
CHAPTER 10

Transformations on Words and
q-Calculus

10.0. Introduction

When sorting was systematically studied in the sixties and seventies, in partic-
ular for comparing the different methods used in practice, it was essential to go
back to the classics, to the works by MacMahon and especially to his treatise
on Combinatory Analysis. He had made an extensive study of the distributions
of several statistics on permutations, or more generally, on “permutations” with
repeated elements, simply called words in the sequel. The most celebrated of
those statistics is probably the classical number of inversions which stands for a
very natural measurement of how far a permutation is from the identity. There
are several other statistics relevant to sorting or to statistical theory, such as
the number of descents, the number of excedances, the major index, and more
recently the Denert statistic.

MacMahon had already calculated the distributions of the early statistics
and proved that some of them were equally distributed on each class of rear-
rangements of a given word. Let us state one of his basic results. To this end
suppose that X is a finite non-empty set, referred to as an alphabet. For con-
venience, take X to be the subset {1, 2, . . . , r} (r ≥ 1) of the positive integers,
equipped with its standard ordering. Let c = (c1, c2, . . . , cr) be a sequence
of r nonnegative integers and v be the nondecreasing word v = 1c12c2 . . . rcr ,
i.e., v = y1y2 . . . ym with m = c1 + c2 + · · · + cr and y1 = · · · = yc1 = 1,
yc1+1 = · · · = yc1+c2 = 2, . . . , yc1+···+cr−1+1 = · · · = ym = r. The class of
all rearrangements of v, i.e., the class of all the words w that can be obtained
from v by permuting its letters in some order will be denoted by R(c).

If w = x1x2 . . . xm is such a word, the number of excedances, excw, and the
number of descents, desw, and also the major index of w are classically defined
as

excw = #{i : 1 ≤ i ≤ m,xi > yi},
desw = #{i : 1 ≤ i ≤ m− 1, xi > xi+1}, (10.0.1)

majw =
∑
{i : 1 ≤ i ≤ m− 1, xi > xi+1}.
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Let Aexc
c (t) (resp. Ades

c (t)) be the generating polynomial for the class R(c) by
the statistic “exc” (resp. “des”), i.e.,

Aexc
c (t) =

∑
w

texcw, Ades
c (t) =

∑
w

tdesw (w ∈ R(c)).

MacMahon showed that those two polynomials were equal for every c. More
explicitly he showed that the generating functions for those two families of poly-
nomials had the same analytic expression. This raises the question of providing
methods for deriving those analytic expressions. This will be done in the first
part of this chapter in the more general set-up of q-calculus, as not only single
statistics will be considered, but pairs of statistics.

Now saying that the previous two polynomials are equal for every c implies
that the two statistics “exc” and “des” are equidistributed on each rearrangement
class R(c). Proving this equidistribution property in a bijective manner means
that a bijection ϕ on each rearrangement class R(c) is to be constructed with
the property that

excw = desϕ(w) (10.0.2)

holds for every w.
This brings up the matter of the second part of this chapter: does there

exist a systematic way for constructing those bijections? We shall see that a
large class of those bijections can be constructed by means of a straightening
algorithm on biwords which is based on a commutation rule itself defined on the
biwords. Although any commutation rule can be integrated in the algorithm,
our attention will be focused on the contextual commutation that serves to the
construction of a bijection Φ mapping a pair of statistics onto another pair.
Instead of property (10.0.2) we shall have

(exc,den)w = (des,maj)Φ(w), (10.0.3)

where “maj” and “den” are the major index and the Denert statistic (further
defined in section 10.11), respectively.

For every class R(c) introduce the two generating polynomials

Aexc,den
c (t, q) =

∑
w∈R(c)

texcwqdenw, Ades,maj
c (t, q) =

∑
w∈R(c)

tdeswqmajw.

An analytical expression for Ades,maj
c (t, q) was already derived by MacMahon

(see section 10.2). But there is no direct way for proving that the polynomial
Aexc,den

c (t, q) is equal to that analytical expression. Thus the construction of
the bijection Φ is crucial.

