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Abstract

The purpose of this paper is to give the description of a single algorithm
that specializes into several classical transformations derived on words,
namely the Cartier-Foata transform, its contextual extension due to Han
and the two k-extensions proposed by Clarke and Foata.
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1. Introduction. — When sorting was systematically studied in the
sixties and seventies, in particular for comparing the different methods
used in practice (see, e.g. [14]), it was essential to go back to the classics,
to the works by MacMahon and especially to his treatise on Combinatory
Analysis [19]. He had made an extensive study of the distributions of
several statistics on permutations, or more generally, on permutations
with repeated elements, simply called words in the sequel. The most
celebrated of those statistics is probably the classical number of inversions

which stands for a very natural measurement of how far a permutation
is from the identity. There are several other statistics relevant to sorting
or to statistical theory, such as the number of descents, the number of

excedances, the major index, and more recently the Denert statistic.
MacMahon [19] had already calculated the distributions of the early

statistics and proved that some of them were equally distributed on each
class of rearrangements of a given word. Let us state one of his basic results.
To this end suppose that X is a finite non-empty set, referred to as an
alphabet. For convenience, take X to be the subset [ r ] = {1, 2, . . . , r}
(r ≥ 1) of the positive integers, equipped with its standard ordering.
Let c = (c1, c2, . . . , cr) be a sequence of r nonnegative integers and v

be the nondecreasing word v = 1c12c2 . . . rcr , i.e., v = y1y2 . . . ym with
m = c1 + c2 + · · ·+ cr and y1 = · · · = yc1 = 1, yc1+1 = · · · = yc1+c2 = 2,
. . . , yc1+···+cr−1+1 = · · · = ym = r. The class of all rearrangements of v,
i.e., the class of all the words w that can be obtained from v by permuting
its letters in some order will be denoted by R(c).

If w = x1x2 . . . xm is such a word, the number of excedances, excw,
and the number of descents, desw, of w are classically defined as

excw = #{i : 1 ≤ i ≤ m, xi > yi},

desw = #{i : 1 ≤ i ≤ m− 1, xi > xi+1}.
(1.1)

Let Aexc
c

(t) (resp. Ades
c

(t)) be the generating polynomial for the class
R(c) by the statistic “exc” (resp. “des”), i.e.,

Aexc
c

(t) =
∑

w

texcw, Ades
c

(t) =
∑

w

tdesw (w ∈ R(c)).

MacMahon [17] showed that those two polynomials were equal for every c.
Accordingly, the two statistics “exc” and “des” are equidistributed on each
rearrangement class R(c). MacMahon also derived an explicit formula for
the generating function for those polynomials.

Back in the sixties, when it was natural to prove such equidistribution
properties in a bijective manner, the late Schützenberger asked whether a
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bijection Φ could be constructed on each rearrangement class R(c) with
the property that

excw = desΦ(w) (1.2)

holds for every w. Such a transformation Φ was devised in [10]. A further
presentation was made in [14, p. 24–29], a more algebraic version appeared
in [4] and also in [16, chap. 10].

In the nineties three extensions of that equidistribution property have
been derived. First, by taking pairs of statistics into account, second, by
extending the property to the case of an alphabet with two classes of
letters; third, by combining those two extensions.

In (1.1) when the number of the i’s is replaced by the sum of the i’s we
define respectively

excindexw =
∑

{i : 1 ≤ i ≤ m, xi > yi},

majw =
∑

{i : 1 ≤ i ≤ m− 1, xi > xi+1},
(1.3)

i.e., the excedance index and the major index (also called the greater index
and already studied by MacMahon (op. cit.)). The major index has been
often associated with the number of descents, for instance in the study
of the q-Eulerian polynomials [1, 2, 3]. Moreover, the joint distribution
of the pair (des,maj) was already derived by MacMahon [19, vol. 2,
p. 211]. It was then natural to try to introduce a statistic “stat” on words,
such that the pair (des,maj) was equidistributed with the pair (exc, stat)
on each rearrangement class R(c). We could imagine that “excindex”
would be the appropriate statistic “stat.” However a careful study of the
generating polynomials for small values of c showed that that assumption
was not correct. However by adding a correcting term to “excindex” a new
statistic, “den,” called the Denert statistic, could be formed and fitted the
requirements of “stat.”

Surprisingly, “den” was discovered in a very different context, by Denert
[9] for the calculation of the genus zeta function of hereditary orders
in some simple algebras. Its explicit definition is given in (8.4). The
construction of a bijection Φq that maps every rearrangement class R(c)
onto itself and satisfies

(exc, den)w = (des,maj) Φq(w) (1.4)

was derived in [12].

