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Abstract. Let a, b be distinct, non-constant polynomials in F2[z]. Let ξa,b be
the power series in F2((z

−1)) whose sequence of partial quotients is the Thue–
Morse sequence over {a, b}. We establish that ξa,b is algebraic of degree 4.

1. Introduction

An infinite sequence (an)n≥0 over a finite alphabet A is k-automatic for an
integer k ≥ 2 if it can be generated by a finite automaton which reads the
representation in base k of a non-negative integer n from right to left and outputs
an element an in A. It is called automatic if it is k-automatic for some integer
k ≥ 2. In 1968, Cobham [14] conjectured that, for any integer b ≥ 2, the base-b
expansion of an irrational real number never forms an automatic sequence. This
was confirmed in 2007 by Adamczewski and Bugeaud [1] (see [3, 30] for alternative
proofs), who also established that if the Hensel expansion of an irrational p-adic
number ξ is an automatic sequence, then ξ is transcendental. In a similar spirit,
Bugeaud [10] proved that the sequence of partial quotients of an algebraic real
number of degree at least 3 never forms an automatic sequence.

Analogous questions can be asked for power series over a finite field, but the
answers are different. Throughout the paper, we let q denote a power of a prime
number p and Fq denote the field with q elements. In 1979 Christol [12, 13]
established that a power series in Fq((z

−1)) is algebraic over Fq(z) if and only if
the sequence of its coefficients is q-automatic (or, equivalently, is p-automatic).

In analogy with the continued fraction algorithm for real numbers, there is a
well-studied continued fraction algorithm for power series in Fq((z

−1)), the partial
quotients being nonconstant polynomials in Fq[z]. In both settings, eventually
periodic expansions correspond to quadratic elements, but much more is known
on the continued fraction expansion of algebraic power series than on that of
algebraic real numbers. In 1949 Mahler [26] established that, for p ≥ 3, the root

z−1 + z−p + z−p2 + . . .

in Fq((z
−1)) of the polynomial zXp−zX+1 has unbounded partial quotients, in

the sense that their degrees are unbounded. In the opposite direction, there exist
power series which are algebraic of degree at least 3 and have bounded partial
quotients (recall that analogous statements have not yet been proved, nor dis-
proved, for real numbers): in 1976, Baum and Sweet [9] proved that the continued
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fraction expansion of the unique solution ξBS in F2((z
−1)) of the equation

zX3 +X + z = 0

has all its partial quotients of degree at most 2.
At the end of the 80s, Mendès France asked whether the sequence of partial

quotients of an algebraic power series in Fq((z
−1)) is q-automatic, as soon as it

takes only finitely many different values. A positive answer has been given by
Allouche [5] and Allouche, Bétréma, and Shallit [6] for the algebraic power series
of degree at least 3 in Fp((z

−1)) (here, p ≥ 3) which have been constructed by
Mills and Robbins [27] and whose partial quotients are polynomials of degree one;
see also Lasjaunias and Yao [23–25]. However, in 1995 Mkaouar [28] (see also Yao
[33] for an alternative proof) gave a negative answer to the question of Mendès
France by establishing that the sequence of partial quotients of the Baum–Sweet
power series ξBS is morphic, but not automatic. Recall that a sequence is called
morphic if it is the image under a coding of a fixed point of a substitution. If the
substitution can be chosen of constant length k, then the sequence is k-automatic.
The equivalence between the two definitions of automatic sequences given here
was established by Cobham [15]; see [7].

All this shows that the sequence of partial quotients of an algebraic power
series may or may not be automatic. Conversely, very little is known about
the Diophantine nature of a power series whose sequence of partial quotients is
automatic, but not ultimately periodic. The only contribution to this question
is a recent work of Hu and Han [19]. They proved that, for any distinct non-
constant polynomials a and b in F2[z] whose sum of degrees is at most 7, the
power series whose sequence of partial quotients is the Thue–Morse sequence
written over {a, b} is algebraic of degree 4. Recall that the Thue–Morse word

t = t0t1t2 . . . = abbabaabbaababbabaababbaabbabaab . . .

over {a, b} is defined by t0 = a, t2k = tk and t2k+1 = a (resp., b) if tk = b (resp.,
a), for k ≥ 0. The Thue–Morse sequence is the most famous automatic sequence
and is not ultimately periodic.

To establish their result, Hu and Han made use of a Guess ’n’ Prove method
and implemented a program which takes a pair (a, b) of distinct non-constant
polynomials as input and outputs its minimal defining polynomial and a com-
plete proof. The time needed grows with the degrees of a and b. Hu and Han
conjectured that their result holds more generally for every pair (a, b) of distinct
non-constant polynomials.

In the present paper, built on [19], we confirm this conjecture. Our main
results are stated in Section 2 and proved in Sections 4 and 5. We consider
higher degree exponents of approximation in Section 3. Additional remarks are
gathered in Section 6.

2. Results

Let a and b be distinct non-constant polynomials in Fq[z] and let ξq,a,b denote
the power series in Fq((z

−1)) whose sequence of partial quotients is the Thue–
Morse sequence t over the alphabet {a, b}. Since t is not ultimately periodic, ξq,a,b
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is transcendental or algebraic of degree at least 3 over Fq(z). Furthermore, as t
begins with infinitely palindromes, an argument given in the proof of Theorem
3.2 shows that ξq,a,b and its square are very well simultaneously approximable by
rational fractions with the same denominator and that, consequently, ξq,a,b cannot
be algebraic of degree 3. This proves that ξq,a,b is transcendental or algebraic of
degree at least 4 over Fq(z).

Our main result asserts that, in the case q = 2, any Thue–Morse continued
fraction ξ2,a,b = ξa,b is algebraic of degree 4 over F2(z).

