
ON THE RATIONAL APPROXIMATION TO
THUE–MORSE RATIONAL NUMBERS

YANN BUGEAUD AND GUO-NIU HAN

Abstract. Let b ≥ 2 and ` ≥ 1 be integers. We establish that there
is an absolute real number K such that all the partial quotients of the
rational number ∏̀

h=0

(1− b−2h),

of denominator b2
`+1−1, do not exceed exp(K(log b)2

√
` 2`/2).

1. Introduction

An easy covering argument which goes back to Cantelli shows that, for
almost all real numbers ξ (with respect to the Lebesgue measure) and for
every positive ε, the inequality∣∣∣∣ξ − p

q

∣∣∣∣ > 1

q2+ε

holds for every sufficiently large q. However, it is often a very difficult
problem to show that a given real number shares this property, unless its
continued fraction expansion is explicitly determined. This is known to be
the case for any irrational real algebraic number, by Roth’s theorem, and
for only a few other real numbers defined by their expansion in some integer
base. Let t = t0t1t2 . . . denote the Thue–Morse word over {−1, 1} defined
by t0 = 1, t2k = tk and t2k+1 = −tk for k ≥ 0. Then, the Thue–Morse
generating series ξt(z) is given by

ξt(z) =
∑
k≥0

tkz
−k = 1− z−1 − z−2 + z−3 − z−4 + z−5 + z−6 − . . .

=
∏
h≥0

(1− z−2h).

By means of a non-vanishing result obtained in [1] for the Hankel deter-
minants associated with the Thue–Morse sequence, Bugeaud [6] established
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that, for any given positive ε and any integer b ≥ 2, the Thue–Morse–Mahler
number

ξt(b) =
∑
k≥0

tk
bk

= 1− 1

b
− 1

b2
+

1

b3
− 1

b4
+

1

b5
+

1

b6
− 1

b7
− 1

b8
+ . . .

satisfies the inequality ∣∣∣ξt(b)− p

q

∣∣∣ > 1

q2+ε
,

for every rational number p/q with q sufficiently large. Subsequently, his
result has been considerably improved by Badziahin and Zorin [4, Th. 11],
who showed that there exists a positive real number C such that the stronger
inequality

(1.1)
∣∣∣ξt(b)− p

q

∣∣∣ > 1

q2 exp(C log b
√

log q log log(3q))

holds as soon as q is large enough. Thus, all the partial quotients of ξt(b)
are rather small. Note also that, in view of [4, Th. 11], the number K
occurring in [4, Th. 2] must depend on b.

Observe that the Thue–Morse power series ξt(z) is the limit of the se-
quence of rational functions

f`(z) =
∏̀
h=0

(1− z−2h).

More precisely, we have

ξt(z) = f`(z) +O(z−2
`+1

), ` ≥ 1,

and

(1.2) |ξt(x)− f`(x)| ≤ 1

(|x| − 1)|x|2`+1−1 , ` ≥ 1, x ∈ C, |x| > 1.

Let b ≥ 2 and ` ≥ 1 be integers. For a rational number p/q, we derive from
(1.2) that

(1.3)

∣∣∣∣ ∣∣∣ξt(b)− p

q

∣∣∣− ∣∣∣f`(b)− p

q

∣∣∣ ∣∣∣∣ ≤ 1

(b− 1)b2`+1−1 .

Consequently, ξt(b) and f`(b) have the same first partial quotients. To see

this, let pn/qn be the convergent to ξt(b) with qn ≤ b2
`

and n maximal for
this property. We assume that ` is sufficiently large to ensure that n ≥ 8;
then, a short calculation shows that

(1.4) qn ≥ qn−1 + qn−2 ≥ · · · ≥ 8qn−5.
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By a result of Borel [12, Ch. I, Th. 5B], there exists ε in {0, 1, 2} such that∣∣∣ξt(b)− pn−5−ε
qn−5−ε

∣∣∣ ≤ 1√
5q2n−5−ε

.