After recalling the fundamental material on q-calculus in section 10.1 we
present the MacMahon Verfahren which is a rearrangement method that has
been generalized in various contexts. In section 10.3 we discuss an insertion
technique that makes possible the derivation of a recurrence relation for gen-
erating polynomials for words and in section 10.4 we show how to go from a
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recurrence relation to an identity between q-series. All the calculations made in
sections 10.2–4 involve the generating polynomials Ades,maj

c (t, q).
The second part of the paper (section 10.5–11) is devoted to the construction

of the main algorithm. It involves the introduction of commutation rules on
biwords that serve to the constructions of both bijections ϕ and Φ. We conclude
with the proofs of the equidistribution properties (10.0.2), (10.0.3).

10.1. The q-binomial coefficients

We use the following notations on q-calculus. First, (a; q)n denotes the q-
ascending factorial

(a; q)n =

{
1, if n = 0;

(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1.

Here a and q are any symbols, variables, or real or complex numbers. The
q-binomial coefficient (or the Gaussian polynomial) is defined by

[
n

k

]
=


(q; q)n

(q; q)k (q; q)n−k
, if 0 ≤ k ≤ n;

0, otherwise.

(10.1.1)

The following properties of the q-binomial coefficients are straightforward and
given without proof: [

n

0

]
=

[
n

n

]
= 1;

[
n

k

]
=

[
n

n− k

]
; (10.1.2)[

n

k

]
=

[
n− 1

k

]
+ qn−k

[
n− 1

k − 1

]
; (10.1.3)[

n

k

]
=

[
n− 1

k − 1

]
+ qk

[
n− 1

k

]
; (10.1.4)

lim
q→1

[
n

k

]
=

(
n

k

)
. (10.1.5)

The q-binomial coefficient has a combinatorial interpretation in terms of non-
decreasing sequences of integers, as stated in the next proposition, where a =
(a1, . . . , an) denotes a nonincreasing sequence of nonnegative integers and where
∥a∥ = a1 + · · ·+ an.

Proposition 10.1.1. For each pair of nonnegative integers (k, n) we have[
k + n

k

]
=

∑
k≥a1≥···≥an≥0

q∥a∥ =
∑

n≥b1≥···≥bk≥0

q∥b∥. (10.1.6)
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Proof. The fact that the above two summations are equal follows from the sym-
metry of the q-binomial coefficient

[
k+n
k

]
in k and n. Denote the first summation

by D(k, n) and let D(0, 0) = 1. Then D(n, 0) = D(0, k) for every n ≥ 1 and
k ≥ 1. Next, for k and n ≥ 1

D(k, n) =
∑

a, an=0

q∥a∥ +
∑

a, an≥1

q∥a∥.

Let bi = ai − 1 (i = 1, . . . , n) in the second summation. Then

D(k, n) =
∑

k≥a1≥···≥an−1≥0

q∥a∥ +
∑

k−1≥b1≥···≥bn≥0

qn+∥b∥

= D(k, n− 1) + qnD(k − 1, n).

This shows that D(k, n) satisfies the recurrence relation (10.1.2), (10.1.3) for
the q-binomial coefficient

[
k+n
k

]
.

Proposition 10.1.1 provides the generating function for the nonincreasing
sequences of integers bounded from above. There is also a formula for sequences
without upper bound, as explained next. For each integer n ≥ 0 consider the
expansion

1

(t; q)1+n
=

∑
s≥0

∑
m≥0

ts qm p(s,m). (10.1.7)

The coefficient p(s,m) is equal to the number of sequences of nonnegative inte-
gers (i0, i1, . . . , in) such that i0+ i1+ · · ·+ in = s and 1 · i1+2 · i2+ · · ·+n · in =
m. Consequently, p(s,m) is equal to the number of nonincreasing sequences
a = (a1, a2, . . . , as) such that n ≥ a1 ≥ · · · ≥ as ≥ 0 and ∥a∥ = m. It follows
from Proposition 10.1.1 that for each s ≥ 0∑

m≥0

qm p(s,m) =
∑

n≥a1≥···≥as≥0

q∥a∥ =
∑

s≥a1≥···≥an≥0

q∥a∥. (10.1.8)

so that

1

(t; q)1+n
=

∑
s≥0

ts
∑

s≥a1≥···≥an≥0

q∥a∥ =
∑
s≥0

ts
[
n+ s

n

]
. (10.1.9)