Theorem 2.1. Let a, b be non-constant, distinct polynomials in F2[z] and let

ξa,b = [0; a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a, . . .]

be the power series in F2((z
−1)) whose sequence of partial quotients is the Thue–

Morse sequence t over the alphabet {a, b}. Then, ξa,b is algebraic of degree 4 over
F2(z). More precisely, setting

A0 = b(a+ b)(a2b2 + a2 + b2) + a2b4,

A1 = ab(a+ b)(a2b2 + a2 + b2),

A2 = a2b2(a2b2 + a2 + b2),

A3 = A1,

A4 = a(a+ b)(a2b2 + a2 + b2) + a2b4,

we have

A4ξ
4
a,b +A3ξ

3
a,b +A2ξ

2
a,b +A1ξa,b +A0 = 0.

Remark. In Theorem 2.1 the ground field F2 can be replacd by any field K of
characteristic 2, and a and b by any non-constant, distinct polynomials in K[z].

We define an absolute value | · | on the field Fq((z
−1)) by setting |0| = 0 and,

for any non-zero power series ξ = ξ(z) =
∑+∞

h=−m ahz
−h with a−m ̸= 0, by setting

|ξ| = qm. We write ||ξ|| for the norm of the fractional part of ξ, that is, of the
part of the series which comprises only the negative powers of z.

For a power series ξ in Fq((z
−1)), let

C(ξ) = lim inf
Q∈Fq [z]\{0}

|Q| · ∥Qξ∥

denote its Lagrange constant. Clearly, C(ξ) is an element of

Lq = {q−k : k ≥ 1} ∪ {0},

and it is positive if and only if the degrees of the partial quotients of ξ are
bounded.

If [a0; a1, a2, . . .] denotes the continued fraction expansion of ξ and pn/qn =
[a0; a1, a2, . . . , an] for n ≥ 1, then

|qnξ − pn| = |qn+1|−1 = |an+1qn|−1.

Consequently, we have

C(ξ) = 2− lim supn→+∞ deg an .
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Exactly as in [26], we can check that the root z−1+ z−4+ z−42 + . . . in F2((z
−1))

of zX4 + zX + 1 is algebraic of degree 4 and has unbounded partial quotients,
thus its Lagrange constant is 0. Since the degrees of a and b can be arbitrarily
chosen in Theorem 2.1, we derive at once the following corollary.

Corollary 2.2. There exist algebraic power series of degree 4 in F2((z
−1)) with

an arbitrarily prescribed Lagrange constant in L2.

A power series ξ in Fq((z
−1)) is called badly approximable when the degrees

of its partial quotients are uniformly bounded. We define the spectrum of a badly
approximable power series ξ in Fq((z

−1)) as the set of positive integers k such
that ξ has infinitely many partial quotients of degree k.

Problem 2.3. Let N be a finite set of positive integers. Does there exist a badly
approximable power series ξ in Fq((z

−1)) which is algebraic of degree at least 3
and whose spectrum is equal to N?

Theorem 2.1 answers positively Problem 2.3 for q = 2 and any set N of
cardinality 2.

For a power q of a prime number p the class H(q) of hyperquadratic power
series in Fq((z

−1)) has attracted special attention; see e.g. [21, 31]. It is composed
of the irrational power series ξ in Fq((z

−1)) for which there exist polynomials
A,B,C,D in Fq[z] such that AD −BC ̸= 0 and an integer s with

ξ =
Aξp

s
+B

Cξps +D
.

Once a power series is known to be algebraic, a natural question is to determine
whether it belongs to the restricted class of hyperquadratic power series.

In another direction, since the pioneering works of Kolchin [20] and Osgood
[29], formal derivation has been used to study rational approximation to power
series. By differentiating with respect to z the minimal defining polynomial
satisfied by an algebraic power series ξ in Fq((z

−1)) of degree d, we see that
ξ′, where the ′ indicates the derivation on Fq((z

−1)) with respect to z extending
the derivation on Fq[z], can be expressed as a polynomial in ξ of degree at most
d− 1.

We say that a power series ξ in Fq((z
−1)) satisfies a Riccati differential equa-

tion if there are A,B and C in Fq(z) such that

ξ′ = Aξ2 +Bξ + C.

Clearly, any cubic power series satisfies a Riccati equation. This is also the case
for any hyperquadratic power series, but the converse does not hold; see e.g. [22,
Section 4].

Proposition 2.4. Let a, b be non-constant, distinct polynomials in F2[z]. Then,
the Thue–Morse continued fraction ξa,b in F2((z

−1)) is differential-quadratic: it
satisfies the Riccati equation

[(ab(a+ b))x]′ = (ab)′(1 + x2).

Furthermore, ξa,b is not hyperquadratic.
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Remark. The Riccati equation in Proposition 2.4 is equivalent to [(ab(a+b))x]′ =
[ab(1+x2)]′. Its solutions are the power series ξ such that ab(a+ b)ξ+ ab(1+ ξ2)
is a square, that is, such that 1 + (a + b)ξ + ξ2 is a linear combinaison of terms
aibj , with i and j odd.

The strategy of the proof of Theorem 2.1 is the following. After a careful study
of the minimal defining polynomials Pa,b(X) of ξa,b found by Hu and Han [19] in
the case where the sum of the degrees of a and b is at most 7, we have guessed
the coefficients, expressed in terms of a and b, of the quartic polynomial Pa,b(X)
which vanishes at ξa,b, for any distinct, non-constant polynomials a and b. It then
only remained for us to check that Pa,b(ξa,b) = 0. This step is, however, much
more difficult than it may seem to be. Denoting by pℓ/qℓ (we drop the letters a, b)
the ℓ-th convergent of ξa,b for ℓ ≥ 1, it is sufficient to check that Pa,b(pℓ/qℓ) tends
to 0 as ℓ tends to infinity along a subsequence of the integers. We focus on the
indices ℓ which are powers of 4. We heavily use the properties of symmetry of the
Thue–Morse sequence and we proceed by induction to show that |Pa,b(p4k/q4k)|
is, for k ≥ 1, less than |q4k |−2 times some constant independent of k.