It then follows from (1.3) and (1.4) that∣∣∣f`(b)− pn−5−ε
qn−5−ε

∣∣∣ ≤ 1√
5q2n−5−ε

+
2

q2n
≤
( 1√

5
+

1

32

) 1

q2n−5−ε
<

1

2q2n−5−ε
,

which, by a classical theorem of Legendre [12, Ch. I, Th. 5C], implies that
pn−5−ε/qn−5−ε is a convergent of f`(b). Consequently, ξt(b) and f`(b) have
the same n− 7 first partial quotients. By (1.1), these partial quotients are
rather small. However, (1.1) gives no information on the remaining partial
quotients of f`(b), thus, in particular, on the rate with which the rational

number f`(b) of denominator b2
`+1−1 is approximated by rational numbers

p/q of denominator q greater than b2
`
. In the present note, we address

this question and show that an inequality like (1.1) remains true for every
convergent of f`(b).

Theorem 1.1. There exists a positive real number K such that, for every
integer b ≥ 2 and every integer ` ≥ 2, the inequality∣∣∣∏̀

h=0

(1− b−2h)− p

q

∣∣∣ > 1

q2 exp(K log b
√

log q log log(3q))
,

holds for every rational number p/q different from f`(b). Write

f`(b) =
∏̀
h=0

(1− b−2h) = [0; a
(`)
1 , a

(`)
2 , . . . , a

(`)
L(`)],

with a
(`)
L(`) ≥ 2. The partial quotients a

(`)
j of f`(b) are all at most equal to

b2K
√
`
√
log b log log 3b 2`/2. There exists a positive real number C, depending only

on b, such that the length L(`) of the continued fraction of f`(b) exceeds

C2`/2/
√
`.

The second assertion of Theorem 1.1 immediately follows from the first
one and from the classical theory of continued fractions. The last assertion
already follows from (1.1).

Theorem 1.1 is mainly motivated by the very few known results on con-
tinued fraction expansions of sequences of rational numbers. Pourchet [10]
(see also [5, 11]) proved that, for all coprime integers a and b with 1 < b < a
and for every positive ε, there exists a positive C, depending only on ε and
on the prime divisors of a and b, such that all the partial quotients of
(a/b)n are less than Cbεn. This was subsequently extended to quotients of
power sums by Corvaja and Zannier [7], with a similar conclusion. Conse-
quently, the length of the continued fraction expansion of (a/b)n (resp., of
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Figure 1. Logarithm of the absolute values of the coeffi-
cients of the k-th convergent

(an− 1)/(bn− 1)) tends to infinity with n. We stress that the conclusion of
Theorem 1.1 is much stronger.

The function q 7→ exp(
√

log q log log(3q)) occurring in (1.1) is a conse-
quence of the bound of order (c1k)c2k obtained in [4] for the absolute values
of the coefficients of the numerator and denominator of the k-th convergent
to ξt(z). However, numerical experiments suggest that a better bound of

the shape c
√
k

3 should hold (here, c1, c2 and c3 are absolute, positive real
numbers); such a result seems difficult to establish, see Figure 1.

To prove (1.1), Badziahin and Zorin [4] used that all the partial quotients
of the continued fraction expansion of ξt(z) are linear, a result established
by Badziahin [2]. Here, we first show that all the partial quotients of the
rational functions f`(z), ` ≥ 1, are linear. This is the main novelty of the
present note and the object of Section 2. Then, in Section 3, we prove
Theorem 1.1 by adapting to our purpose the argument of [4]. Finally, in
the last section, we discuss another example.

2. The partial quotients of the rational functions f`(z)

For a non-zero rational number x, we let ν2(x) denote its 2-adic valuation,
that is, the exponent of 2 in its decomposition in product of prime factors.
We put ν2(0) = +∞.

Proposition 2.1. For every non-negative integers ` and j ≤ 2`+1 − 1, let

v
(`)
j be the family of rational constants defined by

v
(0)
0 = 1, v

(0)
1 = 1,

and, for ` ≥ 1,

v
(`)
0 = 1,
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v
(`)
1 = 2,

v
(`)
2j = −

v
(`−1)
j

v
(`)
2j−1

, 1 ≤ j ≤ 2` − 1,

v
(`)
2j+1 = 1 + (−1)j − v(`)2j , 1 ≤ j ≤ 2` − 1.