The previous results were further extended to the case of an alphabet
with two kinds of letters. Keep the same alphabet {1, . . . , r} as above, but
suppose given two nonnegative integers s and ℓ such that s + ℓ = r. A
letter x in [ r ] is said to be small (resp. large) if x ≤ s (resp. if x ≥ s+1).
Whenever such an alphabet is considered we will use the notation sXℓ.
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Let w = x1x2 . . . xm be a word in the alphabet sXℓ whose nondecreasing
rearrangement is v = y1y2 . . . ym. An integer i such that 1 ≤ i ≤ m is said
to be a ℓ-excedance of w if either xi > yi, or xi = yi and xi large; it
is said to be a ℓ-descent of w, if either xi > xi+1, or xi = xi+1 and xi

large (by convention, xm+1 = s + 1

2
.) The number of ℓ-excedances (resp.

of ℓ-descents) of the word w will be denoted by excℓ w (resp. by desℓ w).
Again when we add the integers i which are ℓ-excedances (resp. ℓ-

descents) of w, we define the ℓ-excedance index, excindexℓ w (resp. the
ℓ-major index, majℓ w), of w.

The extension of the equidistribution property (1.2) consists of con-
structing a bijection sΦℓ of each rearrangement class onto itself satisfying

excℓ w = desℓ sΦℓ(w). (1.5)

Such a bijection was derived in [6].
Finally, an extension of the previous result to bivariate statistics (or,

equivalently, an extension of (1.4) to the alphabet with two classes
of letters) was proposed in [7] in the following way. When adding a
“correcting term” (see section 6) to the statistic “excindexℓ” we can
form the ℓ-Denert statistic “denℓ.” We can then show that the two pairs
(desℓ,majℓ) and (excℓ, denℓ) are equidistributed on each rearrangement
class, by constructing a bijection sΦ

q
ℓ of each rearrangement class onto

itself satisfying

(excℓ, denℓ)w = (desℓ,majℓ) sΦ
q
ℓ(w). (1.6)

Such a transformation sΦ
q
ℓ was constructed in [7].

The constructions of bijections having properties (1.2), (1.4), (1.5), (1.6)
have been given in four papers, namely [4, 12, 6, 7], respectively. Each
time the notations used have been different. It was also unclear whether
there was a general principle presiding over all those constructions. The
purpose of this paper is to give the description of a single algorithm (the
algorithm T in section 5) which, once a commutation rule on pairs of
letters is given and once a linear ordering on the alphabet X is defined,
gives the description of each of the four transformations Φ, Φq, sΦℓ, sΦ

q
ℓ .

There is no special device to introduce for the constructions of sΦℓ and

sΦ
q
ℓ , as it was done in [6] and [7], where a subsidiary letter “⋆” was added

to the initial alphabetX to make the algorithms work. Also, as was noticed
by Knuth [15] in a private communication, there is no need to derive the
cancellation law [12, Theorem 3.1] for the contextual multiplication in the
construction of Φq.

First, we introduce the notion of biword and give the description of
the straightening algorithm of a biword based upon a given sequence
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of commutations (section 3). Although any commutation rule can be
integrated into our main algorithm, the two commutations that yield
the constructions of our four bijections are the so-called Cartier-Foata

commutation and the contextual commutation. Both are described in
section 4. Our main algorithm T and its reverse U = T−1 are presented
in sections 5 and 6. In sections 7 and 8 we have gathered the definitions
of all the statistics involved. We conclude the paper by giving the main
properties of the bijections constructed by means of algorithm T.

2. Words and biwords. — In the sequel the alphabet X will be
equipped either with its standard ordering, or with a well-defined ordering.
A biword is an ordered pair of words of the same length, written as
α = (h, b) (“h” stands for “high” and “b” for “bottom”) or as

α =

(
h

b

)

=

(
h1h2 . . . hm

b1b2 . . . bm

)

.

For easy reference we shall sometimes indicate the places 1, 2, . . . , m of
the letters on the top of the biword:





id
h

b



 =





1 2 . . . m

h1 h2 . . . hm

b1 b2 . . . bm



 .

The word h (resp. b) is the top (resp. bottom) word of the biword (h, b).
Each biword

(
h
b

)
can also be seen as a word whose letters are the biletters

(
h1

b1

)
, . . . ,

(
hm

bm

)
. The integer m is the length of the biword w. A triple

(h, b; i) where i is an integer satisfying 1 ≤ i ≤ m − 1 is called a pointed

biword. When h and b are rearrangements of each other, the biword (h, b)
is said to be a circuit.

Two classes of circuits will play a special role in the paper. First, we

introduce the standard circuits Γ(b) which are circuits of the form
(
b
b

)
,

where b is the nondecreasing rearrangement of the word b with respect to
the standard ordering. Clearly Γ maps each word onto a standard circuit
in a bijective manner.