3. Higher degree exponents of approximation

Beside the rational approximation to a power series ξ in Fq((z
−1)), we of-

ten consider the simultaneous rational approximation of ξ, ξ2, . . . , ξn by rational
fractions with the same denominator, as well as small values of the linear form
b0 + b1ξ + . . . + bnξ

n with coefficients in Fq[z]. This leads us to introduce the
exponents of approximation wn and λn, defined below. For a survey of recent
results on these exponents evaluated at real numbers, the reader is directed to
[11].

The height H(P ) of a polynomial P (X) = bn(z)X
n + . . . + b1(z)X + b0(z)

over Fq[z] is the maximum of the absolute values of its coefficients, that is, of
|b0|, |b1|, . . . , |bn|. Recall that the ‘fractional part’ ∥ · ∥ is defined by∥∥∥ +∞∑

h=−m

ahz
−h
∥∥∥ =

∣∣∣+∞∑
h=1

ahz
−h
∣∣∣,

for every power series ξ =
∑+∞

h=−m ahz
−h in Fq((z

−1)).

Definition 3.1. Let ξ be in Fq((z
−1)). Let n ≥ 1 be an integer. We let wn(ξ)

denote the supremum of the real numbers w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in polynomials P (X) over Fq[z] of degree at most
n. We let λn(ξ) denote the supremum of the real numbers λ for which

0 < max{∥Q(z)ξ∥, . . . , ∥Q(z)ξn∥} < q−λdeg(Q)

has infinitely many solutions in polynomials Q(z) in Fq[z]. For positive real
numbers w, λ, set

Bn(ξ, w) = lim inf
H(P )→+∞

H(P )w · |P (ξ)|
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and

B′
n(ξ, λ) = lim inf

|Q|→+∞
|Q|λ ·max{∥Q(z)ξ∥, . . . , ∥Q(z)ξn∥}.

Let ξ be an algebraic power series in Fq((z
−1)) of degree d ≥ 2. Let n ≥ 1 be

an integer. We briefly show how a Liouville-type argument allows us to bound
wn(ξ) from above. Denote by ξ1 = ξ, ξ2, . . . , ξd the Galois conjugates of ξ. Let
P (X) be a non-zero polynomial in Fq[z](X). Then, the product P (ξ1) . . . P (ξd)
is a nonzero element of Fq(z), whose absolute value is bounded from below by
c1(ξ), which (as c2(ξ) and c3(ξ) below) is positive and depends only on ξ. Since
|P (ξj)|, j = 2, . . . , d, are bounded from above by c2(ξ) times H(P ), we get that

|P (ξ)| > c3(ξ)H(P )−d+1

and we derive that

(3.1) wn(ξ) ≤ d− 1, n ≥ 1.

In the particular case of ξa,b, this gives w3(ξa,b) ≤ 3, by Theorem 2.1. Actually,
this inequality is an equality.

Theorem 3.2. The Thue–Morse power series ξa,b in F2((z
−1)) satisfies

λ2(ξa,b) = 1, w2(ξa,b) = 3, wn(ξa,b) = 3, λn(ξa,b) =
1

3
, n ≥ 3.

Moreover, there are positive constants c4, c5, depending only on a and b, such that

|P (ξa,b)| > c4H(P )−3, for every nonzero P (X) in F2[z](X) of degree ≤ 3,

and there are polynomials P (X) in F2[z](X) of degree 2 of arbitrarily large height
such that

|P (ξa,b)| < c5H(P )−3.

Proof. Since the continued fraction expansion of ξa,b begins with arbitrarily large
palindromes, ξa,b and its square are simultaneously well approximable by rational
fractions with the same denominator. This argument appeared in [2] and we
recall it below for the sake of completeness. For k ≥ 0, let pk/qk denote the k-th
convergent to ξa,b. Recall that the Thue–Morse word t = t0t1t2 . . . over {a, b} is
the fixed point starting with a of the uniform morphism τ defined by τ(a) = ab
and τ(b) = ba. Since the words τ2(a) = abba and τ2(b) = baab, and the prefix of
length 4 of t = abba . . . are palindromes, every prefix of t of length a power of 4
is a palindrome. Put

Ma =

(
a 1
1 0

)
, Mb =

(
b 1
1 0

)
.

Then, for k ≥ 1, we have

Mt0Mt1 . . .Mtk−1
=

(
qk qk−1

pk pk−1

)
.

Take k = 4ℓ for some positive integer ℓ. The matrix Mt0Mt1 . . .Mtk−1
is sym-

metric since Ma and Mb are symmetric and t0t1 . . . tk−1 is a palindrome. Con-
sequently, pk = qk−1. It then follows from tk−1 = a, tk = b and the theory of
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continued fractions in F2((z
−1)) that∣∣∣ξa,b − pk

qk

∣∣∣ = 1

|b||qk|2
,
∣∣∣ξa,b − pk−1

qk−1

∣∣∣ = 1

|a||qk−1|2
=

1

|qk−1| · |qk|
,

thus ∣∣∣ξ2a,b − pk−1

qk

∣∣∣ = ∣∣∣(ξa,b − pk
qk

)(
ξa,b +

pk−1

qk−1

)
+

ξa,b
qk−1qk

∣∣∣ = 1

|qk|2
,

since |ξa,b| = 1/|a|. We conclude that

max{∥qkξa,b∥, ∥qkξ2a,b∥} =
1

|qk|
.

This gives λ2(ξa,b) ≥ 1 and there is equality since λ1(ξa,b) = 1. Furthermore, the
quantity B′

2(ξa,b, 1) is finite, since ξa,b has bounded partial quotients.
By the power series field analogue of a classical transference inequality es-

tablished by Aggarwal [4], we immediately obtain that B2(ξa,b, 3) is finite, thus
w2(ξa,b) ≥ 3.