Then, for all ` ≥ 0 and 0 ≤ j ≤ 2`+1 − 1, we have

ν2(v
(`)
j ) =


1, for ` ≥ 1 and j = 1;

−1, for ` ≥ 1 and j = 2` or j = 2` + 1;

0, otherwise.

As a consequence, we have v
(`)
j 6= 0 for all ` ≥ 0 and 0 ≤ j ≤ 2`+1 − 1.

The first values of v
(`)
j are given in the following table:

` \ j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 1
1 1 2 −1

2
1
2

2 1 2 −1 1 1
2

3
2
−1

3
1
3

3 1 2 −1 1 1 1 −1 1 −1
2

5
2
−3

5
3
5

5
9

13
9
− 3

13
3
13

Consequently, the first values of ν2(v
(`)
j ) are given in the following table:

` \ j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0
1 0 1 −1 −1
2 0 1 0 0 −1 −1 0 0
3 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

Proof. We proceed by induction on `. Recall that, for any non-zero ra-
tional numbers x, y, we have ν2(x/y) = ν2(x) − ν2(y) and ν2(x + y) ≥
min{ν2(x), ν2(y)}, with equality if ν2(x) 6= ν2(y). The tables above show
that the proposition holds for 0 ≤ ` ≤ 3. Let ` ≥ 4 be an integer such that
the proposition holds for `− 1. By definition, we have

ν2(v
(`)
0 ) = 0, ν2(v

(`)
1 ) = 1, ν2(v

(`)
2 ) = ν2(−1) = 0.

Since ν2(v
(`)
2j+1) = ν2(v

(`)
2j ) for every j = 1, . . . , 2` − 1 such that ν2(v

(`)
2j ) 6= 1,

we derive that ν2(v
(`)
3 ) = 0, thus, v

(`)
3 is nonzero and ν2(v

(`)
4 ) = 0. Reiterating

the argument, we get that v
(`)
5 , . . . , v

(`)

2`−1 are all nonzero and

ν2(v
(`)
5 ) = . . . = ν2(v

(`)

2`−1) = 0, ν2(v
(`)

2`
) = ν2(v

(`−1)
2`−1 ) = −1.

Then, ν2(v
(`)

2`+1
) = −1. Thus, v

(`)

2`+1
is nonzero and ν2(v

(`)

2`+2
) = −1− (−1) =

0. We derive that ν2(v
(`)

2`+3
) = 0, thus, v

(`)

2`+3
is nonzero and ν2(v

(`)

2`+4
) = 0.
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Inductively, we get that v
(`)

2`+5
, . . . , v

(`)

2`+1−1 are all nonzero and

ν2(v
(`)

2`+5
) = . . . = ν2(v

(`)

2`+1−1) = 0.

This completes the induction step. �

Set

g`(z) =
1

z
f`(z) =

1

z

∏̀
h=0

(1− z−2h),

and

g`(z) = [0; a1(z), a2(z), . . . , am(z)] =
1

a1(z)
+

1
a2(z)

+ · · ·+ 1
am(z)

,

where ai(z) is a polynomial with rational coefficients for 1 ≤ i ≤ m. The
following theorem, which can be seen as a finite version of [3, Prop. 3.3],
shows that all the ai(z) are polynomials of degree one.

Theorem 2.2. Let v
(`)
j (` ≥ 0, 0 ≤ j ≤ 2`+1 − 1) be the family of rational

numbers defined in Proposition 2.1. Then,

(2.1) g`(z) =
v
(`)
0

z + 1
+

v
(`)
1

z − 1
+

v
(`)
2

z + 1
+ · · ·+ v

(`)

2`+1−1
z − 1

, ` ≥ 0.

Moreover, for every ` ≥ 0, all the partial quotients in the continued fraction
expansion of g`(z) are polynomials of degree one.

