1 = W o[:u] + au/2xu · I2.

Lemma 3.4. Observation 3.2 implies observation 3.3.

Proof. Let us call the four identities in observation 3.3 also by the name M2k, W2k,
M2k+1 and W2k+1. Suppose observation 3.3 is true. We want to prove observation
3.2 by induction. For k = 2, the identities are verified directly. The inductive step
is

“M2k and W2k” implies “M2k+1 and W2k+1”,

“M2k+1 and W2k+1” implies “M2k+2 and W2k+2”.

Let us show for example how to prove

(3.11) “M2k and W2k” implies M2k+1,

By definition, the left side of the identity M2k+1 is equal to

W2k ·M2k,
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which, by induction hypothesis, is equal to

(W e[:u] + au/2xuI2) · (Me[:u] + au/2xuI2),

where u = 22k−1. Therefore only need to prove that

(3.12) W e[:u] ·Me[:u] + au/2xu(W e[:u] +Me[:u])−Mo[:2u]

is equal to zero. As the degree of the above polynomial is at most 2u− 1, we only

need to prove that it is O(x22k

). By (3.4),

Mo[:2u]

≡W e[:2u] ·Me[:2u] mod x2u

≡W e[:u] ·Me[:u] +W e[u :2u] ·Me[:u] +W e[:u] ·Me[u :2u] mod x2u

Therefore (3.12) is congruent modulo x2u to

au/2xu(W e[:u] +Me[:u]) +W e[u : 2u] ·Me[:u] +W e[:u] ·Me[u :2u].

Substitute W e[u : 2u] and Me[u : 2u] by the expressions in observation 3.2 and we
obtain that the quantity above is O(x2u). That is, expression (3.12) is congruent to
0 modulo x2u; since it has no term of order higher than 2u− 1, it is equal to 0. �

Proposition 3.5. Observation 3.3 implies conjecture 1.3b.

Proof. First, taking the limit of the identities in observation 3.3, we have for all
j, k ∈ {0, 1},

lim
n→∞

M2n,j,k = Me
j,k,

lim
n→∞

M2n+1,j,k = Mo
j,k,

lim
n→∞

W2n,j,k = W e
j,k,

lim
n→∞

W2n+1,j,k = W o
j,k.

Therefore

Stiel(x; t) = lim
n→∞

Pn
Qn

= lim
n→∞

P22n−1

Q22n−1
= lim
n→∞

M2n,0,1/x

M2n,0,0
=
Me

0,1/x

Me
0,0

.

We obtain the minimal polynomial of Stiel(x; t) from those of Me
0,1 and Me

0,0, using
the method described in the proof of Theorem 2.1. �

Remark 3.1. The above proposition says that observation 3.3 implies conjecture
1.3 when a is regarded as a formal variable. The implication also holds when a
specializes as an element in F2k\{0, 1} (k ≥ 2).

Therefore, to prove that conjecture 1.3a holds for a certain a ∈ F2k\{0, 1} (k ≥
2), we only need to prove that observation 3.2 holds for a. Because of the following
argument, we only have to check (3.7) through (3.10) for finitely many k’s instead
of for all k ≥ 2:

For k ≥ 2 and u = 22k−1, identities (3.7) and (3.8) can be written as

(3.13) T [[1w]2] = (au + 1) · T [[w]2]

for every component T of Me and W e and all binary words w of length 2k− 1 and
w 6= 02k−1; and

(3.14) T [[1w]2] = (au + 1) · T [[w]2] + au/2
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for w = 02k−1.
We calculate an automaton for T from the algebraic equation that defines it,

following the method in [10] (see Section 5). Let A(s, w) denote the state reached
after reading w from right to left starting from the state s, and τ the output
function. Define

E2k−1 = {A(i, w) | |w| = 2k − 1, w 6= 02k−1}.
Identity (3.13) and (3.14) can be written as

(3.15) τ(A(s, 1)) = (au + 1) · τ(A(s, ε))

for all s ∈ E2k−1, and

(3.16) τ(A(s, 1)) = (au + 1) · τ(A(s, ε)) + au/2

for s = A(i, 02k−1).
As E2k+1 is completely determined by E2k−1, the sequence (E2k+1)k is ultimately

periodic. The sequences (A(i, 02k−1))k and a22k−1

are also periodic. Therefore we
only need to check (3.15) and (3.16) for finitely many k’s.

