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THE k-EXTENSION OF A MAHONIAN STATISTIC

BY

Guo-Niu HAN (∗)

ABSTRACT. — Clarke and Foata have recently studied the k-extension
of several Mahonian statistics. There is an alternate definition for the k-
Denert statistic that is derived in the present paper.

RÉSUMÉ. — Récemment, Clarke et Foata ont étudié la k-extension
de plusieurs statistiques mahoniennes. Dans cet article, on introduit une
autre définition pour la k-statistique de Denert.

1. Introduction

Let

(a; q)n =

{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1 ;

denote the q-ascending factorial and for each sequence c = (c1, c2, . . . , cr)
of non-negative integers, of sum m, let

[

m

c1, c2, . . . , cr

]

=
(q; q)m

(q; q)c1(q; q)c2 . . . (q; q)cr

denote the q-multinomial coefficient. Also denote by R(c) the class
of all m! /(c1! c2! . . . cr!) rearrangements of the (non-decreasing) word
1c12c2 . . . rcr . By Mahonian statistic it is meant an integer-valued map-
ping “stat” defined on each class R(c) that satisfies the identity

[

m

c1, c2, . . . , cr

]

=
∑

w

qstatw (w ∈ R(c)).

The inversion number “inv” and the major index “maj” are classical
examples of Mahonian statistics (see [M]). Another example of such a
statistic is provided with the Denert statistic, “den”, introduced recently
(see [Den]) in the study of hereditary orders in central simple algebras.
The statistics “maj” and “den” have two definitions, one “natural” or
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more direct, the other one involving the notion of cyclic interval. The
natural definitions refer to descents and excedances, two other statistics
that have ben extensively studied since MacMahon (see [L, chap. 10]). We
first recall the definitions of k-descent and of k-excedance, as they were
introduced in the work by Clarke and Foata [CF1]).

Let r, l, k be three non-negative integers such that 1 ≤ r and
l + k = r. Let X denote the alphabet [ r ] = {1, 2, . . . , r} equipped with
the natural order of the integers. Call the letters 1, 2, . . . , l small and the
letters l + 1, l + 2, . . . , l + k = r large. Also let S = Sk = {1, 2, . . . , l}
and L = Lk = {l + 1, l + 2, . . . , r}. Let w = x1x2 . . . xm be a word
in the alphabet X and denote by w = y1y2 . . . ym its non-decreasing

rearrangement. Let 1 ≤ i ≤ m ; say that i is a place of k-descent (resp.
place of k-excedance) for w, if i 6= m and xi > xi+1 or xi = xi+1 ≥ l + 1,
or if i = m and xi ≥ l + 1 (resp. if xi > yi or xi = yi ≥ l + 1). The
number of places of k-descent (resp. of places of k-excedance) in w is
denoted by “desk w” (resp. “exck w”). Clarke and Foata [CF1] proved that
“desk” and “exck” were equidistributed on each rearrangement class R(c).
In their second paper [CF2] they constructed a bijection ρ of R(c) onto
itself satisfying

(desk,majk)(w) = (exck, denk)(ρ(w)),

where “majk” and “denk” are two k-extensions of Mahonian statistics in
the following sense. Let SPDk w (resp. SPEk w) be the sum of the places
of k-descents (resp. of k-excedances) in w. Clarke and Foata [CF2] defined
the k-major index, “majk w,” of w as

majk w = SPDk w.

It would have seemed natural to define “denk w” as denk w = SPEk w, but
SPDk is not equidistributed with majk on each class R(c). However, the
following inequality

denk w ≥ SPEk w

holds. Therefore, the natural question arises : can well-defined predicates
be found to characterize the (non-negative) difference “denk − SPEk” and
then provide the “natural” definition of “denk” ? For k = 0 the question
had been answered successfully by Han [H] (see the solutions by [FZ] and
[C] in the case of words without repetitions of letters). It is the purpose
of this paper to provide the predicates for an arbitrary k.

