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The two-dimensional (2D) and three-dimensional (3D) orthogonal moments are
useful tools for 2D and 3D object recognition and image analysis. However, the prob-
lem of computation of orthogonal moments has not been well solved because there
exist few algorithms that can efficiently reduce the computational complexity. As is
well known, the calculation of 2D and 3D orthogonal moments by a straightforward
method requires a large number of additions and multiplications. In this paper, an
efficient algorithm for computing 2D and 3D Legendre moments is presented. First,
a new approach is developed for computing Legendre polynomials with one variable;
the corresponding results are then used to calculate 1D Legendre moments. Second,
we extend our method to calculating 2D Legendre moments, a more accurate ap-
proximation formula when an analog original image is digitized to its discrete form
is also discussed, and the relationship between the usual approximation and the new
approach is investigated. Finally, an efficient method for computing 3D Legendre
moments is developed. As one can see, the proposed algorithm improves the com-
putational efficiency significantly and can be implemented easily for high order of
moments. c© 2000 Academic Press

1. INTRODUCTION

Moment functions of image intensity values have been successfully used in object recog-
nition [2–5], image analysis [6–8], object representation [9], edge detection [10–13], and
texture analysis [14]. A survey of these applications can be found in Ref. [1]. Examples
of moment-based feature descriptors include Cartesian geometrical moments, rotational
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moments, orthogonal moments, and complex moments. Moments with an orthogonal basis
set (e.g., Legendre and Zernike polynomials) can be used to represent the image with a
minimum amount of information redundancy. These orthogonal moments and their inverse
transforms have been used in the field of pattern representation, image analysis, and image
reconstruction with some success [6, 8, 14, 15]. As is well known, the difficulty in the use
of moments is due to their high computational complexity, especially when a higher order
of moments is used. To solve this problem, many research works have been proposed to
improve the accuracy and efficiency of moment calculations [17–25], but these methods
mainly focus on 2D and 3D geometric moments. Orthogonal moments defined in terms of
Legendre and Zernike polynomials have not been analyzed in detail from the point of view
of reducing the number of computing operations. Recently, Mukundan and Ramakrishnan
[25] used Green’s theorem and then proposed a recursive algorithm for computing the 2D
Legendre moments. Their method is efficient, but not accurate enough, since Mukundan
and Ramakrishnan used a trapezoidal integration rule to approximate the integral function
for Legendre moments. Liao and Pawlak [8] proposed a more accurate approximation for-
mula for computing the 2D Legendre moments of a digital image when an analog original
image was digitized. Then they used an alternative extended Simpson’s rule to numeri-
cally calculate a double integral function for a higher order of Legendre moments in each
pixel. These orthogonal moments have been successfully used to reconstruct some Chinese
characters. The method proposed by Liao and Pawlak is accurate, but needs much more
computation.

In this paper, we present a new method for calculating 2D and 3D Legendre moments
that consists of transforming the Legendre moments as a combination of the geometric
moments in which the coefficients can be easily derived. Then the existing algorithms for
computing the geometric moments are applied to improve the computational efficiency in the
calculation of the Legendre moments. The paper is organized as follows: We first describe a
new approach for computing 1D Legendre moments; this is the object of Section 2. As one
can see, the algorithm presented is very different from the known algorithms. In Section 3,
we extend our method to calculating the 2D Legendre moments; the reduction of the number
of additions and multiplications of the method proposed by Liao and Pawlak [8] will also
be discussed in the same section. The generalization of the method to 3D objects is given
in Section 4. Section 5 contains some discussions, and concluding remarks are given in
Section 6.

2. CALCULATION OF 1D LEGENDRE MOMENTS

The 2D Legendre moment of orderp+q of an object with intensity functionf (x, y) is
defined as [6]

L pq = (2p+ 1)(2q + 1)

4

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y) f (x, y) dx dy, (1)

where the kernel functionPp(x) denotes thepth-order Legendre polynomial and is given
by

Pp(x) =
p∑

k=0

Cpk[(1− x)k + (−1)p(1+ x)k], (2)
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with

Cpk = (−1)k

2k+1

(p+ k)!

(p− k)!(k!)2
. (3)

Since Legendre polynomials are orthogonal over the interval [−1, 1] [26], a square image
of N× N pixels with intensity functionf (i, j ), with 1≤ i, j ≤ N, must be scaled to be with-
in the region−1 ≤ x, y ≤ 1. When an analog original image is digitized to its discrete
form, the 2D Legendre momentsL pq defined by Eq. (1) is usually approximated by the
formula

L pq = (2p+ 1)(2q + 1)

(N − 1)2

N∑
i=1

N∑
j=1

Pp(xi )Pq(yj ) f (xi , yj ), (4)

wherexi = (2i − N− 1)/(N− 1) andyj = (2 j − N− 1)/(N− 1), and for a binary image,
f (xi , yj ) is given as

f (xi , yj ) =
{

1, if ( i, j ) is in the original object,
0, otherwise.

(5)

As indicated by Liao and Pawlak [8], Eq. (4) is not a very accurate approximation of
Eq. (1). To improve the accuracy, they proposed to use the approximated form

L̃ pq = (2p+ 1)(2q + 1)

4

N∑
i=1

N∑
j=1

hpq(xi , yj ) f (xi , yj ), (6)

where

hpq(xi , yj ) =
∫ xi+1x/2

xi−1x/2

∫ yj+1y/2

yj−1y/2
Pp(x)Pp(y) dx dy (7)

with 1x= xi − xi−1= 2/(N− 1) and1y= yj − yj−1= 2/(N− 1).
To evaluate the double integralhpq(xi , yj ) defined by Eq. (7), an alternative extended

Simpson’s rule was proposed by Liao and Pawlak. These values were then used to calculate
the 2D Legendre moments̃L pq defined by Eq. (6). Therefore, this method requires a large
number of computing operations. One goal of this paper is to give an efficient approach for
computingL̃ pq defined by Eq. (6). As one can see,L̃ pq can be expressed, with the help of
a useful formula that will be given below, as a linear combination ofLmn defined by (4),
with 0≤ m≤ p, 0≤ n ≤ q. For this reason, we consider first the computation ofL pq.

Equations (4) and (5) show that the main cost in Legendre moment computation is
calculatingPp(xi )Pq(yj ); therefore this is where we first concentrate our attention. Here we
discuss the following 1D Legendre moment withf (x) = 1 in a given interval andf (x) = 0
otherwise:

L p = 2p+ 1

N − 1

N∑
i=1

Pp(xi ). (8)

As is well known, a usual method for calculatingPp(xi ) is to utilize the recursive relation

Pl+1(x) = 2l + 1

l + 1
x Pl (x)− l

l + 1
Pl−1(x), for l ≥ 1 (9)

with P0(x)= 1 andP1(x)= x.
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Using such a strategy,O(N) additions and multiplications are needed for computingL p.
Another possible way is to express the Legendre moments, by substituting Eq. (2) into (1),
as a function of the geometric moments, which can be calculated by means of efficient
algorithms available. However, it is difficult to adopt such a strategy for computing a higher
order of Legendre moments, due to the fact that the large value of coefficients appears in the
expression, and more importantly, these coefficients are not easily derived. To overcome the
disadvantages mentioned above, we present a new algorithm that consists of transforming
the Legendre moments into a function of the geometric moments, whose coefficients are
easily calculated. Then we utilize the existing algorithms for the geometric moments to
reduce the computational complexity of Legendre moments. To do this, we will use the
following basic results.