3.3. An example. For a ∈ F4\{0, 1} and T = Me0,0, we find that the minimal
2-DFAO of T has as transition function (n, j) 7→ δ(n, j) (Λ(n) := [δ(n, 0), δ(n, 1)]):

n Λ(n) n Λ(n) n Λ(n) n Λ(n)

0 [1, 2] 5 [2, 8] 10 [7, 8] 15 [13, 17]

1 [3, 4] 6 [9, 4] 11 [8, 13] 16 [18, 4]

2 [5, 6] 7 [10, 4] 12 [14, 4] 17 [19, 12]

3 [1, 7] 8 [11, 6] 13 [15, 16] 18 [16, 6]

4 [4, 4] 9 [6, 12] 14 [12, 16] 19 [17, 8]

and output function n 7→ τ(n):

n τ(n) n τ(n) n τ(n) n τ(n) n τ(n) n τ(n) n τ(n)

0 1 3 1 6 a+ 1 9 a+ 1 12 1 15 1 18 a

1 1 4 0 7 0 10 0 13 1 16 a 19 a+ 1

2 a 5 a 8 a 11 a 14 1 17 a+ 1

The tuple (A(i, 02k−1), E2k−1) has the following values:

k = 3 : (1, {2, 4, 7, 8, 9}),
k = 5 : (1, {2, 4, 7, 8, 9, 13, 14}),
k = 7 : (1, {2, 4, 7, 8, 9, 13, 14, 17, 18}),
k = 9 : (1, {2, 4, 7, 8, 9, 13, 14, 17, 18}).

For all k ≥ 1, a22k−1

= a+1. Therefore we only have to check that identity (3.7)
holds for k = 3, 5, 7, which turns out to be true.

4. Period-doubling Continued Fractions

The method for checking conjecture 1.1 can be adapted for the verification of
conjecture 1.5. In this section, we give an example. First we introduce the notation.
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Let (a, b) be in (F2[z]\F2)2. Let p be the (a, b)-period-doubling sequence. Define
two sequences An(x) and Bn(x) by

A0(x) = xdeg(a)

(
a(1/x) 1

1 0

)
,

B0(x) = xdeg(b)

(
b(1/x) 1

1 0

)
,

An+1(x) = Bn(x)An(x) ∀n ≥ 0,

Bn+1(x) = An(x)An(x) ∀n ≥ 0.

Define x := 1/z. For an non-zero polynomial P (z), we define P̃ (x) to be P (1/x).
Then

CFn(p(z)) =
Pn(z)

Qn(z)
=
P̃n(x)

Q̃n(x)
∈ F2((x)) = F2((1/z)).

Comparing the definition of An(x) with definition (1.3), we see that

An(x)0,1 = xdn P̃2n−1(x),

An(x)0,0 = xdnQ̃2n−1(x),

for some positive integer dn, and

CF22n−1(p(z)) =
P̃22n−1(x)

Q̃22n−1(x)
=
A2n(x)0,1

A2n(x)0,0
.(4.1)

4.1. The (z3, z2+z+1)-period-doubling sequence. In this subsection, we prove
the theorem 1.6 We define four 2 × 2 matrices Ae, Ao, Be and Bo as follows: For
all T ∈ {Ae, Ao, Be, Bo}, and all i, j ∈ {0, 1}, Ti,j is defined to be the unique root
in F2(a)[[x]] of the polynomial φ(T, i, j) under with prescribed first terms of its
exansion. The polynomials φ(T, i, j) and first terms can be found on the web page
of the authors. The reason for defining these matrices and how the polynomials
φ(T, i, j) and initial conditions are found are similar to those given in Section 2.

Lemma 4.1. The following identities hold:

Ae = Bo ·Ao,
Ao = Be ·Ae,
Be = Ao ·Ao,
Bo = Ae ·Ae.