Proof. The last assertion of Theorem 2.2 immediately follows from Propo-
sition 2.1. We prove identity (2.1) by induction on `. Since

1

z
(1− z−1) =

1
z + 1

+
1

z − 1

and
1

z
(1− z−1)(1− z−2) =

1
z + 1

+
2

z − 1
− 1/2

z + 1
+

1/2
z − 1

,

identity (2.1) is true for ` = 0, 1. Let k ≥ 1 be an integer and suppose that
(2.1) is true for ` ≤ k. We set

(2.2) hk+1(z) =
v
(k+1)
0

z + 1
+

v
(k+1)
1

z − 1
+

v
(k+1)
2

z + 1
+ · · ·+ v

(k+1)

2k+2−1
z − 1

.

It suffices prove that gk+1(z) = hk+1(z). By applying the even contraction
theorem (see, for example, [9, Theorem 2.1(1)]) to hk+1(z), we have

(2.3) hk+1(z) = b0 +
a1
b1

+
a2
b2

+
a3
b3

+ · · ·,

where

a1 = v
(k+1)
0 (z − 1),
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a2 = −v(k+1)
1 v

(k+1)
2 (z − 1),

aj = −v(k+1)
2j−3 v

(k+1)
2j−2 (z − 1)2, 3 ≤ j ≤ 2k+1,

aj = 0, j > 2k+1,

b0 = 0,

b1 = (z + 1)(z − 1) + v
(k+1)
1 ,

bj = (z − 1)
(
(z − 1)(z + 1) + v

(k+1)
2j−1 + v

(k+1)
2j−2

)
, 2 ≤ j ≤ 2k+1,

bj = 0, j > 2k+1.

By removing the common factors in numerators and denominators, we ob-
tain

(2.4) hk+1(z) = b0 +
a′1
b′1

+
a′2
b′2

+
a′3
b′3

+ · · ·

where

a′1 = v
(k+1)
0 (z − 1),

a′2 = −v(k+1)
1 v

(k+1)
2 ,

a′j = −v(k+1)
2j−3 v

(k+1)
2j−2 , 3 ≤ j ≤ 2k+1,

a′j = 0, j > 2k+1,

b′0 = 0,

b′1 = (z + 1)(z − 1) + v
(k+1)
1 ,

b′j = (z − 1)(z + 1) + v
(k+1)
2j−1 + v

(k+1)
2j−2 , 2 ≤ j ≤ 2k+1,

b′j = 0, j > 2k+1.

Using the recurrence relations defined in the statement of Theorem 2.2, a
quick calculation shows that we have

hk+1(z) =
z − 1
z2 + 1

+
v
(k)
1

z2 − 1
+

v
(k)
2

z2 + 1
+ · · ·+ v

(k)

2k+1−1
z2 − 1

.

This implies that hk+1(z) = (z − 1)gk(z
2) = gk+1(z). �

Theorem 2.2 shows that the sequence of partial denominators of the
continued fraction (2.1) is given by z + 1, z − 1, z + 1, z − 1, . . ., that is, by
the alternating sequence over {z+1, z−1}. For a more general (z+b, z−b)
phenomenon, see [8, Lemma 3.1].

3. Proof of Theorem 1.1

The key new ingredient for the proof of Theorem 1.1 is the fact that all
the partial quotients of the rational functions f`(z) are linear. This allows
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us to follow the argument of [4], with some minor changes. For the sake of
readability, we keep most of the notation of [4] and we sketch how to adapt
the proof of [4, Th. 11]. Instead of working with the (infinite) power series
gu(z) used in [4], we fix a positive integer ` and work with the (finite) power
series

g`(z) = z−1 f`(z) = z−1 − z−2 − z−3 + z−4 + . . .+ (−1)`z−2
`

.

Since, by Theorem 2.2, all the partial quotients of g`(z) are linear, the
auxiliary results in [4] hold. Furthermore, for m ≥ 1, we have

g`+m(z) = z−1
`+m∏
h=0

(1− z−2h)

= g`(z
2m) z2

m−1
m−1∏
h=0

(1− z−2h) = g`(z
2m)

m−1∏
h=0

(z2
h − 1).