2. The k-extensions

Recall the definition of a k-cyclic interval, a notion introduced in [CF2].
First, for a, b ∈ X the cyclic interval ]]a, b]] is defined by (see [H]) :

]]a, b]] =

{

]a, b], if a ≤ b ;
X\ ]b, a], otherwise.
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Notice that ]]a, a]] = ∅. Secondly, the k-cyclic interval
]]

a, b
]]

k
is defined as

]]

a, b
]]

k
=































]]

a, b
]]

, if a, b ∈ S ;
]]

a, b
]]

∪ {a}, if a ∈ L, b ∈ S ;
]]

a, b
]]

\ {b}, if a ∈ S, b ∈ L ;
]]

a, b
]]

∪ {a} \ {b}, if a, b ∈ L, a 6= b ;

X, if a = b ∈ L.

Let w = x1x2 . . . xm be a word in the alphabet X . For i = 1, . . . , m denote
by Facti w = x1 . . . xi−1 its left factor of length (i− 1). For each subset B
of X let Facti w ∩B be the subword of Factiw consisting of all the letters
belonging to B and let |Facti w ∩B| be the length of that subword.

We still denote by w = y1y2 . . . ym the non-decreasing rearrangement
of w. The denk-coding of w is defined to be the sequence (si)1≤i≤m+1 (see
the example at the end of this section), where

si =

{

∣

∣Facti w ∩
]]

xi, yi
]]

k

∣

∣ , if 1 ≤ i ≤ m ;

|w ∩ L|, if i = m+ 1;

and the statistic “denk w” to be

denk w =

m+1
∑

i=1

si.

Furthermore, the inversion number and the weak inversion number are
k-updated as follows :

invk w =#{1 ≤ i < j ≤ m | xi > xj ou xi = xj ≥ l + 1}

+#{1 ≤ i ≤ m | xi ≥ l + 1} ;

imvk w =#{1 ≤ i < j ≤ m | xi > xj ou xi = xj ≤ l} .

The definition “invk” was introduced in an unpublished note by Foata [F].
Clearly, inv0 = inv (the usual number of inversions) and imv0 = imv (the
number of (weak) inversions, as already used in [H]).

Let i1 < i2 < · · · < ie be the increasing sequence of the places of k-
excedance in w and j1 < j2 < · · · < jm−e the complementary sequence,
i.e., the increasing sequence of the places of non-k-excedance. Form the
two subwords : Exck w = xi1xi2 · · ·xie and Nexck w = xj1xj2 · · ·xjm−e

.
The main result of this paper is the following result, a true k-extension of
Theorem 2.1 (ii) in [H].
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Theorem 1. — For each word w in the alphabet X we have :

denk w = SPEk w + imvk(Exck w) + invk(Nexck w).

For example, let r = 5, k = 2, l = r − k = 3, so that X =
{1, 2, 3, 4, 5} with the small letters 1, 2, 3 and the large letters 4 and 5.
First, invk(21321144) = 3 + 0 + 3 + 2 + 0 + 0 + 1 + 0 + 2 = 11 and
imvk(3253345445) = 3 + 0 + 5 + 1 + 0 + 0 + 2 + 0 + 0 + 0 = 11. With the
word w = 325323143251441454 and w = 111222333344444555 we obtain
the following table, where the values of k-excedance are printed in bold
face on the third row.

id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
w = 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5
w = 3 2 5 3 2 3 1 4 3 2 5 1 4 4 1 4 5 4
s = 0 1 0 2 0 3 5 7 0 4 9 7 12 13 7 3 16 4 8

Hence denk =
∑

i si = 101. On the other hand, SPEk w = 79,
imvk(Exck w) = 11 and invk(Nexck w) = 11.

3. Cardinality properties

It will be convenient to make use of abridged notations for cardinalities
of sets that are associated with biwords. Those notations speak for
themselves. They all apply to biwords (ww) = (y1y2···ym

x1x2···xm
), where w =

x1x2 · · ·xm is a word in the alphabet X and where w = y1y2 · · · ym is
its non-decreasing rearrangement. If z is a letter in X , define :

[

·
z

]

:=#{1 ≤ i ≤ m | xi = z};

[

z 6=
z z

]

:=#{1 ≤ i < j ≤ m | xi = xj = yi = z, yj 6= z};

[

· z
> z

]

:=#{1 ≤ i < j ≤ m | xi > z, xj = yj = z}.

The following lemma already appears in Dumont [D].