For two real numbersx anda, we want to expressPp(x+a) in the separable form

Pp(x + a) =
p∑

k=0

λ
p
k (a)Pp−k(x). (10)

As is easily seen, the key is the calculation ofλ
p
k (a), so we turn to it in the following.

From Eq. (2), we have

Pp(x + a) =
p∑

k=0

Cpk[(1− a− x)k + (−1)p(1+ a+ x)k]. (11)

Comparing the terms of the monomialxp on the right-hand sides of Eqs. (10) and (11), it
is easy to obtain

λ
p
0 (a) = 1. (12)

Similarly, we have

λ
p
1 (a) = (2p− 1)a. (13)

To obtain the expression ofλp
k (a) for any value ofk with k≤ p, two cases need to be

distinguished:k is odd andk is even.

2a. k= 2m− 1

THEOREM 1. For a given integer p, and for an odd number k= 2m− 1 less than or
equal to p, λp

2m−1(a) can be deduced by the recursive relation

λ
p
2m−1(a) = (p− 2m+ 1)!

(2p− 4m+ 2!

×
{

1

2

2m−2∑
l=0

(−1)l

22m−l−1

(2p− l )!

l !(2m− l − 1)!(p− 1)!
[(1+ a)2m−l−1− (1− a)2m−l−1]

−
m−2∑
j=0

λ
p
2 j+1(a)

2m−1∑
l=2 j+1

(−1)l−1

22m−l−1

(2p− l − 2 j − 1)!

(l − 2 j − 1)!(2m− l − 1)!(p− l )!

}
(14)
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Proof. It is easily seen that the coefficient of the monomialxp−2m+1 on the right-hand
side of Eq. (11) can be expressed as

(−1)p

{
2m−2∑
l=0

Cp,p−l C
2m−l−1
p−l [(1+ a)2m−l−1− (1− a)2m−l−1]

}
, (15)

whereC j
i is the combination number and is defined asC j

i = i !/( j !(i − j )!).
On the other hand, the coefficient of the monomialxp−2m+1 on the right-hand side of

Eq. (10) is given as

2(−1)p−1
m−1∑
j=0

λ
p
2 j+1(a)

2m−1∑
l=2 j+1

Cp−2 j−1,p−1C
2m−l−1
p−l . (16)

By equating (15) and (16), we obtain

λ
p
2m−1(a)Cp−2m+1,p−2m+1 = 1

2

2m−2∑
l=0

Cp,p−l C
2m−l−1
p−l [(1− a)2m−l−1− (1+ a)2m−l−1]

−
m−2∑
j=0

λ
p
2 j+1(a)

2m−1∑
l=2 j+1

Cp−2 j−1,p−l C
2m−l−1
p−l .

From Eq. (3), we have

Cp,p−l C
2m−l−1
p−l

Cp−2m+1,p−2m+1
= (−1)l−1

22m−l−1

(2p− l )!

l !(2m− l − 1)!(p− l )!

(p− 2m+ 1)!

(2p− 4m+ 2)!
,

and

Cp−2 j−1,p−l C
2m−l−1
p−l

Cp−2m+1,p−2m+1
= (−1)l−1

22m−l−1

(2p− l − 2 j − 1)!

(l − 2 j − 1)!(2m− l − 1)!(p− l )!

(p− 2m+ 1)!

(2p− 4m+ 2)!
.

So we achieve the proof of theorem 1

We can easily deduce the following relations from Theorem 1

λ
p
1 (a) = (2p− 1)a, (17)

λ
p
3 (a) = a3

3!
(2p− 1)(2p− 3)(2p− 5)+ (2p− 5)a, (18)

λ
p
5 (a) = a5

5!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)(2p− 9)

+ a3

2
(2p− 3)(2p− 5)(2p− 9)+ (2p− 9)a. (19)

By examining the expressions (17), (18), and (19), it is natural to suppose that

λ
p
2m−1(a) = f0(p,m)a2m−1+ f1(p,m)a2m−3+ · · · + fi (p,m)a2m−2i−1

+ · · · + fm−2(p,m)a3+ fm−1(p,m)a. (20)

The following theorem can then be used to calculatefi (p,m)
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THEOREM2. For a given integer m, and for0≤ i ≤ m− 1, we have

fi (p,m) = (p− 2m+ 1)!

(2p− 4m+ 2)!

{
2i∑

l=0

(−1)l

22m−l−1

(2p− l )!

l !(2m− l − 1)!(p− l )!
C2i−l

2m−l−1

−
i−1∑
j=0

f j (p,m− i + j )
2m−1∑

l=2m−2i+2 j−1

(−1)l−1

22m−l−1

× (2p− l − 2m+ 2i − 2 j + 1)!

(l − 2m+ 2i − 2 j + 1)!(2m− l − 1)!(p− l )!

}
. (21)

Proof. From Eq. (20), we have

λ
p
2 j+1(a) =

j∑
s=0

fs(p, j + 1)a2 j−2s+1. (22)

Substitution of (20) and (22) into (14) yields

m−1∑
i=0

fi (p,m)a2m−2i−1

= (p− 2m+ 1)!

(2p− 4m+ 2)!

{
1

2

2m−2∑
l=0

(−1)l

22m−l−1

(2p− l )!

l !(2m− l − 1)!(p− l )!

× [(1+ a)2m−l−1− (1− a)2m−l−1] −
m−2∑
j=0

j∑
s=0

fs(p, j + 1)a2 j−2s+1

×
2m−1∑

l=2 j+1

(−1)l−1

22m−l−1

(2p− l − 2 j − 1)!

(l − 2 j − 1)!(2m− l − 1)!(p− l )!

}
.

The coefficient of the monomiala2m−2i−1 on the right-hand side of this equation is

(p− 2m+ 1)!

(2p− 4m+ 2)!

{
2i∑

l=0

(−1)l

22m−l−1

(2p− l )!

l !(2m− l − 1)!(p− l )!
C2i−l

2m−l−1

−
m−2∑

j=m−i−1

f j−m+i+1(p, j + 1)
2m−1∑

l=2 j+1

(−1)l−1

22m−l−1

(2p− l − 2 j − 1)!

(l − 2 j − 1)!(2m− l − 1)!(p− l )!

}
.

Using the change of variablej = j ′ +m− i − 1 in the last term of the above expression,
we can deduce expression (21).

Theorem 2 shows thatfi (p,m) can be calculated by the recursive relation (21). Using
this relation, we have

f0(p,m) = 1

(2m− 1)!

1

22m−1

(2p)!

p!

(p− 2m+ 1)!

(2p− 4m+ 2)!
(23)

f1(p,m) = 2m− 3

(2m− 3)!

1

22m−2

(2p− 2)!

(p− 1)!

(p− 2m+ 1)!

(2p− 4m+ 2)!

1

2p− 4m+ 5
(24)
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f2(p,m) = (2m− 4)(2m− 5)

2!(2m− 5)!

1

22m−3

(2p− 4)!

(p− 2)!

(p− 2m+ 1)!

(2p− 4m+ 2)!

× 1

(2p− 4m+ 7)(2p− 4m+ 5)
. (25)

Obviously, it is hard to make use of Theorem 2 directly to calculatefi (p,m) for the large
value ofi , because Eq. (21) requires a large number of operations. However, by observing
the expressions (23), (24), and (25), we find thatfi (p,m) given by Eq. (21) can be much
simplified. That is, to calculate it, we have the following theorem:

THEOREM3. The function fi (p,m), for 0≤ i ≤m− 1, defined by Eq.(21)can be sim-
plified as

fi (p,m)= Ci
2m−i−2

(2m− 2i − 1)!

1

22m−i−1

(2p− 2i )!