Denoting by pk,`(z)/qk,`(z) the convergents to q`(z), where k = 1, . . . , 2`+1,
and defining pk,`,m(z) and qk,`,m(z) by

qk,`,m(z) = qk,`(z
2m),

pk,`,m(z) =
m−1∏
h=0

(z2
h − 1) pk,`(z

2m),

the analogue of [4, (2.25)] holds, namely, we have

(3.1)
∣∣∣g`+m(b)− pk,`,m(b)

qk,`,m(b)

∣∣∣ ≤ 2(k + 1)kk/22m

qk,`,m(b) · bk2m+1
,

for k = 1, . . . , 2`+1. By [4, Lemma 9], for m large enough, the integer
qk,`,m(b) is controlled and is comparable to bk2

m
.

We now take a large integer L (which corresponds to the integer ` in
the statement of the theorem) and study the rate of approximation to the

rational number gL(b) of denominator b2
L+1

by rational numbers p/q of

denominator less than b2
L+1

. We follow the argument of [4] and look for a
power of b close to q. We use the fact that every integer n less than 2L+1

is rather close to a product k2m, where L = m + ` and k ≤ 2`+1. The
latter constraint comes from the construction of our finite sequence of good
rational approximations to gL(b). It is not required to hold in [4].

Let p/q be a rational number with q < b2
L+1

and q sufficiently large (it
is sufficient to assume that q exceeds bκ1 , for some absolute constant κ1) to
guarantee that the real number x defined in [4, (3.2)] satisfies x > b2.

As in [4, (3.8)], we set t = (log x)/(log b); note that t > 2. Let τ ≥ 2 be
a real number and denote by log2 the logarithm in base 2. Assume that

(3.2) t+ 2τ
√
t log2 t < 2L+1.
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This inequality holds if, for a suitable positive κ2, depending only on τ , we
have

(3.3) q < exp
(
−κ2 log b

√
log2 q log2 log2 q

)
b2

L+1

.

There exist integers n and m and a real number α such that 2m divides n
and

t ≤ n ≤ t+ 2τ
√
t log2 t, 2m = ατ

√
t log2 t, 1 ≤ α ≤ 2.

It follows from (3.2) that the integer

k =
n

2m
≤ t

ατ
√
t log2 t

+
2

α

is less than 2L−m+1, as required.
To make use of [4, Lemmas 8 and 9], we also have to check [4, (2.26)]

and [4, (2.34)], that is, that the inequalities

22m ≥ 4(k + 1)kk/2, 22m > 3kk/2

hold. Since we have

ατ
√
t log2 t ≥

( √
t

ατ
√

log2 t
+

2

α

)
log
( √

t

ατ
√

log2 t
+

2

α

)
for τ large enough, both inequalities are satisfied if τ is large enough.

We conclude that we have an inequality similar to [4, (3.1)] provided that
q exceeds bκ1 and satisfies (3.3). Namely, there exists an absolute positive
real number C such that, for every rational number p/q with

bκ1 < q < b2
L+1−κ2

√
log2 q log2 log2 q,

we have ∣∣∣∣gL(b)− p

q

∣∣∣∣ ≥ 1

q2 exp(C log b
√

log q log log(3q))
.

Since gL(b) is a rational number of denominator b2
L+1

, the last inequality,
with possibly a different value of C, holds if q satisfies

b2
L+1−κ2

√
log2 q log2 log2 q ≤ q < b2

L+1

.

It also holds (again with possibly a different value of C) when q ≤ bκ1 ,
by using rational approximations coming from (3.1) combined with triangle
inequalites. This proves the theorem.
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4. A further example

The method developed in Section 2 is not specific to the Thue–Morse
sequence and may be used to derive a similar conclusion for other sequences.
In this section, we give a further example, whose corresponding infinite
product was considered in [2, 4].

For nonzero integers u, v with u2 6= v, let us consider, for ` ≥ 0,

g̃u,v,`(z) =
1

z

∏̀
h=0

(1 + uz−3
h

+ vz−2·3
h

).