For the second class of circuits we fix a total order “�” on X , not
necessarily identical with the standard order and make use of the obvious
notations: “≺,” “≻,” “�.” A nonempty word h = hmh1 . . . hm−2hm−1 is
said to be �-dominated, if hm ≻ h1, hm ≻ h2, . . . , hm ≻ hm−1. The right
to left cyclic shift of h is defined to be the word δh = h1h2 . . . hm−1hm.
A biword of the form

(
δh
h

)
with h �-dominated is called a �-dominated

cycle.
As is known (see, e.g. [16, Lemma 10.2.1]) or easily verified, each word

b is the juxtaposition product u1u2 . . . of �-dominated words whose first
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letters pre(u1), pre(u2), . . . are in nondecreasing order with respect to
“�” :

pre(u1) � pre(u2) � · · · (2.1)

This factorization, called the increasing factorization of b, is unique.
Given the increasing factorization u1u2 . . . of a word b with respect of

an order “�,” we can form the juxtaposition product

∆(b) =

(
δu1 δu2 . . .

u1 u2 . . .

)

(2.2)

of the �-dominated cycles. Clearly ∆ maps each word onto a product
of �-dominated cycles satisfying inequalities (2.1), in a bijective manner.
Such a product, written as a biword (2.2), will be called a well-factorized

circuit.
For instance, 4 | 4 5 | 1 | 3 1 2 | 3 5 is such an increasing factorization of a

word b with respect to the ordering 5 ≺ 4 ≺ 1 ≺ 2 ≺ 3. The corresponding
well-factorized circuit reads:

∆(b) =

(
4
4

∣
∣
∣
∣

5 4
4 5

∣
∣
∣
∣

1
1

∣
∣
∣
∣

1 2 3
3 1 2

∣
∣
∣
∣

5 3
3 5

)

.

3. Commutations. — Suppose given a four-variable Boolean func-

tion Q(x, y; z, t) (also written as Q

(
x, y

z, t

)

) defined on quadruples of let-

ters in X . The commutation “Com” induced by the Boolean function
Q(x, y; z, t) is defined to be a mapping that maps each pointed biword
(h, b; i) onto a biword (h′, b′) = Com(h, b; i) with the following properties:
if (

h

b

)

=

(
h1h2 . . . hm

b1b2 . . . bm

)

and

(
h′

b′

)

=

(
h′
1h

′
2 . . . h

′
m′

b′1b
′
2 . . . b

′
m′

)

,

then
(C0) m′ = m ;
(C1) h′

j = hj , b
′
j = bj for every j 6= i, i+ 1;

(C2) h′
i+1 = hi, h

′
i = hi+1 (the i-th and (i + 1)-st letters of the top

word are transposed);
(C3) b′i = bi and b′i+1 = bi+1 if Q(hi, hi+1; bi, bi+1) true ; b′i = bi+1 and

b′i+1 = bi if Q(hi, hi+1; bi, bi+1) false.

We can also describe the commutation by the following pair of mappings

h = h1 . . . hi−1hihi+1hi+2 . . . hm 7→ h′ = h1 . . . hi−1hi+1hihi+2 . . . hm;

b = b1 . . . bi−1bibi+1bi+2 . . . bm 7→ b′ = b1 . . . bi−1 z t bi+2 . . . bm;
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where either z = bi, t = bi+1 if Q(hi, hi+1; bi, bi+1) true, or z = bi+1, t = bi
if Q(hi, hi+1; bi, bi+1) false.

Definition. — A Boolean function Q(x, y; z, t) is said to be bi-symmetric

if it is symmetric in the two sets of parameters {x, y}, {z, t}.

Lemma 3.1. — Let “Com” be the commutation induced by a bi-

symmetric Boolean function Q(x, y; z, t). Then the mapping (h, b; i) 7→
Com(h, b; i) is involutive.

The proof of the lemma is a simple verification and will be omitted.

In the rest of the paper we will assume that all the four-variable Boolean
functions Q(x, y; z, t) are bi-symmetric.

Two extreme cases are worth being mentioned, when Q is the Boolean
function Qtrue “always true” (resp. Qfalse “always false”). The commuta-
tion Comtrue, associated with Qtrue, permutes only the i-th and (i+ 1)-st
letters of the top word b, while Comfalse, associated with Qfalse, permutes
the i-th and (i+ 1)-st biletters of the biword (h, b).

Sorting a biword is defined as follows. Again consider a biword (h, b) of
lengthm and let (h′, b′) = Com(h, b; i) with 1 ≤ i ≤ m−1. If 1 ≤ j ≤ m−1,
we can form the pointed biword (h′, b′; j) and further apply the com-
mutation “Com” to (h′, b′; j). We obtain the biword Com(h′, b′; j) =
Com(Com(h, b; i); j), which we shall denote by Com(h, b; i, j). By induc-
tion we can define Com(h, b; i1, . . . , in), where (i1, . . . , in) is a given se-
quence of integers less than m.

As each commutation always permutes two adjacent letters within the
top word (condition (C2)), we can transform each biword (h, b) into a
biword (h′, b′) whose top word h′ is non-decreasing by applying a sequence
of commutations. We can also say that for each biword (h, b) there exists
a sequence (i1, . . . , in) of integers such that the top word in the resulting
biword Com(h, b; i1, . . . , in) is non-decreasing. Such a biword is called a
minimal biword and the sequence (i1, . . . , in) a commutation sequence.