10.2. The MacMahon Verfahren

Let Ac(t, q) = Ades,maj
c (t, q) be the generating polynomial for the class R(c)

by the pair (des,maj). Those two statistics have been defined in (10.0.1). By
convention, Ac(t, q) = 1, if c is the null sequence. In this section we shall derive
the identity

1

(t; q)1+∥c∥
Ac(t, q) =

∑
s≥0

ts
[
c1 + s

s

]
· · ·

[
cr + s

s

]
, (10.2.1)
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by means of the so-called MacMahon Verfahren.
First let us derive a symmetry property for the polynomials Ac(t, q). For

each permutation σ of the set of letters {1, 2, . . . , r} denote by σc the sequence
(cσ(1), cσ(2), . . . , cσ(r)), so that R(σc) is the class of all the rearrangements of
the word 1cσ(1)2cσ(2) . . . rcσ(r) .

Theorem 10.2.1. For each permutation σ of the set {1, 2, . . . , r} the distri-
butions of the pair (des,maj) over R(c) and over R(σc) are identical. In other
words, Ac(t, q) = Aσc(t, q).

Proof. It suffices to prove the property when σ is a transposition (i, i+1) of two
adjacent integers (1 ≤ i ≤ r − 1). Consider a word w in R(c) and write all its
factors of the form (i+ 1)i in bold-face; then replace all the maximal factors of
the form ia(i+ 1)b, with a ≥ 0, b ≥ 0, that do not involve any bold-face letters
by ib(i + 1)a. Finally, rewrite all the bold-face letters in roman type. Clearly,
the transformation is a bijection that maps each word w in R(c) onto a word w′

in R((i, i+ 1)c) with the property that (des,maj)w = (des,maj)w′.

To derive identity (10.2.1) we proceed as follows. By (10.1.9) the left-hand
side of (10.2.1) is equal to the sum of the series∑

ts
′+deswq∥a∥+majw,

extended over the triples (s′,a, w), where s′ is a nonnegative integer, where a is
a nonincreasing sequence of length ∥c∥ such that s′ ≥ a1 ≥ · · · ≥ a∥c∥ ≥ 0 and
where w ∈ R(c).

By (10.1.6) the right-hand side of (10.2.1) is the sum of the series∑
tsq∥a

(1)∥+···+∥a(r)∥

extended over all sequences (s,a(1), . . . ,a(r)), where s is a nonnegative integer
and where a(1) = (a1,1, . . . , a1,c1), . . . , a(r) = (ar,1, . . . , ar,cr ) are nonincreasing
sequences of integers all comprised between s and 0.

To prove that the sums of those two series are equal it suffices to build a
bijection (s,a(1), . . . ,a(r)) 7→ (s′,a, w) having the properties

s = s′ + desw and ∥a(1)∥+ · · ·+ ∥a(r)∥ = ∥a∥+majw. (10.2.2)

The construction of the bijection is an updated version of a bijection already
derived by MacMahon that has been generalized in several contexts. The re-
arrangement method described below is usually referred to as the MacMahon
Verfahren.

Form the two-row matrix(
a1,1 . . . a1,c1 a2,1 . . . a2,c2 . . . ar,1 . . . ar,cr
1 . . . 1 2 . . . 2 . . . r . . . r

)
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and rearrange its columns in such a way that the mutual orders of the columns
with the same bottom entries are preserved and the entire top row is nonin-
creasing. Let (

v
w

)
=

(
y1 y2 . . . y∥c∥
x1 x2 . . . x∥c∥

)
(10.2.3)

be the resulting matrix (remember that c1+ · · ·+ cr = ∥c∥.) From the previous
method of rearrangement we have yk = yk+1 ⇒ xk ≤ xk+1, or equivalently

xk > xk+1 ⇒ yk > yk+1. (10.2.4)

The top row of the matrix (10.2.3) is a word v = y1y2 . . . y∥c∥ of length ∥c∥
which is the unique nonincreasing rearrangement of the juxtaposition product
a(1) . . .a(r). The bottom row of the matrix (10.2.3) is a word w = x1x2 . . . x∥c∥
that belongs to R(c).