This lower bound holds as well for w2(ξq,a,b). Combined with (3.1), this shows
that ξq,a,b is transcendental or algebraic of degree at least 4, thereby establishing
the assertion stated at the end of the first paragraph of Section 2.

Since ξa,b is algebraic of degree 4, by Theorem 2.1, the Liouville-type result
obtained below Definition 3.1 combined with the lower bound w2(ξa,b) ≥ 3 implies
that w2(ξa,b) = w3(ξa,b) = 3 and

wn(ξa,b) = 3, λn(ξa,b) =
1

3
, n ≥ 3,

the value of λ3(ξa,b) being a consequence of a transference inequality established
in [4]. □

4. Proof of Theorem 2.1

We keep the notation of Theorem 2.1 and check that ξa,b is a root of the
equation

A4X
4 + . . .+A1X +A0 = 0.

In view of the discussion at the beginning of Section 2, this implies that ξa,b is
algebraic of degree 4.

The computation is easier if we replace a and b by their inverses, that is, if
we consider the continued fraction

(4.1) ζ = [0; a−1, b−1, b−1, a−1, b−1, a−1, a−1, b−1, . . .].

Definition 4.1. Set

M0(a, b) = a

(
a−1 1
1 0

)
=

(
1 a
a 0

)
and

Mk(a, b) = Mk−1(a, b) ·Mk−1(b, a)
2 ·Mk−1(a, b), k ≥ 1,

Nk(a, b) = Mk−1(a, b) ·Mk−1(b, a), k ≥ 1.
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Observe that

M1(a, b) =

(
a2b2 + b2 + 1 a2b+ ab2 + a
a2b+ ab2 + a a2b2 + a2

)
and that, for k ≥ 1, the matrix Mk(a, b) is symmetric and of the form(

1 + · · ·+ (ab)2
2k−1

a+ · · ·+ (a+ b)(2
2k−1+1)/3(ab)2

2k−2

a+ · · ·+ (a+ b)(2
2k−1+1)/3(ab)2

2k−2
a2 + · · ·+ (ab)2

2k−1

)
.

An immediate induction shows that its entries are polynomials in a and b, whose
degrees in a (resp., in b) are at most equal to 22k−1.

For a polynomial M(a, b) (or a matrix M(a, b) whose coefficients are poly-

nomials) in the variables a and b, write M̃(a, b) the image of M(a, b) under the

involution which exchanges a and b, that is, M̃(a, b) = M(b, a).
It follows from the definition of Nk(a, b) that its upper left and lower right

entries are symmetrical in a and b, while its upper right entry is obtained from
its lower left one by exchanging a and b. We introduce some further notation.

Definition 4.2. Write

Mk(a, b) =

(
Qk(a, b) Pk(a, b)
Pk(a, b) Rk(a, b)

)
, k ≥ 0,

and

Nk(a, b) =

(
Uk(a, b) Vk(a, b)
Vk(b, a) Wk(a, b)

)
, k ≥ 1,

To shorten the notation, we simply write

Mk =

(
Qk Pk

Pk Rk

)
, Nk =

(
Uk Vk

Ṽk Wk

)
, k ≥ 1,

and observe that

Uk = Ũk, Wk = W̃k, k ≥ 1.

Set

τ = 1 + a+ b

and define

nk = 22k−1, k ≥ 1.

First, we establish several relations between the entries of Mk and M̃k.

Proposition 4.3. For k ≥ 1, we have

Qk +Rk = τ (2nk+2)/3,

Pk + P̃k = (1 + τ)τ (2nk−4)/3,

Qk + R̃k = τ (2nk−4)/3.

Proof. We proceed by induction. Check that

Q1 +R1 = a2 + b2 + 1 = τ2,

P1 + P̃1 = a+ b = 1 + τ = (1 + τ)τ0,
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and

Q1 + R̃1 = 2a2b2 + 2b2 + 1 = 1 = τ0.

Set

mk = (2nk + 2)/3 = (22k + 2)/3, k ≥ 0,

and observe that

mk = 4mk−1 − 2, k ≥ 1.

Since Mk = NkÑk, we have

Qk = U2
k + V 2

k , Rk = Ṽ 2
k +W 2

k , Pk = UkṼk + VkWk, k ≥ 1.

Let k ≥ 2 be an integer and assume that the proposition holds for the index
k − 1. Since τ is invariant by exchanging a and b, it follows from the induction
hypothesis that

Rk−1 +Qk−1 = R̃k−1 + Q̃k−1 = τmk−1 .

Consequently, we get

Vk + Ṽk = Qk−1P̃k−1 + Pk−1R̃k−1 + Q̃k−1Pk−1 + P̃k−1Rk−1

= P̃k−1(Qk−1 +Rk−1) + Pk−1(Q̃k−1 + R̃k−1)

= (Pk−1 + P̃k−1)(Qk−1 +Rk−1)

= (1 + τ)τmk−1−2τmk−1 .

Likewise, we have

Uk +Wk = Qk−1Q̃k−1 +Rk−1R̃k−1

= Qk−1(τ
mk−1 + R̃k−1) + R̃k−1(Qk−1 + τmk−1)

= τmk−1(Qk−1 + R̃k−1) = τ2mk−1−2.

This gives

Pk + P̃k = (Vk + Ṽk)(Uk +Wk) = (1 + τ)τ4mk−1−4 = (1 + τ)τmk−2,

as expected.
We get

Qk +Rk = U2
k + V 2

k + Ṽ 2
k +W 2

k

= (Uk +Wk)
2 + (Vk + Ṽk)

2

= τ4mk−1−4 + (1 + τ2)τ4mk−1−4 = τ4mk−1−2 = τmk .