Inspired by [2, Theorem 1.2] where similar infinite products are studied, we
define

α
(0)
1 = −u, α

(0)
2 =

u3 − 2uv

u2 − v
, α

(0)
3 =

uv

u2 − v
,

β
(0)
1 = 1, β

(0)
2 = u2 − v, β

(0)
3 =

v3

u4 − 2u2v + v2
,

α
(`)
1 = −u, α

(`)
2 =

u3 − 2uv + u

u2 − v
, α

(`)
3 =

uv − u
u2 − v

,

β
(`)
1 = 1, β

(`)
2 = u2 − v, β

(`)
3 =

u4 − 3u2v + v3 + u2

u4 − 2u2v + v2
,

α
(`)
3k+4 = −u, β

(`)
3k+4 =

β
(`−1)
k+2

β
(`)
3k+3β

(`)
3k+2

, β
(`)
3k+5 = u2 − v − β(`)

3k+4,

α
(`)
3k+5 = u−

α
(`−1)
k+2 + uv − α(`)

3k+2β
(`)
3k+4

β
(`)
3k+5

, α
(`)
3k+6 = u− α(`)

3k+5,

β
(`)
3k+6 = v − α(`)

3k+5α
(`)
3k+6.

We claim that

g̃u,v,`(z) =
β
(`)
1

z + α
(`)
1

+
β
(`)
2

z + α
(`)
2

+
β
(`)
3

z + α
(`)
3

+ · · ·+ β
(`)

3`+1

z + α
(`)

3`+1

, ` ≥ 0,

where some of the rational numbers β
(`)
j may vanish.

In the sequel, we consider only the case u = v = −1, that is,

g̃`(z) =
1

z

∏̀
h=0

(1− z−3h − z−2·3h),

and establish the non-vanishing result, also by using the 2-adic valuation.
Set

α
(0)
1 = 1, α

(0)
2 = −3

2
, α

(0)
3 =

1

2
,
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β
(0)
1 = 1, β

(0)
2 = 2, β

(0)
3 = −1

4
,

α
(`)
1 = 1, α

(`)
2 = −2, α

(`)
3 = 1,

β
(`)
1 = 1, β

(`)
2 = 2, β

(`)
3 = 1,

α
(`)
3k+4 = 1, β

(`)
3k+4 =

β
(`−1)
k+2

β
(`)
3k+3β

(`)
3k+2

, β
(`)
3k+5 = 2− β(`)

3k+4,

α
(`)
3k+5 = −1−

α
(`−1)
k+2 + 1− α(`)

3k+2β
(`)
3k+4

β
(`)
3k+5

, α
(`)
3k+6 = −1− α(`)

3k+5,

β
(`)
3k+6 = −1− α(`)

3k+5α
(`)
3k+6.

Proposition 4.1. For ` ≥ 0 and j = 1, . . . , 3`+1, we have

• ν2(α(`)
j ) = −1 if and only if j = (3`+1 + 1)/2 or j = (3`+1 + 3)/2;

α
(`)
j 6= 0 and ν2(α

(`)
j ) ≥ 0 otherwise;

• ν2(β(`)
2 ) = 1; ν2(β

(`)
j ) = −2 if and only if j = (3`+1 + 3)/2; ν2(β

(`)
2 ) = 0

otherwise.
As a conseqence, β

(`)
j is nonzero for all ` ≥ 0 and j = 1, 2, . . . , 3`+1.

It follows from Proposition 4.1 that the analogue of Theorem 1.1 holds
for the products zg̃`(z), namely, there exists a positive real number K such
that, for every integer b ≥ 2 and every integer ` ≥ 2, the inequality∣∣∣∏̀

h=0

(1− b−3h − b−2·3h)− p

q

∣∣∣ > 1

q2 exp(K log b
√

log q log log(3q))
,

holds for every rational number p/q different from g̃`(b). We omit the details.

Proof. We proceed by induction on `, j. The basis of the induction is clear

from the definition of the α
(`)
j . We only display the more complicated steps.