For i = 1, 2, . . . , ∥c∥ let zi be the number of descents in the right factor
xixi+1 . . . x∥c∥ of w, that is to say, the number of indices j such that i ≤ j ≤
∥c∥ − 1 and xj > xj+1. In particular,

z1 = desw. (10.2.5)

Also, by the very definition of the major index,

majw = z1 + z2 + · · ·+ z∥c∥. (10.2.6)

Now condition (10.2.5) implies that the word a = a1a2 . . . a∥c∥ defined by

ai = yi − zi (i = 1, 2, . . . , ∥c∥), (10.2.7)

is nonincreasing ; moreover, its letters are nonnegative. Then define

z′ = s− desw.

As s ≥ y1 = max ai,j and z1 = desw, we deduce that:

s′ = s− desw ≥ y1 − z1 ≥ 0

and also

∥a(1)∥+ · · ·+ ∥a(r)∥ =
∑
i

yi =
∑
i

ai +
∑
i

zi = ∥a∥+majw.

The two conditions (10.2.2) are fulfilled. The bijection

(s,a(1), . . . ,a(r)) 7→ (s′,a, w)

is fully described and is completely reversible. Identity (10.2.1) is then estab-
lished.
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Example 10.2.2. Illustrate the previous construction with an example. Start
with the sequence (s,a(1), . . . ,a(r)) defined by r = 3; a(1) = 6, 5, 1, 1, 0, 0; a(2) =
5, 4, 1, 1; a(3) = 3, 1 and s = 7. The rearrangement of the matrix(

6 5 1 1 0 0 5 4 1 1 3 1
1 1 1 1 1 1 2 2 2 2 3 3

)
as in (10.2.3) yields (

6 5 5 4 3 1 1 1 1 1 0 0
1 1 2 2 3 1 1 2 2 3 1 1

)
.

Hence

v = 6, 5, 5, 4, 3, 1, 1, 1, 1, 1, 0, 0;
w = 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 1;
z = 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0;
a = 4, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0;

desw = 2; s′ = s− desw = 5.

Therefore

a(1) + a(2) + a(3) = 6 + 5 + 1 + 1 + 5 + 4 + 1 + 1 + 3 + 1 = 28
= ∥a∥+majw = (4 + 3 + 3 + 2 + 1) + (5 + 10) = 28.

If u1, u2, . . . , ur are r commuting variables, it is convenient to use the no-
tations uc = uc11 u

c2
2 . . . ucrr and (u; q)s+1 = (u1; q)s+1 · · · (ur; q)s+1. Below the

summations of the form
∑

c are extended to all sequences c = (c1, . . . , cr) of r
nonnegative integers, including the null sequence.

Form the following factorial generating function

A(t, q;u) =
∑
c

Ac(t, q)
uc

(t; q)1+|c∥
(10.2.8)

for the polynomials Ac(t, q). It follows from (10.2.1) that

A(t, q;u) =
∑
s≥0

ts
∑
c

uc

[
c1 + s

s

]
· · ·

[
cr + s

s

]
=

∑
s≥0

ts
(∑

c1

uc11

[
c1 + s

s

])
· · ·

(∑
cr

ucrr

[
cr + s

s

])
,

so that by (10.1.9)

A(t, q;u) =
∑
s≥0

ts

(u; q)s+1
. (10.2.9)

Conversely, it is clear that (10.2.9) implies (10.2.1). We then have two ways
for expressing the polynomials Ac(t, q). In the next section we will see another
expression for those polynomials by means of a recurrence relation.
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10.3. The insertion technique

When deriving a recurrence relation for generating polynomials over permuta-
tion groups of order n = 1, 2, . . . , the insertion technique is of frequent use:
starting with a permutation of order n we study the modification brought to
the underlying statistic when the letter (n+1) is inserted into the (n+1) slots
of the permutation. With words with repetitions some transformations called
word marking in the sequel must be made on the initial word.