Finally, we check that

Qk + R̃k = U2
k +W 2

k

= (Uk +Wk)
2 = τ4mk−1−4 = τmk−2,

and the proof is complete. □

In the next lemma, we express Pk, Qk, Rk in terms of a new auxiliary quantity
denoted by Zk.
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Lemma 4.4. Let k be a positive integer and define

Zk = Uk + Vk.

Then, we have

Qk = Z2
k , Rk = Z2

k + τ (2nk+2)/3, Pk = Z2
k + τ (nk+1)/3Zk + (ab)nk ,

and
Z̃k = Zk + (1 + τ)τ (nk−2)/3.

Proof. Since Qk = U2
k + V 2

k , we get immediately that Qk = Z2
k . The expression

of Rk in terms of Zk follows then from Proposition 4.3.
The matrix Mk is the product, in a suitable order, of nk copies of M0(a, b)

and nk copies of M0(b, a), whose determinants are respectively equal to a2 and
b2. The computation of the determinant of Mk then gives the relation

QkRk + P 2
k = (ab)2nk .

Consequently,

P 2
k = Qk(Qk + τ (2nk+2)/3) + (ab)2nk ,

thus
Pk = Z2

k + τ (nk+1)/3Zk + (ab)nk .

It follows from Proposition 4.3 that

Q̃k +Qk = τ (2nk+2)/3 + τ (2nk−4)/3 = (1 + τ2)τ (2nk−4)/3,

which implies the last equality of the lemma. □

We are now in position to express Zk+1 in terms of nk and Zk.

Proposition 4.5. For k ≥ 1, we have

Zk+1 = τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk .

Proof. We proceed by induction. Observe that

Z1 = U1 + V1 = ab+ b+ 1

and

Z2 = a4b4 + a3b+ a2b2 + a2 + ab+ ab3 + b2 + 1 + a3b2 + a2b+ a2b3 + b+ b3.

Since

τ2Z1 + τ(ab)2 + (ab)4 = (1 + a2 + b2)(ab+ b+ 1) + (1 + a+ b)a2b2 + a4b4,

we see that the proposition holds for k = 1. Assuming that it holds for a positive
integer k, we get

Zk+1 = PkP̃k +QkQ̃k +QkP̃k + PkR̃k

= Pk(Q̃k + R̃k) + (Pk +Qk)(Q̃k + P̃k)

=
(
Z2
k + τ (nk+1)/3Zk + (ab)nk

)
τ (2nk+2)/3

+
(
τ (nk+1)/3Zk + (ab)nk

)(
τ (nk+1)/3Z̃k + (ab)nk

)
= τ (2nk+2)/3Z2

k + τnk+1Zk + (ab)nkτ (2nk+2)/3
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+ τ (nk+1)/3Zk

(
τ (nk+1)/3Zk + (1 + τ)τ (2nk−1)/3 + (ab)nk

)
+ (ab)nk

(
τ (nk+1)/3Zk + (1 + τ)τ (2nk−1)/3 + (ab)nk

)
= τnk+1Zk + (ab)nkτ (2nk+2)/3 + τnkZk(1 + τ)

+ (ab)nk

(
(1 + τ)τ (2nk−1)/3 + (ab)nk

)
= τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk .

This completes the proof. □

We deduce from Proposition 4.5 an equation of degree 4 satisfied by Zk.

Proposition 4.6. For k ≥ 1, we have

Z4
k + τ (2nk−1)/3Z2

k + (a+ b)τnk−1Zk + (b(a+ b)τ2 + a2)τ (4nk−8)/3

+ (a+ b)(ab)nkτ (2nk−4)/3 + (ab)2nk = 0.

Proof. For k ≥ 1, set

∆k = Z4
k + τ (2nk−1)/3Z2

k + (a+ b)τnk−1Zk + (b(a+ b)τ2 + a2)τ (4nk−8)/3.

Note that

∆1 = (1 + b4 + a4b4) + (1 + a+ b)(1 + b2 + a2b2 + (a+ b)(1 + b+ ab))

+ b(a+ b)(1 + a2 + b2) + a2

= a4b4 + a2b3 + a3b2 = (a+ b)(ab)n1τ (2n1−4)/3 + (ab)2n1 .

Thus, Proposition 4.6 holds for k = 1. Let k be a positive integer. Since nk+1 =
4nk, it follows from Proposition 4.5 that

∆k+1 = Z4
k+1 + τ (8nk−1)/3Z2

k+1 + (a+ b)τ4nk−1Zk+1

+ (b(a+ b)τ2 + a2)τ (16nk−8)/3

=
(
τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk

)4
+ τ (8nk−1)/3

(
τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk

)2
+ (a+ b)τ4nk−1

(
τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk

)
+ (b(a+ b)τ2 + a2)τ (16nk−8)/3

= τ4nkZ4
k + τ (8nk−4)/3(ab)4nk + (ab)8nk

+ τ (8nk−1)/3
(
τ2nkZ2

k + τ (4nk−2)/3(ab)2nk + (ab)4nk

)
+ (a+ b)τ4nk−1

(
τnkZk + τ (2nk−1)/3(ab)nk + (ab)2nk

)
+ (b(a+ b)τ2 + a2)τ (16nk−8)/3

= τ4nkZ4
k + τ (8nk−1)/3(τ2nkZ2

k) + (a+ b)τ4nk−1(τnkZk)

+ (b(a+ b)τ2 + a2)τ (16nk−8)/3 + τ (8nk−4)/3(ab)4nk
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+ τ (8nk−1)/3(τ (4nk−2)/3(ab)2nk + (ab)4nk)

+ (a+ b)τ4nk−1(τ (2nk−1)/3(ab)nk + (ab)2nk) + (ab)8nk

= τ4nk

(
Z4
k + τ (2nk−1)/3Z2

k + (a+ b)τnk−1Zk

+ (b(a+ b)τ2 + a2)τ (4nk−8)/3
)
+ τ (8nk−4)/3(1 + τ)(ab)4nk

+ τ (8nk−1)/3τ (4nk−2)/3(ab)2nk

+ (a+ b)τ4nk−1(τ (2nk−1)/3(ab)nk + (ab)2nk) + (ab)8nk

= τ4nk∆k + τ (8nk−4)/3(a+ b)(ab)4nk + τ4nk(ab)2nk

+ (a+ b)τ4nk−1(τ (2nk−1)/3(ab)nk) + (ab)8nk .