When using the commutations Comtrue or Comfalse we always reach the
same minimal biword, but the commutation sequence is not unique. With
an arbitrary commutation “Com” neither the minimal biword, nor the
commutation sequence are necessarily unique. We then define a particular
commutation sequence (i1, . . . , in) called the minimal sequence by the
following two conditions:

(i) it is of minimum length;
(ii) it is minimal with respect to the lexicographic order.

Clearly the minimal sequence is uniquely defined by those two conditions
and depends only on the top word h in (h, b). The minimal biword derived
from (h, b) by using the minimal sequence is called the straightening of
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the biword (h, b). The derivation is described in the following algorithm
SORTB.

Algorithm SORTB: sorting a biword. — Given a biword (h, b) and
a commutation “Com” the following algorithm transforms (h, b) into its
straightening (h′, b′).

Prototype (h′, b′) := SORTB(h, b,Com).
(1) Let (h′, b′) := (h, b).
(2) If h′ is non-decreasing, RETURN (h′, b′).
(3) Else, let j be the smallest integer such that h′(j) > h′(j + 1). Then

let (h′, b′) := Com(h′, b′; j). Go to (2).

4. The two commutations. — We shall introduce two commutations
associated with two specific Boolean functions Q.

4.1. The Cartier-Foata commutation. — We denote by ComCF the
commutation induced by the following Boolean function QCF :

QCF

(
x, y

z, t

)

true if and only if x = y. (4.1)

4.2. The contextual commutation. — We now take the alphabet sXℓ

(see the Introduction) and denote by ComH the commutation induced
by the following Boolean function QH : let x± = x + 1

2
if x is small and

x± = x− 1

2
if x is large; then

QH

(
x, y

z, t

)

true

if and only if (z − x±)(z − y±)(t− x±)(t− y±) > 0. (4.2)

Remarks.

a) Notice that those two commutations are bi-symmetric, so that the
mapping (h, b; i) 7→ Com(h, b; i) is involutive when Com is equal either to
ComCF , or ComH .

b) Cyclic intervals. — The second commutation was introduced in the
case ℓ = 0 (no large letters) in [12] and for an arbitrary ℓ (0 ≤ ℓ ≤ r) in
[7]. In both papers the commutations were defined by means of so-called
“cyclic intervals” that can be defined as follows. Place the r elements
1, 2, . . . , s, s + 1, . . . , (r − 1), r on a circle counterclockwise and place a
bracket on each of those elements as shown in Fig. 1. For x, y ∈ X (x 6= y)
the cyclic interval

]]
x, y

]]
is the subset of all the elements that lie between x

and y when the circle is read counterclockwise. The brackets (in the French
notation) indicate if the ends of the interval are to be included or not.

For instance, suppose 1 < s < s+ 1 < r. Then
]]
1, s

]]
= {2, . . . , s} (the

origin 1 excluded, but the end s included), while
]]
1, s + 1

]]
= {2, . . . , s}
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�

-

1

2

s

r

(r − 1)

(s+ 1)

?
6

Fig. 1

(both ends are excluded); also
]]
r, s

]]
= {r, 1, . . . , s} (both ends are

included) and
]]
r, s + 1

]]
= {r, 1, . . . , s} (the origin r included, but the

end (s + 1) excluded). Finally, define
]]
x, x

]]
= ∅ or X depending on

whether x is small or large.

Then QH

(
x, y

z, t

)

true if both z, t are in
]]
x, y

]]
or neither in

]]
x, y

]]
.

Example. — Consider the alphabet sXℓ with s = 3 and ℓ = 2,

and the biword α =





1 2 3 4 5 6 7 8 9
4 5 4 1 1 2 3 5 3
4 4 5 1 3 1 2 3 5



. The minimal sequence is then

2, 3, 2, 1, 4, 3, 2, 5, 4, 3, 6, 5, 4, 8, 7, 6, 5. By using ComH in SORTB we obtain
the sequence of commutations

α =





1 2 3 . . .

4 5 4 . . .
4 4 5 . . .



 7→





1 2 3 4 . . .

4 4 5 1 . . .
4 5 4 1 . . .



 7→





1 2 3 4 . . .
4 4 1 5 . . .
4 5 1 4 . . .



 7→





1 2 3 4 . . .
4 1 4 5 . . .
4 5 1 4 . . .





· · · 7→





1 2 3 4 5 6 7 8 9
1 1 2 3 4 3 4 5 5
4 5 1 4 1 3 2 3 5



 7→





1 2 3 4 5 6 7 8 9
1 1 2 3 3 4 4 5 5
4 5 1 4 1 3 2 3 5



 = SORTB(α,ComH)

5. The main algorithm. — In the description of the following
algorithm we take the alphabet sXℓ having s small letters 1, 2, . . . , s and
ℓ large letters (s+ 1), . . . , r (s+ ℓ = r).