Proof. Similar to the proof of Lemma 2.3. �

Lemma 4.2. For n ≥ 2 even, u = (2n+3 + 1)/3, v = 2n,

Ae[: 2u] = (1 + xv + x2v) · (Ae[: u] + xvAe[: u− v]) + x4vAe[: 2u− 4v]+

(xu + xu+v + xu+2v)

(
1 1
0 1

)
,

Be[: 2u] = (1 + xv + x2v) · (Be[: u] + xvBe[: u− v]) + x4vBe[: 2u− 4v]+(
x2u−1 x2u−1 + x2u−4

0 x2u−1

)
.
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For n ≥ 1 odd, u = (2n+3 + 2)/3, v = 2n,

Ao[: 2u− 1] = (1 + xv + x2v) · (Ao[: u] + xvAo[: u− v]) + x4vAo[: 2u− 4v − 1]+

(x2u−2)

(
1 0
0 1

)
,

Bo[: 2u− 1] = (1 + xv + x2v) · (Bo[: u] + xvBo[: u− v]) + x4vBo[: 2u− 4v − 1]+(
xu + xu+v + xu+2v x2u−2 + x2u−4

0 xu + xu+v + xu+2v

)
.

Proof. We give the proof of the (0, 0)-th component of the first identity. The proofs
of the other 15 identities are similar. Let T = Ae0,0. We want to prove that

(4.2) T [:2u] = (1+xv+x2v)·(T [:u]+xvT [:u−v])+x4vT [:2u−4v]+xu(1+xv+x2v).

for all n ≥ 2 even, u = (2n+3 + 1)/3, and v = 2n. Equation (4.2) can be rewritten
as

T [u :2u] = xvT [u− v :u] + x2vT [u− v :u] + x3vT [:u− v]+

x4vT [:2u− 4v] + xu + xu+v + xu+2v

= (xu + xvT [u− v :2v]) + (xvT [2v :u] + x3vT [:u− 2v])+

(xu+v + x3vT [u− 2v : v] + x2vT [u− v : 2v])+

(x2vT [2v :u] + x3vT [v :u− v] + x4vT [:u− 2v])+

(xu+2v + x4vT [u− 2v :2u− 4v])

noting that u < 3v < u + v < 4v < u + 2v < 2u. The above identity can be
decomposed into five parts:

T [u : 3v] = xu + xvT [u− v :2v]

T [3v : u+ v] = xvT [2v :u] + x3vT [:u− 2v]

T [u+ v : 4v] = xu+v + x3vT [u− 2v : v] + x2vT [u− v : 2v]

T [4v : u+ 2v] = x2vT [2v :u] + x3vT [v :u− v] + x4vT [:u− 2v]

T [u+ 2v : 2u] = xu+2v + x4vT [u− 2v :2u− 4v]

That the above five identities hold for all n ≥ 2, u = (2n+3 + 1)/3, and v = 2n is
equivalent to the following identities:

T [[10w]2] = 1 + T [[1w]2] ∀w ∈ L0(4.3)

T [[10w]2] = T [[1w]2] ∀w ∈ L1(4.4)

T [[11w]2] = T [[10w]2] + T [[w]2] ∀w ∈ L2(4.5)

T [[11w]2] = 1 + T [[w]2] + T [[1w]2] ∀w ∈ L0(4.6)

T [[11w]2] = T [[w]2] + T [[1w]2] ∀w ∈ L1(4.7)

T [[100w]2] = T [[10w]2] + T [[1w]2] + T [[w]2] ∀w ∈ L2(4.8)

T [[100w]2] = 1 + T [[w]2] ∀w ∈ L0(4.9)

T [[100w]2] = T [[w]2] ∀w ∈ L1(4.10)

T [[10w]2] = T [[w]2] ∀w ∈ L3(4.11)

T [[10w]2] = T [[w]2] ∀w ∈ L4(4.12)
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where

L0 = L((10)∗11),

L1 = L((10)∗11{00, 01, 10, 11}+),

L2 = L((10)∗0{0, 1}{00, 01, 10, 11}∗ + (10)+),

L3 = L((10)+0{00, 01, 10, 11}+),

L4 = L((10)+{0, 1}).
From the minimal polynomial and the first terms of T , we find its minimal automa-
ton. Its transition function δ (Λ(n) := [δ(n, 0), δ(n, 1)]) and output function τ are
as follows:

n Λ(n) n Λ(n) n Λ(n) n Λ(n) n Λ(n)

0 [1, 2] 6 [11, 12] 12 [15, 20] 18 [23, 12] 24 [27, 15]