We start with the α
(`)
j ’s. Since (3`+1 + 1)/2 is equal to 3k + 5 with k =

(3` − 3)/2,

ν2(α
(`)

(3`+1+1)/2
) = ν2

(
−1−

α
(`−1)
k+2 + 1− α(`)

3k+2β
(`)
3k+4

β
(`)
3k+5

)
= −1,

because

ν2(α
(`−1)
k+2 ) = −1, ν2(α

(`)
3k+2) ≥ 0, ν2(β

(`)
3k+4) = 0, ν2(β

(`)
3k+5) = 0.

Then,

ν2(α
(`)

(3`+1+3)/2
) = ν2

(
−1− α(`)

(3`+1+1)/2

)
= −1.
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Since (3`+1 + 7)/2 is equal to 3k + 5 with k = (3` − 1)/2,

ν2(α
(`)

(3`+1+7)/2
) = ν2

(
−1−

α
(`−1)
k+2 + 1− α(`)

3k+2β
(`)
3k+4

β
(`)
3k+5

)
≥ 0,

because

ν2(α
(`−1)
k+2 ) = −1, ν2(α

(`)
3k+2) = −1, ν2(β

(`)
3k+4) = 0, ν2(β

(`)
3k+5) = 0.

Then,

ν2(α
(`)

(3`+1+9)/2
) = ν2

(
−1− α(`)

(3`+1+7)/2

)
≥ 0.

Suppose that j 6= (3`+1 + 1)/2, (3`+1 + 3)/2, (3`+1 + 7)/2, (3`+1 + 9)/2. If

j = 3k + 4, then ν2(α
(`)
j ) = 0. If j = 3k + 5 with k 6= (3` − 3)/2, (3` − 1)/2,

then

ν2(α
(`)
3k+5) = ν2

(
−1−

α
(`−1)
k+2 + 1− α(`)

3k+2β
(`)
3k+4

β
(`)
3k+5

)
≥ 0,

because

ν2(α
(`−1)
k+2 ) ≥ 0, ν2(α

(`)
3k+2) ≥ 0, ν2(β

(`)
3k+4) = 0, ν2(β

(`)
3k+5) = 0.

Then,

ν2(α
(`)
3k+6) = ν2(−1− α(`)

3k+5) ≥ 0.

We now deal with the β
(`)
j ’s. Since (3`+1 + 3)/2 = 3k + 6 with k =

(3` − 3)/2,

β
(`)

(3`+1+3)/2
= ν2(−1− α(`)

3k+5α
(`)
3k+6) = −2,

because
ν2(α

(`)
3k+5) = ν2(α

(`)
3k+6) = −1.

Suppose that j 6= (3`+1 + 3)/2. If j = 3k + 4 with k 6= (3`+1 − 1)/2, then

ν2(β
(`)
3k+4) = ν2

(
β
(`−1)
k+2

β
(`)
3k+3β

(`)
3k+2

)
= 0,

because
ν2(β

(`−1)
k+2 ) = 0, ν2(β

(`)
3k+3) = 0, ν2(β

(`)
3k+2) = 0.

If j = 3k + 4 with k = (3`+1 − 1)/2, then

ν2(β
(`)
3k+4) = ν2

(
β
(`−1)
k+2

β
(`)
3k+3β

(`)
3k+2

)
= 0,

because
ν2(β

(`−1)
k+2 ) = −2, ν2(β

(`)
3k+3) = −2, ν2(β

(`)
3k+2) = 0.
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In both case,

ν2(β
(`)
3k+5) = ν2(2− β(`)

3k+4) = 0.

If j = 3k + 6 with k 6= (3` − 3)/2,

β
(`)
3k+6 = ν2(−1− α(`)

3k+5α
(`)
3k+6) = 0,

because
ν2(α

(`)
3k+5) ≥ 0, ν2(α

(`)
3k+6) ≥ 0,

and if ν2(α
(`)
3k+5) = 0, then ν(α

(`)
3k+6) ≥ 1.
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