(p− i )!

(p− 2m+ 1)!

(2p− 4m+ 2)!

1∏i−1
j=0(2p− 4m+ 2 j + 5)

,

(26)

where Ci
2m−i−2 is a combination number.

It is easily seen that expression (26) is equivalent to

fi (p,m) = 1

22m−2i−2

2p− 4m+ 3

i !(2m− 2i − 1)!

(2m− i − 2)!

(2m− 2i − 2)!

(2p− 2i )!

(p− i )!

(p− 2m+ i + 2)!

(2p− 4m+ 2i + 4)!

(27)

To prove Theorem 3, we should verify thatfi (p,m) given by (26) or (27) satisfies
expression (21). For this purpose, we first introduce the notations

A = (p− 2m+ 1)!

(2p− 4m+ 2)!
(28)

Bl = (−1)l

22m−l−1

(2p− l )!

l !(2i − l )!(2m− 2i − 1)!(p− l )!
(29)

D j,l = (−1)l−1

22m−l−1

(2p− l − 2m+ 2i − 2 j + 1)!

(l − 2m+ 2i − 2 j + 1)!(2m− l − 1)!(p− l )!
. (30)

Using the above notations, Eq. (21) can be written as

fi (p,m) = A

[
2i∑

l=0

Bl −
i−1∑
j=0

f j (p,m− i + j )
2m−1∑

l=2m−2i+2 j−1

Dj,l

]
. (31)

Then we give the following lemmas:

LEMMA 1. If f i (p,m) satisfies the relations

B2t =
t∑

j=0

f j (p,m− i + j )Dj,2m−2i+2t−1, t = 0, 1, . . . , i − 1, i (32)

B2t+1 =
t∑

j=0

f j (p,m− i + j )Dj,2m−2i+2t , t = 0, 1, . . . , i − 1 (33)
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fi (p,m) = A

[
B2i −

i−1∑
j=0

f j (p,m− i + j )Dj,2m−1

]
, (34)

then fi (p,m) satisfies Eq.(21)or Eq. (31).

LEMMA 2. For a function F(t, j ) defined by

F(t, j ) = 2(2p− 2H − 4 j − 1)(p− 2t)!

H !(2t + 1)(2t + 2)(p− H − 2t − 1)!

C j
pC2p−2t

2p−2 j

CH+ j
p C2t+2

2p−2H−2 j

, (35)

where t, p, and H are positive integers, then we have

t∑
j=0

F(t, j ) = 1. (36)

LEMMA 3. For a function F(t, j ) defined by

F(t, j ) = 2(2p− 2H − 4 j − 1)(p− 2t − 1)!

H !(2t + 2)(2t + 3)(p− H − 2t − 2)!

C j
pC2p−2t−1

2p−2 j

CH+ j
p C2t+3

2p−2H−2 j

, (37)

where t, p, and H are positive integers, we have

t∑
j=0

F(t, j ) = 1. (38)

The proofs of Lemmas 1–3 and Theorem 3 are deferred to Appendix A.

2b. k= 2m

In this case, we can obtain the corresponding results in a way similar to that fork= 2m−1.
So we give the following theorems without proof.

THEOREM4. For a given integer p, and for any even number k= 2m less than or equal
to p, λp

2m(a) can be deduced by the following recursive relation:

λ
p
2m(a)

= C2m
2p−2m+

(p− 2m)!

(2p− 4m)!

{
1

2

2m−1∑
l=0

(−1)l

22m−l

(2p− l )!

l !(2m− l )!( p− l )!
[(1+ a)2m−l + (1−a)2m−l ]

−
m−1∑
j=0

λ
p
2 j (a)

2m∑
l=2 j

(−1)l

22m−l

(2p− l − 2 j )!

(l − 2 j )!(2m− l )!( p− l )!

}
. (39)

Then we decomposeλp
2m(a) for m≥ 1 in the form

λ
p
2m(a) = g0(p,m)a2m + g1(p,m)a2m−2+ · · · + gi (p,m)a2m−2i + · · · + gm−1(p,m)a2.

(40)
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THEOREM5. For a given m, and for0≤ i ≤m− 1, we have

gi (p,m) = (p− 2m)!

(2p− 4m)!

{
2i∑

l=0

(−1)l

22m−l

(2p− l )!

l !(2m− l )!( p− l )!
C2i−l

2m−l −
i−1∑
j=0

gj (p,m− i + j )

×
2m∑

l=2m−2i+2 j

(−1)l

22m−l

(2p− l − 2m+ 2i − 2 j )!

(l − 2m+ 2i − 2 j )!(2m− l )!( p− l )!

}
. (41)

THEOREM6. Expression(41)can be simplified as

gi (p,m) = Ci
2m−i−1

(2m− 2i )!

1

22m−i

(2p− 2i )!

(p− i )!

(p− 2m)!

(2p− 4m)!

1∏i−1
l=0(2p− 4m+ 2l + 3)

. (42)

Based on Theorems 3 and 6, we now propose our method to calculate the 1D Legendre
moment defined by (8).

Using Eq. (10), the relationPp−k(−1) = (−1)p−k, and the notationxi =−1+ ai with
ai = 2(i − 1)/(N − 1), we have

L p = 2p+ 1

N − 1

N∑
i=1

Pp(−1+ ai ) = 2p+ 1

N − 1

N∑
i=1

p∑
k=0

λ
p
k (ai )Pp−k(−1)

= 2p+ 1

N − 1

N∑
i=1

p∑
k=0

(−1)p−kλ
p
k (ai ) = 2p+ 1

N − 1

N∑
i=1

Upλ
p(ai ), (43)

where

Up = [(−1)p, (−1)p−1, (−1)p, (−1)p−1, . . . ,−1, 1]

and

λp(ai ) =
[
λ

p
0 (ai ), λ

p
l (ai ), . . . , λ

p
p(ai )

]T
.

HereT indicates transposition, andUp andλp(ai ) are both (p+ 1)-dimensional vectors.
By using the notation

λp(ai ) = Mp Ap(ai ), (44)

where Ap(ai )= [1,ai ,a2
i , . . . ,a

p
i ]T , Mp is a (p + 1)× (p + 1) triangle matrix whose

elements depend only onp, and the definition of the matrixMp, for 0≤ l ≤ k≤ p, is given
as

Mp(k, l ) =


fm− j (p,m), if k = 2m− 1 andl = 2 j − 1, j = 1, 2, . . . ,m

gm− j (p,m), if k = 2m andl = 2 j, j = 1, 2, . . . ,m

0, otherwise.

(45)

Then we have

L p = 2p+ 1

N − 1
UpMp

(
N∑

i=1

Ap(ai )

)
= 2p+ 1

N − 1
UpMpDpGp, (46)
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whereDp is a (p+ 1)× (p+ 1) diagonal matrix whose diagonal elements areDp(k, k) =
(2/(N − 1))k for k = 0, 1, . . . , p, and

Gp =
[

N−1∑
i=0

1,
N−1∑
i=0

i,
N−1∑
i=0

i 2, . . . ,

N−1∑
i=0

i p

]T

is a (p+ 1)-dimensional vector whose elements are 1D geometric moments of order up
to p.

So our strategy for computing the 1D Legendre moments of order up topcan be described
as follows:

1. Use the Pascal Triangle Transform proposed by Li and Shen [21] to calculate 1D
geometric moments of order up top, so the vectorGp can be obtained without multiplication.

2. Construct the matrixMk with k≤ p by Eq. (45). The 1D Legendre moments of order
up to p can then be calculated by using Eq. (46).