The total order used on the places will always be the natural order of
the integers. However the order “�” used on the letters of the words will
be the order “�” defined by

r ≺ (r − 1) ≺ · · · ≺ (s+ 1) ≺ 1 ≺ 2 ≺ · · · ≺ s. (5.1)

If there are no large letters so that ℓ = 0 and s = r, the order “�” is
identical with the usual order “≤.” To avoid any kind of ambiguity we
make precise each time which one of the orderings is involved by using
notations such as “�-greatest” or “≤-nondecreasing”. . .
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Algorithm T. — Let Com be a commutation induced by a four-
variable Boolean function Q. The following algorithm transforms each
word b into a rearrangement c of b.

Prototype c := T(b,Com).
(1) Let h be the ≤-nondecreasing rearrangement of b. Form the standard

circuit Γ(b) = (h, b):




id
h

b



 =





1 2 . . . m

h1 h2 . . . hm

b1 b2 . . . bm



 ,

let c := b and α be the empty cycle α =





.

.

.



.

(2a) If all the places 1, 2, . . . , m occur in α, RETURN c (the juxtaposition
product of the bottom words in α.)

(2b) Else, let D be the ≤-greatest place not occurring in α.
(2c) Let M be the �-greatest letter in h not in α. Let i be the ≤-rightmost

place such thatM = hi and i ≤ D. If i ≤ D−1 apply the commutation

(h, c) := Com(h, c; i, i+ 1, . . . , D − 1).

[If there are no large letters in h, we always have i = D and the above
commutation is bypassed.] At the end of (2c) we have hD = M so
that the initial biword has been changed into:

α
︷ ︸︸ ︷





id
h

c



 =





∗ . . . ∗ D

∗ . . . ∗ M

∗ . . . ∗ ∗









∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 · · ·





∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 .

(3a) Let B := cD.

(3b) If B = M , terminate the �-dominated cycle





∗ . . . ∗
∗ . . . M

M . . . ∗



 (possibly

of length 1) and add it to the left of α, so that the new α reads




∗ . . . ∗
∗ . . . M

M . . . ∗



α. Go to (2a).

(3c) Else, look for the ≤-greatest place j ≤ D − 1 such that B = hj ; in
short





id
h

c



 =





. . . j . . . D . . . ∗

. . . B . . . ∗ . . . M

. . . ∗ . . . B . . . ∗









∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 · · ·





∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 .
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If j ≤ D − 2, apply the commutation:

(h, c) = Com(h, c; j, j + 1, . . . , D − 2),

so that hD−1 = B after running the commutation; in short:




id
h

c



 =





. . . j . . . D − 1 D . . . ∗

. . . ∗ . . . B ∗ . . . M

. . . ∗ . . . ∗ B . . . ∗









∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 · · ·





∗ . . . ∗
∗ . . . ∗
∗ . . . ∗



 .

(3d) Let D := D − 1 and go to (3a).

We can verify that each step in the previous algorithm is feasible. For
example, the place j in step (3c) is well-defined: at this stage

(
h
c

)
is the

product of the left factor (in square brackets)
[
h′

c′

]
by α and h′ is necessarily

a rearrangement of c′.

The algorithm T will also be denoted by sTℓ when we want to
emphasize that it is applied to words in the alphabet sXℓ. With r = s+ ℓ

and using the two commutations ComCF and ComH we can derive four
different transformations:

Φ(b) = rT0(b,ComCF ), Φq(b) = rT0(b,ComH),

sΦℓ(b) = sTℓ(b,ComCF ), sΦ
q
ℓ(b) = sTℓ(b,ComH).

(5.2)

Example. — Consider the biword




id
h

b



 =





1 2 3 4 5 6 7 8 9
1 1 2 3 3 4 4 5 5
4 5 1 4 1 3 2 3 5



 .

We calculate the image of b under the four transformations defined in
(5.2).

For Φ(b) = rT0(b,ComCF ) we obtain




id
h

c



 7→





1 2
3 4
4 3









3 4 5
1 2 4
4 1 2









6 7 8
1 3 5
5 1 3









9
5
5



 ,

so that c = Φ(b) = 4 3 4 1 2 5 1 3 5.

We next calculate Φq(b) = rT0(b,ComH). We get




id
h

c



 7→





1 2 3 4 5 6 7 8
4 4 1 1 3 2 3 5
5 4 4 1 1 3 2 3









9
5
5



 ,

so that c = Φq(b) = rT0(b,ComH) = 5 4 4 1 1 3 2 3 5.
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For the next two transformations assume that 1, 2, 3 are small letters,
while 4, 5 are large letters, so that s = 3 and ℓ = 2. The total order “�”
is then: 5 ≺ 4 ≺ 1 ≺ 2 ≺ 3. The calculation of sΦℓ(b) = sTℓ(b,ComCF )
yields: 



id
h

c



 7→





1 2 3 4 5
4 1 2 4 3
3 4 1 2 4









6 7 8 9
5 5 1 3
3 5 5 1



 ,

so that c = sΦℓ(b) = sTℓ(b,ComCF ) = 3 4 1 2 4 3 5 5 1.