1 [3, 4] 7 [13, 14] 13 [9, 21] 19 [24, 23] 25 [15, 18]

2 [5, 6] 8 [5, 15] 14 [14, 14] 20 [14, 26] 26 [17, 20]

3 [7, 8] 9 [16, 14] 15 [22, 10] 21 [14, 16] 27 [28, 14]

4 [9, 10] 10 [17, 18] 16 [23, 9] 22 [5, 17] 28 [27, 17]

5 [8, 9] 11 [19, 6] 17 [24, 25] 23 [16, 16]

n τ(n) n τ(n) n τ(n) n τ(n) n τ(n) n τ(n)

0 1 5 1 10 0 15 1 20 0 25 1

1 1 6 0 11 0 16 1 21 0 26 0

2 1 7 1 12 1 17 0 22 1 27 0

3 1 8 1 13 1 18 1 23 1 28 0

4 1 9 1 14 0 19 0 24 0

Let A(s, w) denote the state reached after reading w from right to left starting
from the state s. For j = 0, 1, . . . , 4, define

Ej = {A(0, w) | w ∈ Lj}.

We can compute Ej explicitly and find

E0 = {6}
E1 = {14, 15, 16, 17, 18, 20}
E2 = {3, 4, 5, 13, 14, 15, 16, 17, 19, 27}
E3 = {9, 14, 21, 23}
E4 = {8, 9}.

Equations (4.3) through (4.12) can be written as

τ(A(s, 10)) = 1 + τ(A(s, 1)) ∀s ∈ E0(4.13)

τ(A(s, 10)) = τ(A(s, 1)) ∀s ∈ E1(4.14)

τ(A(s, 11)) = τ(A(s, 10)) + τ(s) ∀s ∈ E2(4.15)

τ(A(s, 11)) = 1 + τ(s) + τ(A(s, 1)) ∀s ∈ E0(4.16)
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τ(A(s, 11)) = τ(s) + τ(A(s, 1)) ∀s ∈ E1(4.17)

τ(A(s, 100)) = τ(A(s, 10)) + τ(A(s, 1)) + τ(s) ∀s ∈ E2(4.18)

τ(A(s, 100)) = 1 + τ(s) ∀s ∈ E0(4.19)

τ(A(s, 100)) = τ(s) ∀s ∈ E1(4.20)

τ(A(s, 10)) = τ(s) ∀s ∈ E3(4.21)

τ(A(s, 10)) = τ(s) ∀s ∈ E4(4.22)

We verify equations (4.13) through (4.22) directly. �

Lemma 4.3. For n ≥ 2 even, u = (2n+3 + 1)/3, v = 2n,

An = Ae[: u] + xv ·Ae[: u− v] + xu ·
(

1 1
0 1

)
Bn = Be[: u] + xv ·Be[: u− v]

For n ≥ 1 odd, u = (2n+3 + 2)/3, v = 2n,

An = Ao[: u] + xv ·Ao[: u− v]

Bn = Bo[: u] + xv ·Bo[: u− v] + xu · I2
Proof. For n ≥ 2 even, we prove that

An ∧Bn ⇒ An+1.

Set u = (2n+3 + 1)/3, v = 2n. Identity An+1 can be written as

(4.23) An+1 = Ao[: 2u] + x2v ·Ao[2u− 2v]

The left side of Eq. (4.23) is

BnAn

= (Be[: u] + xv ·Be[: u− v])

(
Ae[: u] + xv ·Ae[: u− v] + xu ·

(
1 1
0 1

))
= (Be[: u] + xv ·Be[: u− v])(Ae[: u] + xv ·Ae[: u− v])

xuBe[: u]

(
1 1
0 1

)
+ xu+vBe[: u− v]

(
1 1
0 1

)
By lemma 4.1, the right side of Eq. (4.23) is congruent, modulo x2u to

(1 + x2v)Ao[: 2u] ≡ (1 + x2v)Be[: 2u]Ae[: 2u] (mod x)2u.