Lemma 2. — Let w be a permutation of X having the fixed point z.
Then, the following identity holds :

[ · z
> z

]

=
[

z ·
z <

]

.

Proof. — It suffices to consider the graph of the permutation w
represented in a square r × r (as shown in Fig. 1). The above identity
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simply says that rectangles B and C contain the same numbers of points
of the graph.

1 z r

r

z

1

B D

A C

Fig. 1

This result can be generalized to arbitrary words as follows.

Lemma 3. — Let w be an arbitrary word in the alphabet X and z a

letter of that alphabet. Then

[ · z
> z

]

=
[

z ·
z <

]

+
[

z 6=
z z

]

−
[

z z
z 6=

]

.

Proof. — For each integer j such that 1 ≤ j ≤ m let

[

· z
> z

]

j
:=#{i < j | xi > z, xj = yj = z};

[

z 6=
z z

]

j
:=#{j < i | xi = z, yi 6= z, xj = yj = z};

[

z z
z ·

]

j
:=#{j < i | yi = z, xj = yj = z};

· · ·

so that, for instance,
[

· z
> z

]

j
is zero if (yj , xj) 6= (z, z). The biword [ww]

can be represented as the graph of the mapping i 7→ xi(1 ≤ i ≤ m). Such
a graph is contained in an rectangle m× r as shown in Fig. 2.
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1 j−1 j j+1 m

B D

A C

r

z + 1
z •

1

Fig. 2

Keep the same notations for the word w ∈ R(c) and its non-decreasing
rearrangement w = 1c12c2 · · · rcr and let (yj, xj) = (z, z). We then have
j ≤ c1 + c2 + · · ·+ cz. Let d = c1 + c2 + · · ·+ cz − j = [z z

z · ]j . Now as the
number of points of the graph contained in rectangle B is equal to the
number of points of the same graph contained in C, minus d, we get :

[

· z
> z

]

j
=
[

z ·
z ≤

]

j
−

[

z z
z ·

]

j

=
[

z ·
z <

]

j
+

[

z ·
z z

]

j
−
[

z z
z ·

]

j

=
[

z ·
z <

]

j
+

[

z 6=
z z

]

j
−

[

z z
z 6=

]

j
.

Summing over all j yields the identity of the lemma.

Lemma 4. — Let w be a word and z a letter. Then

[

<
z

]

+
[

6= 6=
z z

]

−
[

6= z
z 6=

]

−
[

> >
z z

]

+
[

< <
z z

]

= 0.

Proof. — As there is no biletter (zz) on the left-hand side of the previous

relation, it suffices to prove the identity when the biword (ww) contains no

biletter (zz). In other words, we add the condition :

[

z
z

]

= 0.

Under this condition the biword (ww) has a unique factorization

(

w
w

)

=
(

α
α′

)

·
(

β
β′

)

·
(

γ
γ′

)

,
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where α, α′, β, β′, γ, γ′ are words having the following properties :
(i) all the letters in β are equal to z ;
(ii) there is no occurrence of the letter z in the words α, γ and β′.

Let a (resp. b) be the number of occurrences of z in β (resp. in α′). The
number of occurrences of z in γ′ is then a − b. Therefore, the left-hand
side of the relation in the statement of the Lemma is equal to :

b+ a(a− 1)/2− ab− (a− b)(a− b− 1)/2 + b(b− 1)/2 = 0.

4. Proof of Theorem 1

By induction on k. For k = 0 it is true, as shown in [H]. Let k ≥ 1 and
k′ = k − 1. It then suffices to prove

∆ = ∆den−∆SPE−∆ imv−∆ inv = 0 ;

where

∆den = denk w − denk′ w ;

∆ SPE = SPEk w − SPEk′ w ;

∆ imv = imvk(Exck w)− imvk′(Exck′ w) ;

∆ inv = invk(Nexck w)− invk′(Nexck′ w).

Again let w = x1x2 · · ·xm and w = y1y2 · · · ym. Also let z = l + 1 and
denote by Lk = {z, z+1, · · · , z+k−1 = r} and Lk′ = {z+1, z+2, · · · , z+
k′ = r} the sets of the large letters associated with k and k′, respectively.
The basic fact is that the letter z is large in the k-extension, but small in
the k′-extension.