Note that using the method proposed above, only the multiplication is needed in the
construction of matrixMk, and the product ofMk andGk. Therefore, the number of mul-
tiplications depends no longer onN, but only on p. It should also be pointed out that
expressions (26) and (42) seem to be complex, but in fact, their final results can easily be
derived for any givenp andm. A list of λp

k (a), for k≤ 20≤ p, is given in Appendix B.

3. CALCULATION OF 2D LEGENDRE MOMENTS

Based on the result obtained in Section 2, we are now in a position to express the 2D
Legendre moments̃L pq defined by Eq. (6) as a function ofL pq defined by Eq. (4).

By using the relation∫
Pp(x) dx = [ Pp+1(x)− Pp−1(x)]/(2p+ 1),

we can deduce from Eq. (7) that

(2p+ 1)(2q + 1)hpq(xi , yj )

= [ Pp+1(xi +1x/2)− Pp+1(xi −1x/2)− Pp−1(xi +1x/2)+ Pp−1(xi −1x/2)]

· [ Pq+1(yj +1y/2)− Pq+1(yj −1y/2)− Pq−1(yj +1y/2)+ Pq−1(yj −1y/2)].

(47)

With the help of Eq. (10), we have

Pp+1(xi +1x/2)− Pp+1(xi −1x/2)− Pp−1(xi +1x/2)+ Pp−1(xi −1x/2)

=
p+1∑
k=0

λ
p+1
k (1x/2)Pp+1−k(xi )−

p+1∑
k=0

λ
p+1
k (−1x/2)Pp+1−k(xi )

−
p−1∑
k=0

λ
p−1
k (1x/2)Pp−1−k(xi )+

p−1∑
k=0

λ
p−1
k (−1x/2)Pp−1−k(xi )

= 2

[∑p+1

k=1
λ

p+1
k (1x/2)Pp+1−k(xi )−

∑p−1

k=1
λ

p−1
k (1x/2)Pp−1−k(xi )

]
, (48)
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where
∑p+1

k=1 stands for summation with respect to the odd value ofk varied from 1 top+1.
Similarly, we have

Pq+1(yj +1y/2)− Pq+1(yj −1y/2)− Pq−1(yj +1y/2)+ Pq−1(yj −1y/2)

= 2

[∑q+1

l=1
λ

q+1
l (1y/2)Pq+1−l (yj )−

∑q−1

l=1
λ

q−1
l (1y/2)Pq−1−l (yj )

]
. (49)

Substitution of Eqs. (48) and (49) into Eq. (6) yields

L̃ pq =
∑p+1

k=1

∑q+1

l=1

4λp+1
k (1x/2)λq+1

l (1y/2)

(2p− 2k+ 3)(2q − 2l + 3)1x1y
L p+1−k,q+1−l

−
∑p+1

k=1

∑q−1

l=1

4λp+1
k (1x/2)λq−1

l (1y/2)

(2p− 2k+ 3)(2q − 2l − 1)1x1y
L p+1−k,q−1−l

−
∑p−1

k=1

∑q+1

l=1

4λp−1
k (1x/2)λq+1

l (1y/2)

(2p− 2k− 1)(2q − 2l + 3)1x1y
L p−1−k,q+1−l

+
∑p−1

k=1

∑q−1

l=1

4λp−1
k (1x/2)λq−1

l (1y/2)

(2p− 2k− 1)(2q − 2l − 1)1x1y
L p−1−k,q−1−l . (50)

Note that Eq. (50) is of the form of the convolution operator. In fact, by introducing the
sequences

Bpq
kl =

{
4λp

k (1x/2)λq
l (1y/2)

1x1y , for all odd values of (k, l )

0, otherwise
(51)

Ekl = Lkl

(2p+ 1)(2q + 1)
(52)

Eq. (50) can be written

L̃ pq = Bp+1,q+1
kl ∗ Ekl − Bp+1,q−1

kl ∗ Ekl − Bp−1,q+1
kl ∗ Ekl + Bp−1,q−1

kl ∗ Ekl , (53)

whereBpq
kl ∗ Ekl denotes the 2Dp ∗ q-point discrete convolution operator.

Equation (53) shows that the 2D Legendre momentsL̃ pq defined by Eq. (6) can be
deduced from the values ofLmn with 0≤ m≤ p and 0≤ n ≤ q. For this reason, we turn to
the fast computation ofL pq in the following. First, we give a list of relationships between
L̃ pq andL pq for p+ q ≤ 3.

L̃00 = L00

L̃10 = L10, L̃01 = L01

L̃20 = L20+ 5(1x)2

8
L00, L̃11 = L11, L̃02 = L02+ 5(1y)2

8
L00

L̃30 = L30+ 35(1x)2

24
L10, L̃21 = L21+ 5(1x)2

8
L01

L̃12 = L12+ 5(1y)2

8
L10, L̃03 = L03+ 35(1y)2

24
L01
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The first three leading terms in Eq. (50) are

L̃ pq = L pq + (2p+ 1)(2p− 1)(1x)2

24
L p−2,q

+ (2q + 1)(2q − 1)(1y)2

24
L p,q−2+ O((1x1y)2). (54)

The above equation shows that the difference betweenL̃ pq andL pq could be important
when the moments of higher order are concerned. Note that the method discussed above is
an extension of research by Liao and Pawlak [8]. In fact, they adopted the same strategy to
calculate the 2D geometric momentsm̃pq based on the values ofmpq, wherem̃pq andmpq

are defined as

mpq = 4

(N − 1)2

N∑
i=1

N∑
j=1

xp
i yq

j f (xi , yj ),

m̃pq =
N∑

i=1

N∑
j=1

f (xi , yj )
∫ xi+1x/2

xi−1x/2

∫ yj+1y/2

yj−1y/2
xpyq dx dy.

We now describe the algorithm for computing the 2D Legendre momentsL pq defined
by Eq. (4). To do this, a new approach based on Eq. (10) is used to calculatePp(xi )Pq(yj ).
Denotingxi =−1+ai , yj =−1+ bj , with ai = 2(i − 1)/(N− 1), bj = 2( j − 1)/(N− 1),
we have

Pp(xi )Pq(yj ) = Pp(−1+ ai )Pq(−1+ bj ) =
p∑

l=0

q∑
m=0

Pp−l (−1)Pq−m(−1)λp
l (ai )λ

q
m(bj ).

(55)

Introducing the notation

hu(p, [l/2]) =
{

gu(p, l/2), if l is an even number

fu(p, (l + 1)/2), otherwise,
(56)

where [x] denotes the integer part ofx, for 0≤ l ≤ p, we have

λ
p
l (ai ) =

[(l−1)/2]∑
u=0

hu(p, [l/2])al−2u
i . (57)

Similarly, we have

λq
m(bj ) =

[(m−1)/2]∑
v=0

hv(q, [m/2])bm−2v
j . (58)

Substitution of Eqs. (57) and (58) into (55) yields

Pp(xi )Pq(yj ) =
p∑

l=0

q∑
m

(−1)p+q−l−mFlm(ai , bj ), (59)
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where

Flm(ai , bj ) =
[(l−1)2]∑

u=0

[(m−1)/2]∑
v=0

hu(p, [l/2])hv(q, [m/2])al−2u
i bm−2v

j . (60)

We now calculate the 2D Legendre momentsL pq. We deduce from Eqs. (59) and (60)
that

L pq = (2p+ 1)(2q + 1)

(N − 1)2

p∑
l=0

q∑
m=0

(−1)p+q−l−m
N∑

i=1

N∑
j=1

Flm(ai , bj ) f (xi , yj ). (61)

Equation (61) can be written

L pq = (2p+ 1)(2q + 1)

4

p∑
l=0

q∑
m=0

[(l−1)/2]∑
u=0

[(m−1)/2]∑
v=0

Huv(p,q, l ,m)Gl−2u,m−2v, (62)

where

Huv(p,q, l ,m) = (−1)p+q−l−mhu(p, [l/2])hv(q, [m/2]) (63)

andGab denoting the 2D (a+ b)th order geometric moment except for a constant multi-
plicative factor, is defined as

Gab =
(

2

N − 1

)a+b+2 N−1∑
i=0

N−1∑
j=0

i a j b f (xi , yj ). (64)

Based on the above discussion, the algorithm for computing the 2D Legendre moments
L pq andL̃ pq can be described as follows.