We recall that

Ae[: 2u] = (1 + xv + x2v) · (Ae[: u] + xvAe[: u− v]) + x4vAe[: 2u− 4v]+

(xu + xu+v + xu+2v)

(
1 1
0 1

)
,

Be[: 2u] = (1 + xv + x2v) · (Be[: u] + xvBe[: u− v]) + x4vBe[: 2u− 4v]+(
x2u−1 x2u−1 + x2u−4

0 x2u−1

)
.

Noticing that (
x2u−1 x2u−1 + x2u−4

0 x2u−1

)
Ae[: 2u] ≡ 0 mod x2u,
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and

(1 + x2v)(1 + xv + x2v)2 = 1 + x6v ≡ 0 mod x2u,

we have

(1 + x2v) ·Be[: 2u]Ae[: 2u]

≡ (1 + x2v) ·
(
(1 + xv + x2v) · (Be[: u] + xvBe[: u− v]) + x4vBe[: 2u− 4v]

)
((1 + xv + x2v) · (Ae[: u] + xvAe[: u− v]) + x4vAe[: 2u− 4v])

(1 + x2v) ·
(
(1 + xv + x2v) · (Be[: u] + xvBe[: u− v]) + x4vBe[: 2u− 4v]

)
(xu + xu+v + xu+2v)

(
1 1
0 1

)
≡ (Be[: u] + xvBe[: u− v]) · (Ae[: u] + xvAe[: u− v])

xu · (Be[: u] + xvBe[: u− v]) ·
(

1 1
0 1

)
mod x2u.

Thus we have proved that both sides of Eq. (4.23) are congruent modulo x2u, so
that they must be equal as both have degree at most 2u. �

Theorem 1.6 can be derived from lemma 4.3 and the definition of Ae, using the
same method as in the proof of theorem 2.1.

5. From equation to automaton

In this section we give an description of the algorithm that we implemented to
calculate a p-automaton of an algebraic series T (x) in Fq[[x]] from an annihilating
polynomial of it, where Fq is a finite field of characteristic p. The algorithm is based
on the proof of theorem 1 in [10].

Step one: Normalization
Input: an annihilating polynomial P (x, y) ∈ Fq(x)[y] of T (x).
Output: an annihilating polynomial Q(x, y) ∈ Fq(x)[y] of T (x) the form

y +
a1(x)

b1(x)
yp

1

+
a2(x)

b2(x)
yp

2

+ · · ·+ an(x)

bn(x)
yp

n

.

Method: use the relation P (x, T (x)) = 0 to express T (x)p
j

as Fp(x)-linear combi-
nation of T (x)k, k = 0, 1, . . . , d − 1, where d is the degree of P (x, y) as a polyno-

mial in y. In practice, to find the expression of T (x)p
j

, we first calculate that of

T (x)p
j−1

, then raise it to the p-th power, and finally reduce again using the relation
P (x, T (x)) = 0.

We know that the family T (x)p
j

, j = 0, 1, . . . , d is necessarily linearly dependent.

However, as it can be costly to compute T (x)p
j

when j is large, in reality we stop

once the rank of the family T (x)p
j

, k = 0, 1, . . . , j0 is less than j0 + 1.

Step two: From normalized equation to kernel
Input: the relation

(5.1) T (x) =
a1(x)

b1(x)
T (x)p

1

+
a2(x)

b2(x)
T (x)p

2

+ · · ·+ an(x)

bn(x)
T (x)p

n

.

Output: the p-kernel of T (x).
Method: We let φ denote the Frobenius morphism and Λj the Cartier operator



ALGEBRAICITY OF THUE-MORSE CONTINUED FRACTIONS 23

that maps
∑
alx

l to
∑
apl+jx

l for j = 0, 1, . . . , p − 1. We recall that for a series
f(x) =

∑
l≥l0 clx

l ∈ Fq((x)) and polynomials a(x) and b(x),

Λj(a(x)f(x)p) = Λj(a(x))Λ0(f(x)p)

for j = 0, 1, . . . , p and

Λ0(f(x)p) = Λ0

∑
l≥l0

cpl x
p·l =

∑
l≥l0

cpl x
l = φ(f)(x).

Combining the above two identities and we get

(5.2) Λj

(
a(x)

b(x)
f(x)p

)
= Λj

(
a(x)b(x)p−1 f(x)p

b(x)p

)
= Λj(a(x)b(x)p−1)

φ(f)(x)

φ(b)(x)
.