Write
Ac(t, q) =

∑
s≥0

Ac,s(q)t
s, (10.3.1)

so that Ac,s(q) is the generating polynomial for the words w ∈ R(c) such that
desw = s by the major index. It will be conventient to use the notations
[s]q = 1 + q + q2 + · · · + qs−1 and c + 1j = (c1, . . . , cj + 1, . . . , cr) for each
j = 1, 2, . . . , r and each sequence c = (c1, c2, . . . , cr).

Proposition 10.3.1. With ∥c∥ = c1 + · · · + cr and 1 ≤ j ≤ r the following
relations hold

(1− qcj+1)Ac+1j (t, q) =

(1− tq1+∥c∥)Ac(t, q)− qcj+1(1− t)Ac(tq, q); (10.3.2)

[cj + 1]qAc+1j ,s(q) =
[cj + 1 + s]q Ac,s(q) + qs+cj [1 + ∥c∥ − s− cj ]q Ac,s−1(q). (10.3.3)

Proof. The latter identity is equivalent to the former one, so that only (10.3.4)
is to be proved. By Theorem 10.2.1 this relation is equivalent to the relation
formed when j is replaced by any integer in {1, . . . , r }. It is convenient to prove
the relation for j = 1 which reads

(1 + q + · · ·+ qc1)Ac+11,s(q) =

(1 + q + · · ·+ qc1+s)Ac,s(q) + (qc1+s + · · ·+ q∥c∥)Ac,s−1(q). (10.3.4)

Consider the set R∗(c + 11, s) of 1-marked words, i.e., rearrangements w∗

of 1c1+1 . . . rcr with s descents such that exactly one letter equal to 1 has been
marked. Each word w ∈ R(c+11) that has s descents gives rise to c1+1 marked
words w(0), . . . , w(c1). Define

maj∗ w(i) = majw + n1,

where n1 is the number of letters equal to 1 to the right of the marked 1. Then
clearly

c1∑
i=0

maj∗ w(i) = (1 + q + · · ·+ qc1)majw.

Hence
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(1 + q + · · ·+ qc1)Ac+11,s(q) =
∑

w∈R∗(c+11,s)

qmaj∗ w.

Let m = ∥c∥ and let the word w = x1x2 . . . xm ∈ R(c) have s descents. Say
that w has m + 1 slots xixi+1, i = 0, . . . ,m (where x0 = 0 and xm+1 = ∞ by
convention). Call the slot xixi+1 green if either xixi+1 is a descent, xi = 1,
or i = 0. Call the other slots red. Then there are 1 + s + c1 green slots and
m− s− c1 red slots. Label the green slots 0, 1, . . . , c1 + s from right to left, and
label the red slots c1 + s+ 1, . . . ,m from left to right.

For example, with r = 3, the word w = 2, 2, 1, 3, 2, 1, 2, 3, 3 has three descents
and ten slots. As c1 = 2, there are eight green slots and two red slots, labelled
as follows

slot 0 | 2 | 2 | 1 | 3 | 2 | 1 | 2 | 3 | 3 | ∞
label 5 6 4 3 2 1 0 7 8 9

Denote by w(i) the word obtained from w by inserting a marked 1 into the
i-th slot. Then it may be verified that

desw(i) =

{
desw, if i ≤ c1 + s;

desw + 1, otherwise.
(10.3.5)

maj∗ w(i) = majw + i. (10.3.6)

Example 10.3.2. Consider the above word w. The following table shows the
values of “des” and “maj∗” on w(i). Descents are indicated by ⌢ and the
marked 1 is written in boldface.

i w(i) desw(i) maj∗ w(i)