4.1. Calculation of ∆den. — First, reproduce the expressions of “denk”
and “denk′” :

si =

{

|Facti w ∩ ]]xi, yi]]k|, if 1 ≤ i ≤ m ;
|w ∩ Lk|, if i = m+ 1;

denk w = s1 + s2 + · · ·+ sm+1;

s′i =

{

|Facti w ∩ ]]xi, yi]]k′ |, if 1 ≤ i ≤ m ;
|w ∩ Lk′ |, if i = m+ 1;

denk′ w = s′1 + s′2 + · · ·+ s′m+1.

As ∆den = denk w − denk′ w =
∑

i(si − s′i), we have to calculate the
difference si − s′i for each i, and therefore the difference of the two cyclic
intervals I = ]]xi, yi]]k and I ′ = ]]xi, yi]]k′ . Using the notation C = A + B
to mean that A ∩ B = ∅ and C = A ∪ B we see that there are five cases
to consider :
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(1) —if xi = yi = z, then I = X , I ′ = ∅ ;

(2) —if xi = z, yi 6= z, then I = I ′ + {z} ;

(3) —if xi 6= z, yi = z, then I ′ = I + {z} ;

(4) —if xi 6= z, yi 6= z, then I ′ = I ;

(5) —for i = m+ 1 we have Lk = Lk′ + {z}.
We then get :

∆den =
∑

i

(si − s′i) =
[

· z
· z

]

+
[

· 6=
z z

]

−
[

· z
z 6=

]

+
[

·
z

]

.

4.2. Calculation of ∆SPE. — We have

∆SPE = SPEk w − SPEk′ w =
∑

xi=yi=z

i =
[

· z
· z

]

+
[

z
z

]

.

4.3. Calculation of ∆ inv and ∆ imv. — Call biword of k-excedance
the subword of (ww) formed with all the biletters whose bottom letters
are k-excedances. Also denote by Exck w that subword. Define the biword

of non-k-excedance in an equivalent manner and denote it by Nexck w.
Those biwords as well as the corresponding biwords defined for k′ can be
represented as

Exck w =
(

w1zz · · · zw2

w3zz · · · zw4

)

; Exck′ w =
(

w1w2

w3w4

)

;

Nexck w =
(

w5w6

w7w8

)

; Nexck′ w =
(

w5zz · · · zw6

w7zz · · · zw8

)

;

where |w1| = |w3|, |w2| = |w4|, |w5| = |w7| and |w6| = |w8|. As [ · z
> z] = 0

for the biword Nexck′ w and [z ·
z <] = 0 for the biword Exck w, we derive

the following relations :

∆ inv = invk Nexck w − invk′ Nexck′ w = −
[

z ·
z <

]

+
[

> >
z z

]

+
[

>
z

]

;

∆ imv = imvk Exck w − imvk′ Exck′ w =
[

· z
> z

]

−
[

< <
z z

]

.

4.4. Calculation of ∆. — Putting all the above relations together and
noting that the term [· z

· z] occurs both in ∆den and in ∆SPE, we obtain :

∆ = ∆den−∆SPE−∆ imv−∆ inv
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=
[

· 6=
z z

]

−
[

· z
z 6=

]

+
[

·
z

]

−
[

z
z

]

+
[

z ·
z <

]

−
[

> >
z z

]

−
[

>
z

]

−
[

· z
> z

]

+
[

< <
z z

]

=
[

<
z

]

−
[

> >
z z

]

+
[

< <
z z

]

+
[

· 6=
z z

]

−
[

· z
z 6=

]

+
[

z ·
z <

]

−
[

· z
> z

]

=
[

<
z

]

−
[

> >
z z

]

+
[

< <
z z

]

+
[ · 6=
z z

]

−
[ · z
z 6=

]

+
[

z z
z 6=

]

−
[

z 6=
z z

]

[Lemma 3]

=
[

<
z

]

−
[

> >
z z

]

+
[

< <
z z

]

+
[ 6= 6=
z z

]

−
[ 6= z
z 6=

]

= 0 . [Lemma 4]

This completes the proof of Theorem 1.
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