When we apply repeatedly Λj , j = 0, 1, . . . , p−1 to both sides of (5.1) using the
above computation rule and rewrite φk(T )(x) using relation (5.1), we always get
an expression of the form (this will be illustrated by example 5.1 below)

(5.3)
c1(x)

d1(x)
φk(T )(x)p

1

+
c2(x)

d2(x)
φk(T )(x)p

2

+ · · ·+ cn(x)

dn(x)
φk(T )(x)p

n

,

where k = 0, 1, . . . , log q/ log p− 1, and cj(x) and dj(x) are polynomial of bounded
degree for j = 1, 2, . . . , n. To see the last point, note that for dj(x) is always a
factor of

n∏
l=1

φk(bl(x))

for some k ∈ [0, log q/ log p), and

deg cj ≤ deg dj + max{deg al − deg bl | l = 1, 2, . . . , n}.
The set of expressions of the form (5.3) is therefore finite and the process must
terminate. In the end we get a finite set that is the p-kernel of T (x).

In our program, the expression (5.3) is encoded by the tuple

({1 : c1(x)/d1(x), 2 : c2(x)/d2(x), . . . , n : cn(x)/dn(x)} , k) .

Remark 5.1. Note that the reason we use powers of p instead of powers of q in
(5.1) is that the latter usually needs much larger coefficients.

Example 5.1. Set a = ū ∈ F4 = F2[u]/ < u2 + u + 1 >. Let T (x) be the unique
solution in F4[[x]] of

(x2 + ax)y3 + y + a+ x = 0.

We write the equation in the normalized form, which is really easy for this example:

(5.4) T (x) =
1

x+ a
T (x)2 + xT (x)4.

We use computation rule (5.2) to calculate Λ0T (x) and Λ0Λ0T (x) to illustrate this
process:

Λ0T (x) = Λ0(
1

x+ a
T (x)2) + Λ0(xT (x)4)

= Λ0

(
(x+ a)

T (x)2

(x+ a)2

)
+ Λ0(x) · φ(T )(x)2

= a
φ(T )(x)

x+ a+ 1
.



24 YINING HU AND GUO-NIU HAN

To calculate Λ0Λ0T (x), we need to first put the above expression into form (5.3).
Applying φ to both sides of (5.4) we get

φ(T )(x) =
1

x+ a+ 1
φ(T )(x)2 + xφ(T )(x)4.

Therefore

Λ0T (x) =
a

(x+ a+ 1)2
φ(T )(x)2 +

ax

(x+ a+ 1)
φ(T )(x)4,

and

Λ0Λ0T (x) = Λ0

(
a

(x+ a+ 1)2
φ(T )(x)2

)
+ Λ0

(
ax(x+ a+ 1)

(x+ a+ 1)2
φ(T )(x)4,

)
=

a

x+ a
φ2(T )(x) +

a

x+ a
φ2(T )(x)2

=
a

x+ a
T (x) +

ax

x+ a
T (x)2.

In our program, the series T (x), Λ0T (x) and Λ0Λ0T (x) are encoded by

({0 : 1}, 0),

({0 : a/(x+ a+ 1)}, 1),

and
({0 : a/(x+ a), 1 : ax/(x+ a)}, 0).

Step three: Output function In step two, each element from the p-kernel of
T (x) is expressed as an Fq(x)-linear combination of powers of φk(T )(x), for some
k ∈ [0, log q/ log p). The output function maps the corresponding state to the
constant term of the series. To calculate it, we simply plug in T (x) mod xD+1,
where D is the maximum of 0 and the minus of the orders of the coefficients of the
linear combination.
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and Éric Schost. Algorithmes efficaces en calcul formel. https://hal.archives-ouvertes.

fr/AECF, 2017.

[8] Yann Bugeaud. Automatic continued fractions are transcendental or quadratic. Ann. Sci. Éc.
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[17] Sébastien Maulat and Bruno Salvy. Formulas for continued fractions: An automated guess
and prove approach. Proceedings of the 2015 ACM on International Symposium on Symbolic

and Algebraic Computation, pages 275–282, 2015.

[18] W. H. Mills and David P. Robbins. Continued fractions for certain algebraic power series. J.
Number Theory, 23(3):388–404, 1986.
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