0 2 2⌢1 3⌢2⌢1 1 2 3 3 3 11
1 2 2⌢1 3⌢2⌢1 1 2 3 3 3 12
2 2 2⌢1 3⌢1 2⌢1 2 3 3 3 13
3 2 2⌢1 1 3⌢2⌢1 2 3 3 3 14
4 2 2⌢1 1 3⌢2⌢1 2 3 3 3 15
5 1 2 2⌢1 3⌢2⌢1 2 3 3 3 16
6 2⌢1 2⌢1 3⌢2⌢1 2 3 3 4 17
7 2 2⌢1 3⌢2⌢1 2⌢1 3 3 4 18
8 2 2⌢1 3⌢2⌢1 2 3⌢1 3 4 19
9 2 2⌢1 3⌢2⌢1 2 3 3⌢1 4 20

So each word w ∈ R(c) with s descents and majw = n gives rise to c1 + s + 1
marked words in R∗(c+ 11, s) with maj∗ equal to n, n+ 1, . . . , n+ c1 + s; and
to m− s− c1 marked words in R∗(c+11, s+1) with maj∗ equal to n+ c1 + s+
1, . . . , n+m. Hence a word w in R(c) with s−1 descents gives rise tom−s+1−c1
marked words in R∗(c+11, s) with maj∗ equal to majw+c1+s, . . . ,majw+m.
This now proves relation (3.4).
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10.4. The (t, q)-factorial generating functions

In the previous section we have seen that formulas (10.2.1) and (10.2.9) im-
plied each other. The purpose of this section is to show that the recurrence
formula (10.3.2) is also equivalent to (10.2.1) and (10.2.9). This is achieved by
a manipulation of q-series we shall describe in full details.

As defined in (10.2.8) consider the factorial generating function

A(t, q;u) =
∑
c

uc

(t; q)1+∥c∥
Ac(t, q) (10.4.1)

and consider the partial q-difference

Dur
= A(t, q;u1, . . . , ur)−A(t, q;u1, . . . , ur−1, urq).

Directly from (10.4.1) we obtain

Dur
=

∑
c

(1− qcr+1)
uc+1r

(t; q)2+∥c∥
Ac+1r (t, q)

=
∑
c

(1− tq∥c∥+1)
uc+1r

(t; q)2+∥c∥
Ac(t, q)−

∑
c

qcr+1(1− t) uc+1r

(t; q)2+∥c∥
Ac(tq, q).

Now use the recurrence relation (10.3.2). We get

∑
c

(1− tq∥c∥+1)
uc+1r

(t; q)2+∥c∥
Ac(t, q) =

∑
c

uc+1r

(t; q)1+∥c∥
Ac(t, q)

= urA(t, q;u, )

and ∑
c

qcr+1(1− t) uc+1r

(t; q)2+∥c∥
Ac(tq, q) =

∑
c

uc+1rqcr+1

(tq; q)1+∥c∥
Ac(tq, q)

= urqA(tq, q;u1, . . . , ur−1, urq, ).

Hence

A(t, q;u)−A(t, q;u1, . . . , ur−1, urq, )
= urA(t, q;u)− urqA(tq, q;u1, . . . , ur−1, urq, ). (10.4.2)

The (partial) q-difference equation with respect to each ui (i = 1, . . . , r) has the
form

A(t, q;u)−A(t, q;u1, . . . , uiq, . . . , ur)
= uiA(t, q;u)− uiqA(tq, q;u1, . . . , uiq, . . . , ur). (10.4.3)
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Now let
A(t, q;u) =

∑
s≥0

tsGs(u, q).

From (10.4.3) we get∑
s≥0

ts(1− ui)Gs(u, q) =
∑
s≥0

ts(1− uiqs+1)Gs(u1, . . . , uiq, . . . , ur, q).