Finally, sΦ
q
ℓ(b) = sTℓ(b,ComH) is then





id
h

c



 7→





1
4
4









2 3
5 4
4 5









4
1
1









5 6 7
1 2 3
3 1 2









8 9
5 3
3 5



 ,

so that c = sΦ
q
ℓ(b) = sTℓ(b,ComH) = 4 4 5 1 3 1 2 3 5.

6. The algorithm U. — Again we take the alphabet sXℓ and the
order defined in (4.1).

Algorithm U. — Given a commutation Com, the following algorithm
transforms a word c into a word b such that b = U(c,Com).

Prototype b := U(c,Com).
(1) Let i := 1, S := c1;

(2a) If i = length(c), let hi := S, (h, b) := SORTB(h, c,Com). RETURN b.
(2b) Else, let B := ci+1.
(2c) If B � S, let hi := S, S := B. Else, let hi := B.
(3) Let i := i+ 1. Go to (2a).

Property. — Algorithm U is the inverse of algorithm T, i.e., for

each word b we have

U(T(b,Com),Com) = T(U(b,Com),Com) = b.

Proof. — First examine algorithm T. Before returning c in step (2a)
the algorithm provides the juxtaposition product α = γ1γ2 . . . of cycles.
Let u1, u2, . . . be the bottom words of those cycles and let pre(u1), pre(u2),
. . . be the first letters of those bottom words. Steps (2c) and (3b) say that
each cycle γi was terminated as soon as pre(ui) was �-greater than all the
other letters in the cycle. Accordingly, all the cycles γi are �-dominated.
Furthermore, pre(u1) � pre(u2) � · · ·

Thus u1u2 . . . is the increasing factorization of c (in the terminology of

section 2), while α = γ1γ2 . . . =

(
δu1 δu2 . . .

u1 u2 . . .

)

is the increasing product
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of �-dominated cycles, i.e., α is equal to the well-factorized circuit ∆(c)
We can say that the algorithm T transforms each standard circuit Γ(b)
into a well-factorized circuit ∆(c), the word c being a rearrangement of b.
As each commutation applied to a pointed biword is involutive, T is a
bijection.

Now examine Algorithm U and let u1u2 · · · be the increasing factor-
ization of c as a product of �-dominated words. Once we have reached
step (2a), verified that the test i = length(c) was positive and executed
hi := S, the biword (h, c) is exactly the well-factorized circuit

∆(c) =

(
h

c

)

=

(
δu1 δu2 . . .

u1 u2 . . .

)

.

Thus Algorithm U first builds up the well-factorized circuit ∆(c) and
applies algorithm SORTB to ∆(c) to produce a standard circuit Γ(b).
Again as each local commutation applied to a pointed biword is involutive,
U is a bijection.

Finally, to prove that T and U are inverse of each other, we simply
examine algorithm T. The commutations are made only in steps (2c)
and (3c). In both steps the reverse operation can be written as

(h, c) := SORTB(h, c,Com).

7. Statistics on circuits. — We keep the alphabet sXℓ and consider
the class of circuits with letters in sXℓ. Remember that a circuit is a
pair of words α =

(
v
w

)
, where v = y1y2 . . . ym and w = x1x2 . . . xm are

rearrangements of each other and v is not necessarily non-decreasing. For
each circuit α =

(
v
w

)
, we define excℓ

(
v
w

)
to be the number of integers i

such that 1 ≤ i ≤ m and either xi > yi, or xi = yi and xi large.
The definition of denℓ

(
v
w

)
is based on the notion of cyclic interval, as

introduced in section 4. For each place i (1 ≤ i ≤ m) define pi to be the
number of j such that 1 ≤ j ≤ i − 1 and xj ∈

]]
xi, yi

]]
. Also let pm+1 be

the number of large letters in w. The sequence (p1, p2, . . . , pm+1) is said
to be the ℓ-den-coding of

(
v
w

)
. Furthermore, define

denℓ

(
v

w

)

= p1 + p2 + · · ·+ pm + pm+1. (7.1)

Example. — Consider an alphabet with s = 3 small letters 1, 2, 3 and
ℓ = 2 large letters 4, 5 and form the circuit

α =





id
v

w



 =





1 2 3 4 5 6 7 8 9
4 5 4 1 1 2 3 5 3
4 4 5 1 3 1 2 3 5



 .
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It has a ℓ-excedence at places 1, 3, 5, 9, so that excℓ α = 4. For its ℓ-
Denert coding we first have p1 = 0. As 4 ∈

]]
4, 5

]]
= {4}, we have p2 = 1.

As 4 6∈
]]
5, 4

]]
= {5, 1, 2, 3}, we have p3 = 0. Also p4 = 0 as

]]
1, 1

]]
is empty.