Assuming that
∆k = (a+ b)(ab)nkτ (2nk−4)/3 + (ab)2nk ,

we deduce that

∆k+1 = τ4nk(a+ b)(ab)nkτ (2nk−4)/3 + τ4nk(ab)2nk

+ τ (8nk−4)/3(a+ b)(ab)4nk + τ4nk(ab)2nk

+ (a+ b)τ4nk−1(τ (2nk−1)/3(ab)nk) + (ab)8nk

= τ (8nk−4)/3(a+ b)(ab)4nk + (ab)8nk .

Since nk+1 = 4nk, this shows that Proposition 4.6 holds for every positive inte-
ger k. □

Set

a2 = (1 + a+ b)2,

a0 = a(a+ b)a2 + a2,

a1 = a3 = (a+ b)a2,

a4 = b(a+ b)a2 + a2.

To prove that
a4ζ

4 + a3ζ
3 + a2ζ

2 + a1ζ + a0 = 0,

with ζ as in (4.1), it is sufficient to show that the absolute value of

δk := a4P
4
k + a3P

3
kQk + a2P

2
kQ

2
k + a1PkQ

3
k + a0Q

4
k

tends to 0 as k tends to infinity. The next proposition is more precise.

Proposition 4.7. For k ≥ 1, there exists a polynomial Tk(X,Y ) with coefficients
in F2 such that δk = (ab)2nkTk(a, b).

Proof. We express δk in terms of Zk. A lengthy computation based on Lemma
4.4 gives:

δk = a4P
4
k + a3P

3
kQk + a2P

2
kQ

2
k + a1PkQ

3
k + a0Q

4
k

= a4(P
4
k +Q4

k) + (a+ b)2τ2Q4
k + (a+ b)τ2PkQk(P

2
k +Q2

k) + τ2P 2
kQ

2
k

= a4(τ
(nk+1)/3Zk + (ab)nk)4 + (a+ b)2τ2Q4

k
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+ (a+ b)τ2PkQk(τ
(nk+1)/3Zk + (ab)nk)2 + τ2P 2

kQ
2
k

= a4(τ
(nk+1)/3Zk + (ab)nk)4 + (a+ b)2τ2Z8

k

+ (a+ b)τ2PkZ
2
k(τ

(nk+1)/3Zk + (ab)nk)2 + τ2P 2
kZ

4
k

= a4(τ
(nk+1)/3Zk + (ab)nk)4 + (a+ b)2τ2Z8

k

+ (a+ b)τ2(Z2
k + τ (nk+1)/3Zk + (ab)nk)Z2

k(τ
(nk+1)/3Zk + (ab)nk)2

+ τ2(Z2
k + τ (nk+1)/3Zk + (ab)nk)2Z4

k

= a4τ
(4nk+4)/3Z4

k + a4(ab)
4nk + (a+ b)2τ2Z8

k

+ (a+ b)τ2Z2
k(Z

2
k + τ (nk+1)/3Zk + (ab)nk)(τ (2nk+2)/3Z2

k + (ab)2nk)

+ τ2(Z4
k + τ (2nk+2)/3Z2

k + (ab)2nk)Z4
k

= a4τ
(4nk+4)/3Z4

k + a4(ab)
4nk + (a+ b)2τ2Z8

k

+ (a+ b)τ2Z2
k

(
τ (2nk+2)/3Z4

k + τ3nk+1Z3
k + τ (2nk+2)/3Z2

k(ab)
nk
)

+ (a+ b)τ2Z2
k

(
(ab)2nkZ2

k + (ab)2nkτ (nk+1)/3Zk + (ab)3nk
)

+ τ2(Z8
k + τ (2nk+2)/3Z6

k + (ab)2nkZ4
k)

= a4τ
(4nk+4)/3Z4

k + a4(ab)
4nk + (a+ b)2τ2Z8

k

+ (a+ b)τ2τ (2nk+2)/3Z6
k + (a+ b)τ2τ3nk+1Z5

k + (a+ b)τ2τ (2nk+2)/3Z4
k(ab)

nk

+ (a+ b)τ2(ab)2nkZ4
k + (a+ b)τ2(ab)2nkτ (nk+1)/3Z3

k + (a+ b)τ2Z2
k(ab)

3nk

+ τ2Z8
k + τ2τ (2nk+2)/3Z6

k + τ2(ab)2nkZ4
k

=
(
a4τ

(4nk+4)/3 + τ2(ab)2nk + (a+ b)τ2τ (2nk+2)/3(ab)nk + (a+ b)τ2(ab)2nk
)
Z4
k

+ a4(ab)
4nk + [(a+ b)2τ2 + τ2]Z8

k

+ [(a+ b)τ2τ (2nk+2)/3 + τ2τ (2nk+2)/3]Z6
k + (a+ b)τ2τ3nk+1Z5

k

+ (a+ b)τ2(ab)2nkτ (nk+1)/3Z3
k + (a+ b)τ2Z2

k(ab)
3nk

=
(
(b(a+ b)τ2 + a2)τ (4nk+4)/3 + (a+ b)τ (2nk+8)/3(ab)nk + τ3(ab)2nk

)
Z4
k

+ (b(a+ b)τ2 + a2)(ab)4nk + τ4Z8
k + τ (2nk+8)/3Z6

k + (a+ b)τ3nk+3Z5
k

+ (a+ b)(ab)2nkτ (nk+7)/3Z3
k + (a+ b)τ2Z2

k(ab)
3nk

= τ4Z8
k + τ (2nk+11)/3Z6

k + (a+ b)τnk+3Z5
k

+ [(b(a+ b)τ2 + a2)τ (4nk−5)/3 + (a+ b)τ (2nk−1)/3(ab)nk + (ab)2nk ]τ3Z4
k

+ (a+ b)(ab)2nkτ (nk+7)/3Z3
k + (a+ b)τ2(ab)3nkZ2

k

+ (b(a+ b)τ2 + a2)(ab)4nk .