Taking the coefficient of ts in both members yields the relation

Gs(u, q) =
1− uiqs+1

1− ui
Gs(u1, . . . , uiq, . . . , ur, , q), (10.4.4)

for i = 1, . . . , r. Now put

Fs(u, q) = Gs(u, q)(u; q)s+1. (10.4.5)

From equation (10.4.4) we deduce that for i = 1, . . . , r

Fs(u, q) = Fs(u1, . . . , uiq, . . . , ur, q). (10.4.6)

But Fs(u, q) can be expressed as Fs(u, q) =
∑
c
ucFs,c(q), where Fs,c(q) is a

power series in non-negative powers of q. Fix c and let a be a non-zero compo-
nent of c. Then relation (10.4.6) implies that Fs,c(q) = qaFs,c(q). Therefore,
Fs,c(q) = 0. Hence Fs(u, q) = Fs,0(q). It remains to evaluate Fs,0(q). But from
(10.4.5)

Fs,0(q) = Fs(u, q)
∣∣∣
u = 0

= Gs(u, q)(u; q)s+1

∣∣∣
u = 0

= Gs(0, q) = 1,

as
∑
s≥0

tsGs(0, q) = A(t, q; 0) =
1

(t; q)1
=

∑
s≥0

ts. Thus Gs(u, q) =
1

(u; q)s+1

by (10.4.5). This proves identity (10.2.9). Conversely showing that (10.2.9) ⇒
(10.3.2) is much simpler, for (10.2.9) implies (10.4.3) in an easy manner and from
(10.4.3) the recurrence relation (10.3.2) can be reached without any difficulty.

10.5. Words and biwords

The rest of this chapter is devoted to the construction of a class of bijections on
each class R(c) based on specific commutation rules. We will see that by means
of the so-called Cartier-Foata rule and the contextual rule two bijections ϕ and Φ
can be constructed having properties (10.0.2) and (10.0.3), respectively.

Keep the same alphabet X = {1, 2, . . . , r}. A biword is an ordered pair of
words of the same length, written as α = (h, b) (“h” stands for “high” and “b”
for “bottom”) or as

α =

(
h
b

)
=

(
h1h2 . . . hm
b1b2 . . . bm

)
.
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For easy reference we shall sometimes indicate the places 1, 2, . . . , m of the
letters on the top of the biword: id

h
b

 =

 1 2 . . . m
h1 h2 . . . hm
b1 b2 . . . bm

 .
The word h (resp. b) is the top (resp. bottom) word of the biword (h, b). Each
biword

(
h
b

)
can also be seen as a word whose letters are the biletters

(
h1

b1

)
, . . . ,(

hm

bm

)
. The integer m is the length of the biword w. A triple (h, b; i) where i is

an integer satisfying 1 ≤ i ≤ m − 1 is called a pointed biword. When h and b
are rearrangements of each other, the biword (h, b) is said to be a circuit.

Two classes of circuits will play a special role. First, we introduce the stan-

dard circuits Γ(b) which are circuits of the form
(
b
b

)
, where b is the nondecreasing

rearrangement of the word b with respect to the standard ordering. Clearly Γ
maps each word onto a standard circuit in a bijective manner.

The second class of circuits is defined as follows. A nonempty word b =
bmb1 . . . bm−2bm−1 is said to be dominated, if bm > b1, bm > b2, . . . , bm > bm−1.
The right to left cyclic shift of b is defined to be the word δb = b1b2 . . . bm−1bm.
A biword of the form

(
δb
b

)
with b dominated is called a dominated cycle.

As it is known or easily verified, each word b is the juxtaposition product
u1u2 . . . of dominated words whose first letters pre(u1), pre(u2), . . . are in non-
decreasing order:

pre(u1) ≤ pre(u2) ≤ · · · (10.5.1)

That factorization, called the increasing factorization of b, is unique.
Given the increasing factorization u1u2 . . . of a word b, we can form the

juxtaposition product

∆(b) =

(
δu1 δu2 . . .
u1 u2 . . .

)
(10.5.2)

of the dominated cycles. Clearly ∆ maps each word onto a product of dominated
cycles satisfying inequalities (10.5.1), in a bijective manner. Such a product,
written as a biword (10.5.2), will be called a well-factorized circuit.

Example 10.5.1. Consider the word b = 2, 2, 1, 3, 5, 3, 4, 5, 1. The standard
circuit associated with b reads

Γ(b) =

(
1 1 2 2 3 3 4 5 5
2 2 1 3 5 3 4 5 1

)
.