1. The geometric momentsGab of order up toM are calculated by use of a fast method
proposed by Yang and Albregsten [23]. For an image of sizeN× N, this method needs
only O(N) additions and multiplications, respectively.

2. The coefficientshu(p, [1/2]), with 0≤ p≤M , 0≤ l ≤ p, and 0≤ u≤ [(l − 1)/2], are
calculated using Eqs. (26) and (42), in whichM(M − 1)(2M − 1)/6 multiplications and
M(M − 1)(2M − 1)/6 additions are needed, respectively. The values ofHuv(p,q, l ,m)
can then be deduced from Eq. (63).

3. Using Eq. (62) to calculate 2D Legendre momentsL pq, with 0≤ p+q≤M . When
all the values ofGab andhu(p, [l/2]) have been obtained, this step needs approximately
2M3(M + 1)3/722 additions and 4M3(M + 1)3/722 multiplications, respectively.

4. The 2D Legendre moments̃L pq of order up toM can be calculated with the help of
Eq. (53) when the values ofL pq, with 0≤ p+q≤M , have been obtained.

Note that Liao and Pawlak [8] adopted an alternative Simpson’s formula to calculate the
double integralhpq(xi , yj ) defined by Eq. (7), in which different integration rules, with
I = 3, 8, 13, 18, and 23, were employed. HereI denotes the number of points within a
given pixel required to evaluatehpq(xi , yj ). These values are then used to calculate the 2D
Legendre moments̃L pq. It is obvious that the method used by Liao and Pawlak needs much
more computation than the algorithm proposed in this paper. To illustrate the efficiency
and the accuracy of our method compared with the methods described by Mukundan and
Ramakrishnan [25], and by Liao and Pawlak [26] for computing the 2D Legendre moments,
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FIG. 1. The two original Chinese characters and their patterns reconstructed using Mukundan and
Ramakrishnan’s method [25].

we use the three methods to reconstruct some Chinese characters with the help of the inverse
transform

f (xi , yj ) ≈
M∑

p=0

p∑
q=0

L̃ p−q,q Pp−q(xi )Pq(yj ). (65)

Figure 1 shows the two original Chinese characters and their reconstructed pattern from
the higher order of Legendre moments by using Mukundan and Ramakrishnan’s method.
The first column displays the two original characters. The second column to the seventh
column illustrate the reconstructed patterns with order of up to 20, 24, 28, 32, 36, and
40, respectively. The results obtained with Eq. (6) using Liao and Pawlak’s method and
the method proposed in this paper are depicted in Figs. 2 and 3, respectively. Note that in
Figs. 2 and 3, the orders of the Legendre moments used in Eq. (65) are the same as those
used in Fig. 1. Table 1 shows the CPU times needed to calculate the Legendre moments of
order up to 20 and 40 for the three methods mentioned above, respectively. Note also that
the programs have been implemented on an AMD K6/300 personal computer.

4. CALCULATION OF 3D LEGENDRE MOMENTS

In this section, we describe briefly an efficient method for computing 3D Legendre
moment using the results obtained in Section 2. Similarly to the 2D Legendre moments, the

FIG. 2. The two original Chinese characters and their patterns reconstructed using Liao and Pawlak’s
method [8].
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FIG. 3. The two original Chinese characters and their patterns reconstructed using the method presented in
this paper.

3D Legendre momentL pqr of order p+q+ r of a 3D object is defined as

L pqr = (2p+ 1)(2q + 1)(2r + 1)

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y)Pr (z) f (x, y, z) dx dy dz. (66)

When an analog original imagef (x, y, z) is digitized into its discrete version, Eq. (66)
is usually approximated by

L pqr = (2p+ 1)(2q + 1)(2r + 1)

(N − 1)3

N∑
i=1

N∑
j=1

N∑
k=1

Pp(xi )Pq(yj )Pr (zk) f (xi , yj , zk). (67)

More accurately, we can approximateL pqr by

L̃ pqr = (2p+ 1)(2q + 1)(2r + 1)

8

N∑
i=1

N∑
j=1

N∑
k=1

hpqr(xi , yj , zk) f (xi , yj , zk), (68)

where

hpqr(xi , yj , zk) =
∫ xi+1x/2

xi−1x/2

∫ yj+1y/2

yj−1y/2

∫ zk+1z/2

zk−1z/2
Pp(x)Pq(y)Pr (z) dx dy dz. (69)

Like 2D Legendre moments̃L pq, 3D Legendre moments̃L pqr can also be expressed
as a linear combination ofLklm defined by Eq. (67), with 0≤ k≤ p, 0≤ l ≤q, 0≤m≤ r .
Therefore, we discuss here only the efficient computation ofL pqr defined by Eq. (67).

Introducing the notationxi =−1+ai , yj =−1+ bj , and zk=−1+ ck, with ai =
2(i − 1)/(N− 1), bj = 2( j − 1)/(N− 1), and ck= 2(k− 1)/(N− 1), respectively, and

TABLE 1

The CPU Times Needed to Calculate the Legendre Moments of Different Orders withN = 100

Mukundan and Ramakrishnan’s Liao and Pawlak’s
Maximum order method [25] method [8] Our method

M = 20 0.05 s 5.15 s 0.8 s
M = 30 0.06 s 10.5 s 1.4 s
M = 40 0.11 s 19 s 2.7 s
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using Eq. (10), we obtain

Pp(xi )Pq(yj )Pr (zk) = Pp(−1+ ai )Pq(−1+ bj )Pr (−1+ ck)

=
p∑

l=0

q∑
m=0

r∑
n=0

Pp−l (−1)Pq−m(−1)Pr−n(−1)λp
l (ai ) λ

q
m(bj ) λ

r
n(ck).

(70)

Using the functionhu(p, [l/2]) defined by Eq. (56), we have

Pp(xi )Pq(yj )Pr (zk) =
p∑

l=0

q∑
m=0

r∑
n=0

(−1)p+q+r−l−m−nFlmn(ai , bj , ck), (71)

where

Flmn(ai , bj , ck)

=
[(l−1)/2]∑

u=0

[(m−1)/2]∑
v=0

[(n−1)/2]∑
w=0

hu(p, [l/2])hv(q, [m/2])hw(r, [n/2])al−2u
i bm−2v

j cn−2w
k . (72)

We now turn to calculate 3D Legendre momentsL pqr. Since (2p+ 1)(2q+ 1)(2r + 1)/
(N− 1)3 appearing in Eq. (67) is a normalized factor, we neglect it in the following.