This can be rewritten as

δk = τ4∆kZ
4
k + [(a+ b)τ (2nk−1)/3(ab)nk + (ab)2nk ]τ3Z4

k

+ (a+ b)(ab)2nkτ (nk+7)/3Z3
k + (a+ b)τ2(ab)3nkZ2

k
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+ (b(a+ b)τ2 + a2)(ab)4nk ,

where

∆k = Z4
k + τ (2nk−1)/3Z2

k + (a+ b)τnk−1Zk + (b(a+ b)τ2 + a2)τ (4nk−8)/3

has been already introduced in the proof of Proposition 4.6.
It follows from Proposition 4.6 that

τ4∆k + (a+ b)τ (2nk−1)/3(ab)nkτ3 = τ4(ab)2nk .

Consequently, we get

δk = τ4(ab)2nkZ4
k + (ab)2nkτ3Z4

k

+ (a+ b)(ab)2nkτ (nk+1)/3+2Z3
k + (a+ b)τ2(ab)3nkZ2

k

+ (b(a+ b)τ2 + a2)(ab)4nk .

This shows that δk can be written as (ab)2nk times a polynomial in a and b, which
depends on k. □

To conclude the proof of Theorem 2.1, we explain the relationship between
Pk, Qk and the convergents pℓ/qℓ = pℓ(a, b)/qℓ(a, b) of the Thue–Morse continued
fraction

ξa,b = [0; a, b, b, a, b, a, a, b, . . .].

We have

q4k(a, b) = (ab)nkQk(a
−1, b−1), p4k(a, b) = (ab)nkPk(a

−1, b−1), k ≥ 1,

and we check that

Aj = (ab)4aj(a
−1, b−1), 0 ≤ j ≤ 4.

For k ≥ 1, put

ε4k =A4

(p4k
q4k

)4
+A3

(p4k
q4k

)3
+A2

(p4k
q4k

)2
+A1

p4k

q4k
+A0

=
(ab)−2nk+4Tk(a

−1, b−1)

(ab)−4nkq4
4k

=
(ab)2nk+4Tk(a

−1, b−1)

q4
4k

.

Set d = deg a+ deg b. Since

|q4k | = 2dnk , |Tk(a
−1, b−1)| ≤ 1, |ab|2nk = 22dnk ,

we get

|ε4k | ≤ 2−2dnk = |q4k |−2.

Recalling that |ξa,b − p4k/q4k | < |q4k |−2, we derive that

|A4ξ
4
a,b +A3ξ

3
a,b +A2ξ

2
a,b +A1ξa,b +A0| ≤ max{|A1|, . . . , |A4|} · 2−2dnk .

Since nk is arbitrarily large, this gives that

A4ξ
4
a,b +A3ξ

3
a,b +A2ξ

2
a,b +A1ξa,b +A0 = 0,

and concludes the proof of the theorem.
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5. Proof of Proposition 2.4

Since
A0 +A4 = (a+ b)2(ab+ a+ b)2

is a square, its derivative is 0 and we get that (A0)
′ = (A4)

′. By differentiating
the minimal defining polynomial A4X

4 + . . .+A1X +A0 of ξa,b, we obtain

4∑
j=0

(Aj)
′Xj +A1X

′(1 +X2) = 0,

hence
(A0)

′(1 +X4) + (A1)
′(X +X3) = A1X

′(1 +X2)

and
(A0)

′(1 +X2) + (A1)
′X = A1X

′,

that is
(A0)

′(1 +X2) = (A1X)′.

Since
(A0)

′ = (ab)′(a+ b+ ab)2, A1 = ab(a+ b)(a+ b+ ab)2,

the last equation becomes

[(ab(a+ b))X]′ = (ab)′(1 +X2).

This establishes that ξa,b is differential-quadratic and satisfies a simple Riccati
equation.

Assume now that there are an integer s ≥ 2 and polynomials A,B,C and D
in F2[z] such that ξa,b satisfies

Aξ2
s+1

a,b +Bξ2
s

a,b + Cξa,b +D = 0.

Then, the polynomial AX2s+1+BX2s+CX+D must be a multiple of the minimal
defining polynomial A4X

4+ . . .+A1X+A0 of ξa,b and there exist c0, c1, . . . , c2s−3

in F2[z] such that

(A4X
4+. . .+A1X+A0) (c2s−3X

2s−3+. . .+c1X+c0) = AX2s+1+BX2s+CX+D.

We thus get 2s − 2 linear forms in c0, . . . , c2s−3 which vanish. The associated
matrix is a pentadiagonal (if s ≥ 3, the case s = 2 being immediate) Toeplitz
matrix of the form

Ms =



A2 A1 A0 0 0 0 · · · 0 0 0
A3 A2 A1 A0 0 0 · · · 0 0 0
A4 A3 A2 A1 A0 0 · · · 0 0 0
0 A4 A3 A2 A1 A0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · A4 A3 A2


.

To compute its determinant, we simply expand it and observe that A2 is the
only coefficient of the minimal defining polynomial of ξa,b which involves the
term a4b4. All the other terms involved are of the form aibj , with 0 ≤ i, j ≤ 4
and i + j ≤ 7. Consequently, the determinant of Ms is equal to (a4b4)2

s−2
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plus a linear combination of terms aibj , with 0 ≤ i, j ≤ 4(2s − 2) and (i, j) ̸=
(4(2s−2), 4(2s−2)). In particular, it does not vanish and the system of equations
has only the trivial solution c0 = . . . = c2s−3 = 0. This shows that ξa,b cannot be
hyperquadratic.