As 4, 4, 5, 1 belong to
]]
3, 1

]]
= {4, 5, 1}, p5 = 4. As

]]
1, 2

]]
= {2}, we have

p6 = 0. Also
]]
2, 3

]]
= {3}, so that p7 = 1 and

]]
3, 5

]]
= {4}, so that p8 = 2.

As
]]
5, 3

]]
= {5, 1, 2, 3}, we get p9 = 6. Finally, as there are 4 large letters

in w, we get p10 = 4. Thus denℓ α = 0+1+0+0+4+0+1+2+6+4 = 18.

The definitions of desℓ
(
v
w

)
and of majℓ

(
v
w

)
depend only on the bottom

word w. Put xm+1 = s (the largest small letter) and xm+2 = ∞ (an
auxiliary letter greater than every letter of X). Then for each i =
1, 2, . . . , m + 1 define qi to be the number of j such that 1 ≤ j ≤ i − 1
and xj ∈

]]
xi, xi+1

]]
. The sequence (q1, q2, . . . , qm, qm+1) is said to be the

ℓ-maj-coding of α. Define

majℓ

(
v

w

)

= q1 + q2 + · · ·+ qm + qm+1. (7.2)

Taking the same example as above we can verify that (desℓ,majℓ)α =
(4, 18), which is also the value of (excℓ, denℓ)α. In fact the above circuit
is well-factorized and for that class of circuits the two pairs of statistics
have the same values, as proved in the next theorem.

Theorem 7.1. — If α =
(
v
w

)
is a well-factorized circuit, then

(excℓ, denℓ)α = (desℓ,majℓ)α. (7.3)

Proof. — Let

(
a2 . . . ai+1 ai+2 . . . ak a1
a1 . . . ai ai+1 . . . ak−1 ak

)

and

(
b2 . . .

b1 . . .

)

be two

successive �-dominated cycles in the increasing factorization of α, so that

α =

(
. . . a2 . . . ai+1 ai+2 . . . ak a1 b2 . . .

. . . a1 . . . ai ai+1 . . . ak−1 ak b1 . . .

)

.

Inside each �-dominated cycle a pair like (ai, ai+1) occurs horizontally
and vertically, so that there is a ℓ-descent aiai+1 if and only if there is
a ℓ-excedance

(
ai+1

ai

)
. Furthermore, the letters in w to the left of ai that

fall into the cyclic interval
]]
ai, ai+1

]]
bring the same contribution in both

majℓ α and denℓ α. If
(
ai+1

ai

)
is the j-th biletter of α (when read from left

to right), we have pj = qj in the notations used in (7.2) and (7.3).
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At the end of a�-dominated cycle we have to compare the contributions
of the horizontal pair (ak, b1) with the contribution of the vertical pair
(
a1

ak

)
. But ak ≺ a1 � b1 by definition of the increasing factorization. If b1

is large, then ak and a1 are also large and we have ak > a1 ≥ b1, so that
the letter ak creates an ℓ-excedence and an ℓ-descent. If b1 is small, then
ak > a1 is an ℓ-excedance if and only if ak is large. This is also equivalent
to saying that ak > b1 is an ℓ-descent.

Now if a1 = b1, the two cyclic intervals
]]
ak, b1

]]
and

]]
ak, a1

]]
that serve

in the calculation of majℓ α and denℓ α are identical. If a1 ≺ b1, there is no
letter x in w to the left of b1 such that a1 ≺ x � b1. Four cases are to be
considered: (1) a1, b1, ak all small; (2) a1, b1 small, ak large; (3) a1, b1, ak
all large; (4) a1 large, b1 small, ak large. For any two sets A,B let A+B

denote the union of A and B when the intersection A ∩ B is empty. In
cases (1) and (2) we have

]]
ak, b1

]]
=

]]
ak, a1

]]
+ {x : a1 ≺ x � b1},

while
]]
ak, a1

]]
=

]]
ak, b1

]]
+ {x : a1 ≺ x � b1}

in cases (3) and (4). Consequently there are as many letters to the left
of ak falling into the interval

]]
ak, b1

]]
as letters falling into

]]
ak, a1

]]
.

Suppose that α is of length m and take up again the notations of (7.1)
and (7.2). We still have to compare the pairs (qm, qm+1) and (pm, pm+1).
Let

(
ym

xm

)
be the rightmost biletter of α. If w contains small letters, the

letter ym is necessarily equal to the greatest small letter occurring in w.
Hence the cyclic intervals

]]
xm, s

]]
used for evaluating qm and

]]
xm, ym

]]

for evaluating pm are equal. If w contains only large letters, ym is equal to
the smallest large letter in w and again the previous two cyclic intervals
are equal. Finally, pm+1 = qm+1, as both coefficients count the large letters
in w.