From Eqs. (71) and (72), and by exchanging the order of the summation, we deduce

L pqr =
p∑

l=0

q∑
m=0

r∑
n=0

(−1)p+q+r−l−m−n
N∑

i=1

N∑
j=1

N∑
k=1

Flmn(ai , bj , ck) f (xi , yj , zk). (73)

Equation (73) can be written as

L pqr =
p∑

l=0

q∑
m=0

r∑
n=0

[(l−1)/2]∑
u=0

[(m−1)/2]∑
v=0

[(n−1)/2]∑
w=0

Huvw(p,q, r, l ,m, n)Gl−2u,m−2v,n−2w, (74)

where

Huvw(p,q, r, l ,m, n) = (−1)p+q+r−l−m−nhu(p, [l/2])hv(q, [m/2])hw(r, [n/2]) (75)

andGabc, denoting the geometric moment of order (a+ b+ c) except for a constant multi-
plicative factor, is defined by

Gabc=
(

2

N − 1

)a+b+c N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

i a j bkc f (xi , yj , zk). (76)

From Eqs. (74), (75), and (76), we now describe our strategy to calculate 3D Legendre
moments of order up toM .

1. The geometric momentsGabc, with 0≤a, b, c≤M , are calculated by use of the fast
method proposed by Yanget al. [24]. Using such a method, this step needs onlyO(N2)
operations to calculateGabc of order up toM .
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2. The coefficientshu(p, [l/2]), with 0≤ p≤M , 0≤ l ≤ p, and 0≤ u≤ [(l − 1)/2], are
calculated with Eqs. (26) and (42). The values ofHuvw(p,q, r, l ,m, n) can then be deduced
from Eq. (75).

3. Using Eq. (74) to calculate 3D Legendre momentsL pqr of order up toM . When all
Gabc andhu(p, [l/2]) are calculated, the computationL pqr, with 0≤ p+q+ r ≤M , needs
approximately (M2(M + 1)/180)3 additions and 3(M2(M + 1)/180)3 multiplications, re-
spectively.

Obviously, the number of computing operations of the method using the algorithm de-
scribed above for calculating the 3D Legendre momentsL pqr defined by Eq. (67) is less than
that of the direct method since this latter requiresO(M3N3) additions and multiplications,
respectively.

5. DISCUSSION

Since Hu [3] introduced the moment invariants, moment functions of image intensity
values have been widely used in the field of image analysis and pattern recognition. During
the past two decades, many works have been done, discussing the application and the
efficient computation of the moment functions; most of them focus on Cartesian geometric
moments. As is well known, orthogonal moments defined in terms of Legendre and Zernike
polynomials can be used to represent an image with minimum redundancy. Furthermore,
these orthogonal moments and their inverse transforms are very useful tools for image
analysis, image reconstruction, and feature representation. However, the direct computation
of orthogonal moments requires a large amount of additions and multiplications, especially
where higher order moments are concerned; for this reason, the application of these moments
is limited.

Mukundan and Ramakrishnan [25] proposed to use Green’s theorem to transform the
double integral into a boundary integral; then they just used the contour information to
evaluate the 2D Legendre moments. Their method is efficient, but not accurate, since they
adopted a trapezoidal integration rule to approximate the integral function for Legendre
moments. Recently, Liao and Pawlak [8] proposed a more accurate approximation formula
for computing the 2D Legendre moments of a digital image; an alternative extended
Simpson’s rule was then used to numerically calculate a double integral function for higher
order Legendre moments for each pixel. The method proposed by Liao and Pawlak can
be used to reduce the discretization error, and it has been used successfully for image
reconstruction; however, their method requires a large number of computing operations.

In this paper, a simple and efficient algorithm for computing 2D and 3D Legendre mo-
ments has been proposed. The main contribution of the paper is to establish the relationship
indicated by Eq. (10). Using this equation, we can express the 2D Legendre momentsL̃ pq

defined by (6) as a linear combination ofLmn given by (4). Therefore, to obtain the value
of L̃ pq, it suffices to calculate the 2D LegendreLmn with 0≤m≤ p and 0≤ n≤q; the
value ofL̃ pq can then be deduced from Eq. (53). Note that to reduce the computation time,
the relationship (53) can be found by the 2D fast Fourier transform for large values ofp
andq. With the help of Eq. (10), we still can transform the 2D Legendre momentsL pq

into a function of the geometric moments of the same order and lower, whose coefficients
appearing in the expression are easy to calculate. Since many efficient algorithms are avail-
able to compute the geometric moments, our method tremendously decreases the number
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of computing operations compared with that of Liao and Pawlak, and the accuracy of our
method is similar to theirs. The above discussion shows that Eq. (10) is very useful; the
other application of this formula will be given in the near future.

As is well known, the usual way to express the Legendre moments as functions of the
geometric moments consists of substituting Eqs. (2) and (3) into (4). However, during the
programming, we found that it was difficult to obtain accurate coefficient values for higher
order Legendre polynomials. For example, forp= 30, the numeric result is not the same as
the theoretic value, and the difference becomes important with increasing order. In contrast,
the accurate coefficient values ofλp

k (a) defined by Eqs. (20) and (40) can be obtained
without difficulty for large value ofp; we have tested it up to 50. So our algorithm deserves
to be implemented much more.

6. CONCLUSION

In this paper, we have discussed the problems of accuracy and efficiency in 2D and 3D
Legendre moment computing. Based on the improved moment computing techniques, some
Chinese characters have been used as the test images in the image reconstruction procedure.
The comparison of the algorithm with known algorithms shows that our method is efficient
and accurate; therefore, it can be useful in image reconstruction and feature representation.

APPENDIX A

Proof of Lemma 1. The last term on the right-hand side of Eq. (31) can be written as

i−1∑
j=0

f j (p,m− i + j )
2m−1∑

l=2m−2i+2 j−1

Dj,l

=
i−1∑
j=0

f j (p,m− i + j )
2i−2 j∑
l=0

Dj,l+2m−2i+2 j−1

=
i−1∑
j=0

f j (p,m− i + j )

[
i− j−1∑

l=0

(Dj,2l+2m−2i+2 j−1+ Dj,2l+2m−2i+2 j )+ Dj,2m−1

]
. (A1)

Furthermore,

i−1∑
j=0

f j (p,m− i + j )
i− j−1∑

l=0

Dj,2l+2m−2i+2 j−1

=
i−1∑
j=0

f j (p,m− i + j )
i− j−1∑

l=0

Dj,2m−2l−3 using the change of variable

=
i−1∑
l=0

i−l−1∑
j=0

f j (p,m− i + j )Dj,2m−2l−3

l := i − j − 1− l

=
i−1∑
l=0

l∑
j=0

f j (p,m− i + j )Dj,2m−2i+2l−1 using the change of variable
l := i − 1− l

=
i−1∑
l=0

B2l by use of the assumption (32). (A2)
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Similarly, by using the assumption (33), we can deduce

i−1∑
j=0

f j (p,m− i + j )
i− j−1∑

l=0

Dj,2l+2m−2i+2 j =
i−1∑
l=0

B2l+1. (A3)

From Eqs. (A2) and (A3), the right-hand side of Eq. (31) can be written as

A

[
2i∑

l=0

Bl −
i−1∑
j=0

f j (p,m− i + j )
2m−1∑

l=2m−2i+2 j−1

Dj,l

]

= A

[
B2i −

i=1∑
j=0

f j (p,m− i + j )Dj,2m−1

]
= fi (p,m) by use of the assumption (34).

The proof is now complete.