6. Concluding remarks

We gather in this concluding section several additional results, without their
proofs.

6.1. Explicit expressions. By Proposition 4.5, we can derive an explicit for-
mula for Zk, namely

Zk = τ (2
2k−1−2)/3

(
1 + b+

2k−2∑
j=0

τ (2−2j+1−χ(j))/3(ab)2
j
)
, k ≥ 1,

where χ(j) := j (mod 2). Then, by Lemma 4.4, we obtain the following explicit
formula for Pk/Qk.

Proposition 6.1. For k ≥ 2, we have

Pk

Qk
=

a+ a2b+ ab2 + (a+ b)αk

1 + b2 + a2b2 + αk + α2
k

,

where

αk =

k−1∑
j=1

τ (2−22j+1)/3(ab)2
2j
.

Notice that αk satisfies the relation

α4
k + τ2αk + τ (8−22k+1)/3(ab)2

2k
+ a4b4 = 0.

Proposition 6.1 implies the following theorem by taking the limit as k goes to
infinite.

Theorem 6.2. Set

α =

∞∑
j=1

τ (2−22j+1)/3(ab)2
2j
.

Then, α is algebraic and it satisfies

α4 + τ2α+ a4b4 = 0.

Furthermore, the Thue–Morse continued fraction ξa,b can be expressed as

ξa,b =
a+ a2b+ ab2 + (a+ b)α

1 + b2 + a2b2 + α+ α2
.

We stress that Theorem 6.2 implies that ξa,b is algebraic.



THUE–MORSE CONTINUED FRACTIONS IN CHARACTERISTIC 2 17

Figure 1. Coefficients of ξa,b

6.2. Even and odd sections. To understand the structure of ξa,b, we let

ξa,b = ξee + ξeo + ξoe + ξoo,

where

ξee =
∑

a2ib2j , ξeo =
∑

a2ib2j+1, ξoe =
∑

a2i+1b2j , ξoo =
∑

a2i+1b2j+1.

We can derive, by Theorem 2.1, that

ξee = ξoo = 0,

and ξeo, ξoe are algebraic. The coefficients of ξa,b are reproduced in Figure 1 in
the following manner. Let S = {(−1, 0), (−2,−1), (−2,−3), . . .} be the set of the
blue dots in Figure 1. Then

ξa,b =
∑

(i,j)∈S

aibj = a−1 + a−2b−1 + a−2b−3 + · · ·

6.3. Jacobi continued fraction for formal power series. In the field of
formal power series F((x)) over a field F, the Jacobi continued fraction J(u,v)
defined by two sequences u = (un)n≥1 and v = (vn)n≥0 with vn ̸= 0 for all n ≥ 0
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is the infinite continued fraction

J(u,v) =
v0

1 + u1x−
v1x

2

1 + u2x−
v2x

2

1 + u3x−
v3x

2

. . .

.

The basic properties of Jacobi continued fractions can be found in [16, 32]. The
Hankel determinants Hn(J(u,v)) of J(u,v) can be calculated by means of the
following fundamental relation, first stated by Heilermann in 1846 [18]:

Hn(J(u,v)) = vn0 v
n−1
1 vn−2

2 · · · v2n−2vn−1.

Assume that F is the field F2. If the Jacobi continued fraction exists, then vj = 1
for j ≥ 0. In this case, the Hankel determinants Hn are all equal to 1. By [8, 17],
the sequence (cn)n≥0 of the coefficients of J(u,v) =

∑
n≥0 cnx

n is apwenian. This
means that the following relations hold:

c0 = 1 and cn ≡ c2n+1 + c2n+2 mod 2, n ≥ 0.

Consider the Jacobi continued fraction ω(x) defined by the Thue–Morse sequence

ω(x) =
1

1 + u1x+
x2

1 + u2x+
x2

1 + u3x+
x2

. . .

,

where (u1, u2, . . .) = (1, 0, 0, 1, 0, 1, 1, 0, . . .) is the Thue–Morse sequence over
{0, 1}. Since

ω(z−1)

z
= ξz+1,z,

it follows from Theorem 2.1 that

g4 ω(x)
4 + g3 ω(x)

3 + g2 ω(x)
2 + g1 ω(x) + g0 = 0,

where

g0 = x5 + x3 + x2 + x+ 1,

g1 = x6 + x5 + x4 + x3 + x2 + x,

g2 = x6 + 1,

g3 = x8 + x7 + x6 + x5 + x4 + x3,

g4 = x10 + x9 + x8 + x7 + x5 + x4.

Consequently, ω(x) is algebraic of degree 4.
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[7] J.-P. Allouche and J. Shallit. Automatic sequences. Theory, Applications,
Generalizations. Cambridge University Press, Cambridge, 2003. 2

[8] J.-P. Allouche, G.-N. Han, and H. Niederreiter, Perfect linear complexity
profile and apwenian sequences, Finite Fields Appl. 68 (2020), Article 101761,
13 pages. 18

[9] L. E. Baum and M. M. Sweet, Continued fractions of algebraic power series
in characteristic 2, Ann. of Math. 103 (1976), 593–610. 1

[10] Y. Bugeaud, Automatic continued fractions are transcendental or quadratic,

Ann. Sci. École Norm. Sup. 46 (2013), 1005–1022. 1
[11] Y. Bugeaud, Exponents of Diophantine approximation. In: Dynamics and

analytic number theory, 96–135, London Math. Soc. Lecture Note Ser., 437,
Cambridge Univ. Press, Cambridge, 2016. 5

[12] G. Christol, Ensembles presque périodiques k-reconnaissables, Theoret. Com-
put. Sci. 9 (1979), 141–145. 1

[13] G. Christol, T. Kamae, M. Mendès France et G. Rauzy. Suites algébriques,
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