8. Statistics on words. — To get the definitions of desℓ w, majℓ w,
excℓ w and denℓ w for a word w in the alphabet sXℓ we simply form the
standard circuit Γ(w) and put

desℓ w = desℓ Γ(w), majℓ w = majℓ Γ(w),

excℓ w = excℓ Γ(w), denℓ w = denℓ Γ(w).
(8.1)

The definitions given for desℓw and excℓ w are identical with the defini-
tions given in the introduction. The definition of denℓ w is new, while that
of majℓ w differs from the definition given in the introduction.

Theorem 8.1. — The statistic majℓ w given in (8.1) and the statistic

majℓ w given in the introduction are identical.
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As can be found in [12] for ℓ = 0 and in [7] for an arbitrary ℓ,
Theorem 8.1 is easy to prove by induction on the length of the word.

The ℓ-excedance index of w was defined in the introduction as the sum,
excindexℓ w, of all i such that i is a ℓ-excedance in w. When a certain
correcting term is added to excindexℓ w, we get the second definition
of denℓ w. To fully describe that correcting term we need the further
definitions. For each word w = x1x2 . . . xm let

invℓ w = #{1 ≤ i < j ≤ m : xi > xj or xi = xj ≥ s+ 1}

+#{1 ≤ i ≤ m : xi ≥ s+ 1},

imvℓ w = #{1 ≤ i < j ≤ m : xi > xj or xi = xj ≤ s}.

(8.2)

Notice that inv0 = inv (the usual number of inversions) and imv0 = imv
(the number of weak inversions).

Now if excℓ w = e, let i1 < i2 < · · · < ie be the increasing sequence of
the ℓ-excedances of w and let j1 < j2 < · · · < jm−e be the complementary
sequence. Form the two subwords

Excℓ w = xi1xi2 . . . xie ; Nexcℓ w = xj1xj2 . . . xjm−e
.

Then the ℓ-Denert statistic of w is also defined to be

denℓ w = excindexℓ w + imvℓ Excℓ w + invℓ Nexcℓ w. (8.3)

For ℓ = 0 we simply speak of the Denert statistic

denw = den0 w. (8.4)

Theorem 8.2. — For every word w the two definitions of denℓw
occurring in (8.1) and (8.3) are identical.

The concept of the Denert statistic is due to Denert [9]. The equivalence
between definitions (8.1) and (8.3) when ℓ = 0 and when w is a permuta-
tion (without repetitions) was already given in [11]. Another proof of that
result appeared in [5]. Theorem 8.2 that states the equivalence of those
two definitions for arbitrary words was proved in [12] for ℓ = 0 and in [13]
for an arbitrary ℓ.

9. Equidistribution properties. — The fundamental properties of
the commutations ComCF and ComH introduced in section 4 are stated
in the next theorem. The underlying alphabet is sXℓ.

Theorem 9.1. — The commutation “Com” being given, let α = (v, w)
be a circuit of length m and let α′ = (v′, w′) = Com(v, w; i) (1 ≤ i ≤ m−1)
be the image of that pointed circuit under the commutation “Com.”
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If Com = ComCF , then

excℓ

(
v′

w′

)

= excℓ

(
v

w

)

. (9.1)

If Com = ComH , then

(excℓ, denℓ)

(
v′

w′

)

= (excℓ, denℓ)

(
v

w

)

. (9.2)

Property (9.1) is evident, as biletters are preserved when the commuta-
tion “ComCF ” is applied. With notations slightly different (9.2) has been
proved in [12, Lemma 5.2] in the case ℓ = 0 and for arbitrary ℓ in [7,
Lemma 3.6]. We do not reproduce the proof here, as it essentially consists
of a lengthy but easy verification.

Theorem 9.2. — The transformations

Φ : b 7→ rT0(b,ComCF ), Φq : b 7→ rT0(b,ComH),

sΦℓ : b 7→ sTℓ(b,ComCF ), sΦ
q
ℓ : b 7→ sTℓ(b,ComH).

defined in (5.2) have the equidistribution properties

exc(w) = des Φ(w), (exc, den)w = (des,maj) Φq(w),

excℓ(w) = desℓ sΦℓ(w), (excℓ, denℓ)w = (desℓ,majℓ) sΦ
q
ℓ(w).

Proof. — With each of those transformations we start with a word b,

form the standard circuit Γ(b) =
(
b
b

)
and apply a well-defined sequence of

Cartier-Foata commutations (resp. of contextual commutations) to reach
a well-factorized circuit ∆(c).

If the commutation used is the Cartier-Foata commutation, we have

excℓ(b) = excℓ

(
b

b

)

[by definition of “excℓ”]

= excℓ ∆(c) [because of (9.1)]

= desℓ ∆(c) [by Theorem 7.1]

= desℓ(c). [by definition of “desℓ.”]

If we use the contextual commutation, we have the properties

(excℓ, denℓ) (b) = (excℓ, denℓ)

(
b

b

)

[by definition of “(excℓ, denℓ)”]

= (excℓ, denℓ)∆(c) [because of (9.2)]

= (desℓ,majℓ)∆(c) [by Theorem 7.1]

= (desℓ,majℓ) (c). [by definition of “majℓ.”]
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