Proof of Lemma 2. BecauseC j
p= 0 for j < 0 andC2p−2t

2p−2 j = 0 for j > t , we deduce from
(35) thatF(t, j )= 0 for j < 0, andF(t, j )= 0 for j > t . Therefore

t∑
j=0

F(t, j ) =
∞∑

j=−∞
F(t, j ). (A4)

Introducing the functions

R(t, j ) = 4p− 1− pj − j + 2 j H + 2 j 2− 8t3− 4p2t − 4pjt − 3p2

+ 4 j 2t − 2 j t − 2H − 6t − 2pj2+ 2p2 j + 12pt2+ 4pt H

+ 14pt − 6Ht2− 7t H + 3pH − 12t2− 2pj H + 4 j t H

and

G(t, j ) = − j (2p− 2 j + 1)R(t, j )

(p− 2t − 1)(p− 2t)(2p− 2H − 4 j − 1)(t − j + 1)(2t − 2 j + 1)
F(t, j ).

After a fair amount of mathematical manipulations, we obtain

F(t, j )− F(t + 1, j ) = G(t, j + 1)− G(t, j ).

Using the relationsG(t, t + 2)=G(t,−1)= 0 (becauseF(t, t + 2)= F(t,−1)= 0), we
have

t+1∑
j=−1

F(t, j )−
t+1∑

j=−1

F(t + 1, j ) =
t+1∑

j=−1

G(t, j + 1)−
t+1∑

j=−1

G(t, j )

= G(t, t + 2)− G(t,−1)= 0.

We deduce from (A4)

∞∑
j=−∞

F(t + 1, j ) =
∞∑

j=−∞
F(t, j ). (A5)
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Equation (A5) shows that
∑∞

j=−∞F(t, j ) is independent ont . Then, by settingt = 0, we
obtain

∞∑
j=−∞

F(t, j ) =
∞∑

j=−∞
F(0, j ) = F(0, 0)= 1,

which completes the proof of Lemma 2.

Proof of Lemma 3. The proof of Lemma 3 is similar to that of Lemma 2 by introducing
the following functions

R(t, j ) = 14p− 8− 3pj − 2 j + 4 j H + 4 j 2− 8t3− 4p2t − 4pjt − 5p2

+ 4 j 2t − 2 j t − 7H − 24t − 2pj2+ 2p2 j + 12pt2+ 4pt H

+ 26pt − 6Ht2− 13t H + 5pH − 24t2− 2pj H + 4 j t H

and

G(t, j ) = j (2p− 2 j + 1)R(t, j )

(p− 2t − 2)(p− 2t − 1)(2p− 2H − 4 j − 1)(t − j + 1)(2t − 2 j + 3)
F(t, j ).

Proof of Theorem 3. Based on Lemma 1, it is sufficient to prove that the function
fi (p,m) defined by Eq. (26) or Eq. (27) satisfies (32), (33), and (34). For this purpose, we
first prove thatfi (p,m) defined by Eq. (27) satisfies (32). Recall that Eq. (32) is written as

B2t =
t∑

j=0

f j (p,m− i + j )Dj,2m−2i+2t−1, t = 0, 1, . . . , i − 1, i . (A6)

From (29), (30), and (27), we have

B2t = (−1)2t

22m−2t−1

(2p− 2t)!

(2t)!(2i − 2t)!(2m− 2i − 1)!(p− 2t)!
(A7)

D j,2m−2i+2t−1 = (−1)2m−2i+2t−2

22i−2t

(2p− 4m+ 4i − 2t − 2 j + 2)!

(2t − 2 j )!(2i − 2t)!( p− 2m+ 2i − 2t + 1)!
(A8)

and

f j (p,m− i + j ) = 1

22m−2i−2

(2p− 4m+ 4i − 4 j + 3)

j !(2m− 2i − 1)!

(2m− 2i + j − 2)!

(2m− 2i − 2)!

× (2p− 2 j )!

(p− j )!

(p− 2m+ 2i − j + 2)!

(2p− 4m+ 4i − 2 j + 4)!
. (A9)

Using (A7), (A8), and (A9), we deduce that (A6) is equivalent to the equation

(2p− 2t)!

(2t)!( p− 2t)!
=

t∑
j=0

E(t, j ), (A10)
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where

E(t, j ) = 2(2p− 4m+ 4i − 4 j + 3)
(2p− 4m+ 4i − 2t − 2 j + 2)!

j !(2t − 2 j )!( p− 2m+ 2i − 2t + 1)!

× (2m− 2i + j − 2)!

(2m− 2i − 2)!

(2p− 2 j )!

(p− j )!

(p− 2m+ 2i − j + 2)!

(2p− 4m+ 4i − 2 j + 4)!
. (A11)

By using the change of variableH = 2m− 2i − 2, we obtain

E(t, j ) = 2(2p− 2H − 4 j − 1)
(2p− 2H − 2t − 2 j − 2)!

j !(2t − 2 j )!( p− H − 2t − 1)!

× (H + j )!

H !

(2p− 2 j )!

(p− j )!

(p− H − j )!

(2p− 2H − 2 j )!
. (A12)

Note thatH is a positive integer fori = 0, 1, 2, . . . ,m− 1. Setting

F(t, j ) = (2t)!( p− 2t)!

(2p− 2t)!
E(t, j ) (A13)

and substituting (A12) into (A13) yields

F(t, j ) = 2(2p− 2H − 4 j − 1)(p− 2t)!

H !( p− H − 2t − 1)!(2t + 1)(2t + 2)

C j
pC2p−2t

2p−2 j

CH+ j
p C2t+2

2p−2H−2 j

.

By using Lemma 2, we have

t∑
j=0

F(t, j ) = 1.

So Eq. (A10) is demonstrated, and the proof of (A6), or that of Eq. (32) is achieved.
Equation (33) can be proven in a similar way by using Lemma 3. To prove (34), it suffices

to use Eq. (32) fort = i , we have

A

[
B2i −

i−1∑
j=0

f j (p,m− i + j )Dj,2m−1

]

= A

[
i∑

j=0

f j (p,m− i + j )Dj,2m−1−
i−1∑
j=0

f j (p,m− i + j )Dj,2m−1

]
= A · fi (p,m) · Di,2m−1.

From (30), we have

Di,2m−1 = (2p− 4m+ 2)!

(p− 2m+ 1)!
= 1

A
.

The proof of Eq. (34) is now complete.
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APPENDIX B

λ
p
0 (a) = 1

λ
p
1 (a) = (2p− 1)a

λ
p
2 (a) = 1

2!
(2p− 1)(2p− 3)a2

λ
p
3 (a) = 1

3!
(2p− 1)(2p− 3)(2p− 5)a3+ (2p− 5)a

λ
p
4 (a) = 1

4!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)a4+ (2p− 3)(2p− 7)a2

λ
p
5 (a) = 1

5!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)(2p− 9)a5

+ 1

2
(2p− 3)(2p− 5)(2p− 9)a3+ (2p− 9)a

λ
p
6 (a) = 1

6!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)(2p− 9)(2p− 11)a6

+ 1

3!
(2p− 3)(2p− 5)(2p− 7)(2p− 11)a4+ 3

2
(2p− 5)(2p− 11)a2

λ
p
7 (a) = 1

7!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)(2p− 9)(2p− 11)(2p− 13)a7

+ 1

4!
(2p− 3)(2p− 5)(2p− 7)(2p− 9)(2p− 13)a5

+ (2p− 5)(2p− 7)(2p− 13)a3+ (2p− 13)a

λ
p
8 (a) = 1

8!
(2p− 1)(2p− 3)(2p− 5)(2p− 7)(2p− 9)(2p− 11)(2p− 13)(2p− 15)a8

+ 1

5!
(2p− 3)(2p− 5)(2p− 7)(2p− 9)(2p− 11)(2p− 15)a6

+ 5

12
(2p− 5)(2p− 7)(2p− 9)(2p− 15)a4+ 2(2p− 7)(2p− 15)a2

λ
p
9 (a) = 1

9!

9∏
i=1

(2p− 2i + 1)a9+ 1

6!

7∏
i=2

(2p− 2i + 1)(2p− 17)a7

+ 1

8

6∏
i=3

(2p− 2i + 1)(2p− 17)a5+ 5

3
(2p− 7)(2p− 9)(2p− 17)a3

+ (2p− 17)a

λ
p
10(a) = 1

10!

10∏
i=1

(2p− 2i + 1)a10+ 1

7!

8∏
i=2

(2p− 2i + 1)(2p− 19)a8

+ 7

2 · 5!

7∏
i=3

(2p− 2i + 1)(2p− 19)a6+ 5

6

6∏
i=4

(2p− 2i + 1)(2p− 19)a4

+ 5

2
(2p− 9)(2p− 19)a
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λ
p
11(a) = 1

11!

11∏
i=1

(2p− 2i + 1)a11+ 1

8!

9∏
i=2

(2p− 2i + 1)(2p− 21)a9

+ 1

180

8∏
i=3

(2p− 2i + 1)(2p− 21)a7+ 7

24

7∏
i=4

(2p− 2i + 1)(2p− 21)a5

+ 5

2
(2p− 9)(2p− 11)(2p− 21)a3+ (2p− 21)a

λ
p
12(a) = 1

12!

12∏
i=1

(2p− 2i + 1)a12+ 1

9!

10∏
i=2

(2p− 2i + 1)(2p− 23)a10

+ 9

2 · 7!

9∏
i=3

(2p− 2i + 1)(2p− 23)a8+ 7

90

8∏
i=4

(2p− 2i + 1)(2p− 23)a6

+ 35

24

7∏
i=5

(2p− 2i + 1)(2p− 23)a4+ 3(2p− 11)(2p− 23)a2

λ
p
13(a) = 1

13!

13∏
i=1

(2p− 2i + 1)a13+ 1

10!

11∏
i=2

(2p− 2i + 1)(2p− 25)a11

+ 5

8!

10∏
i=3

(2p− 2i + 1)(2p− 25)a9+ 1

60

9∏
i=4

(2p− 2i + 1)(2p− 25)a7

+ 7

12

8∏
i=5

(2p− 2i + 1)(2p− 25)a5+ 7

2
(2p− 11)(2p− 13)(2p− 25)a3

+ (2p− 25)a

λ
p
14(a) = 1

14!

14∏
i=1

(2p− 2i + 1)a14+ 1

11!

12∏
i=2

(2p− 2i + 1)(2p− 27)a12

+ 11

2 · 9!

11∏
i=3

(2p− 2i + 1)(2p− 27)a10+ 15

7!

10∏
i=4

(2p− 2i + 1)(2p− 27)a8

+ 7

40

9∏
i=5

(2p− 2i + 1)(2p− 27)a6+ 7

3

8∏
i=6

(2p− 2i + 1)(2p− 27)a4

+ 7

2
(2p− 13)(2p− 27)a2

λ
p
15(a) = 1

15!

15∏
i=1

(2p− 2i + 1)a15+ 1

12!

13∏
i=2

(2p− 2i + 1)(2p− 29)a13

+ 6

10!

12∏
i=3

(2p− 2i + 1)(2p− 29)a11+ 55

3 · 8!

11∏
i=4

(2p− 2i + 1)(2p− 29)a9

+ 1

24

10∏
i=5

(2p− 2i + 1)(2p− 29)a7+ 21

20

9∏
i=6

(2p− 2i + 1)(2p− 29)a5

+ 14

3
(2p− 13)(2p− 15)(2p− 29)a3+ (2p− 29)a
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λ
p
16(a) = 1

16!

16∏
i=1

(2p− 2i + 1)a16+ 1

13!

14∏
i=2

(2p− 2i + 1)(2p− 31)a14

+ 13

2 · 11!

13∏
i=3

(2p− 2i + 1)(2p− 31)a12+ 22

9!

12∏
i=4

(2p− 2i + 1)(2p− 31)a10

+ 165

4.7!

11∏
i=5

(2p− 2i + 1)(2p− 31)a8+ 7

20

10∏
i=6

(2p− 2i + 1)(2p− 31)a6

+ 7

2

9∏
i=7

(2p− 2i + 1)(2p− 31)a4+ 4(2p− 15)(2p− 31)a2

λ
p
17(a) = 1

17!

17∏
i=1

(2p− 2i + 1)a17+ 1

14!

15∏
i=2

(2p− 2i + 1)(2p− 33)a15

+ 7

12!

14∏
i=3

(2p− 2i + 1)(2p− 33)a13+ 26

10!

13∏
i=4

(2p− 2i + 1)(2p− 33)a11

+ 55

8!

12∏
i=5

(2p− 2i + 1)(2p− 33)a9+ 11

5!

11∏
i=6

(2p− 2i + 1)(2p− 33)a7

+ 7

4

10∏
i=7

(2p− 2i + 1)(2p− 33)a5+ 6(2p− 15)(2p− 17)(2p− 33)a3

+ (2p− 33)a

λ
p
18(a) = 1

18!

18∏
i=1

(2p− 2i + 1)a18+ 1

15!

16∏
i=2

(2p− 2i + 1)(2p− 35)a16

+ 15

2 · 13!

15∏
i=3

(2p− 2i + 1)(2p− 35)a14+ 91

3 · 11!

14∏
i=4

(2p− 2i + 1)(2p− 35)a12

+ 143

2 · 9!

13∏
i=5

(2p− 2i + 1)(2p− 35)a10+ 99

7!

12∏
i=6

(2p− 2i + 1)(2p− 35)a8

+ 77

5!

11∏
i=7

(2p− 2i + 1)(2p− 35)a6+ 5
10∏

i=8

(2p− 2i + 1)(2p− 35)a4

+ 9

2
(2p− 17)(2p− 35)a2

λ
p
19(a) = 1

19!

19∏
i=1

(2p− 2i + 1)a19+ 1

16!

17∏
i=2

(2p− 2i + 1)(2p− 37)a17

+ 8

14!

16∏
i=3

(2p− 2i + 1)(2p− 37)a15+ 35

12!

15∏
i=4

(2p− 2i + 1)(2p− 37)a13

+ 91

10!

14∏
i=5

(2p− 2i + 1)(2p− 37)a11+ 143

8!

13∏
i=6

(2p− 2i + 1)(2p− 37)a9
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+ 11

60

12∏
i=7

(2p− 2i + 1)(2p− 37)a7+ 11

4

11∏
i=8

(2p− 2i + 1)(2p− 37)a5

+ 15

2
(2p− 17)(2p− 19)(2p− 37)a3+ (2p− 37)a

λ
p
20(a) = 1

20!

20∏
i=1

(2p− 2i + 1)a20+ 1

17!

18∏
i=2

(2p− 2i + 1)(2p− 39)a18

+ 17

2 · 15!

17∏
i=3

(2p− 2i + 1)(2p− 39)a16+ 40

13!

16∏
i=4

(2p− 2i + 1)(2p− 39)a14

+ 455

4 · 11!

15∏
i=5

(2p− 2i + 1)(2p− 39)a12+ 2002

10!

14∏
i=6

(2p− 2i + 1)(2p− 39)a10

+ 429

2 · 7!

13∏
i=7

(2p− 2i + 1)(2p− 39)a8+ 11

10

12∏
i=8

(2p− 2i + 1)(2p− 39)a6

+ 55

8

11∏
i=9

(2p− 2i + 1)(2p− 39)a4+ 5(2p− 19)(2p− 39)a2.
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