It has an increasing factorization given by: 2 | 2 1 | 3 | 5 3 4 | 5 1, so that the cor-
responding well-factorized circuit reads:

∆(b) =

(
2
2

1 2
2 1

3
3

3 4 5
5 3 4

1 5
5 1

)
.
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As will be seen the next bijections on words can be viewed as composition
products

b 7→ Γ(b) 7→ ∆(c) 7→ c,

where the mapping Γ(b) 7→ ∆(c) will be described as a sequence of commutations
on circuits.

10.6. Commutations

Suppose given a four-variable Boolean function Q(x, y; z, t) (also written as

Q

(
x, y

z, t

)
) defined on quadruples of letters in X. The commutation “Com”

induced by the Boolean function Q(x, y; z, t) is defined to be a mapping that
maps each pointed biword (h, b; i) onto a biword (h′, b′) = Com(h, b; i) with the
following properties: if(

h
b

)
=

(
h1h2 . . . hm
b1b2 . . . bm

)
and

(
h′

b′

)
=

(
h′1h

′
2 . . . h

′
m′

b′1b
′
2 . . . b

′
m′

)
,

then

(C0) m′ = m;

(C1) h′j = hj , b
′
j = bj for every j ̸= i, i+ 1;

(C2) h′i+1 = hi, h
′
i = hi+1 (the i-th and (i + 1)-st letters of the top word are

transposed);

(C3) b′i = bi and b
′
i+1 = bi+1 if Q(hi, hi+1; bi, bi+1) true; b

′
i = bi+1 and b′i+1 = bi

if Q(hi, hi+1; bi, bi+1) false.

We can also describe the commutation by the following pair of mappings

h = h1 . . . hi−1hihi+1hi+2 . . . hm 7→ h′ = h1 . . . hi−1hi+1hihi+2 . . . hm;
b = b1 . . . bi−1bibi+1bi+2 . . . bm 7→ b′ = b1 . . . bi−1 z t bi+2 . . . bm;

where either z = bi, t = bi+1 if Q(hi, hi+1; bi, bi+1) true, or z = bi+1, t = bi if
Q(hi, hi+1; bi, bi+1) false.

Definition 10.6.1. A Boolean function Q(x, y; z, t) is said to be bi-symmetric
if it is symmetric in the two sets of parameters {x, y}, {z, t}.

Lemma 10.6.2. The commutation “Com” induced by a bi-symmetric Boolean
function Q(x, y; z, t) is involutive, i.e., if (h′, b′) = Com(h, b; i), then (h, b) =
Com(h′, b′; i).
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The proof of the lemma is a simple verification and will be omitted. In the
rest of the chapter we will assume that all the four-variable Boolean functions
Q(x, y; z, t) are bi-symmetric.

Two extreme cases are worth being mentioned, when Q is the Boolean
function Qtrue “always true” (resp. Qfalse “always false”). The commutation
Comtrue, associated with Qtrue, permutes only the i-th and (i+ 1)-st letters of
the top word b, while Comfalse, associated with Qfalse, permutes the i-th and
(i+ 1)-st biletters of the biword (h, b).

Sorting a biword is defined as follows. Again consider a biword (h, b) of
length m and let (h′, b′) = Com(h, b; i) with 1 ≤ i ≤ m − 1. If 1 ≤ j ≤ m − 1,
we can form the pointed biword (h′, b′; j) and further apply the commutation
“Com” to (h′, b′; j). We obtain the biword Com(h′, b′; j) = Com(Com(h, b; i); j),
we shall denote by Com(h, b; i, j). By induction Com(h, b; i1, . . . , in) can be
defined, where (i1, . . . , in) is a given sequence of integers less than m.

As each commutation always permutes two adjacent letters within the top
word (condition (C2)), we can transform each biword (h, b) into a biword (h′, b′)
whose top word h′ is non-decreasing by applying a sequence of commutations.
We can also say that for each biword (h, b) there exists a sequence (i1, . . . , in)
of integers such that the top word in the resulting biword Com(h, b; i1, . . . , in)
is non-decreasing. Such a biword is called a minimal biword and the sequence
(i1, . . . , in) a commutation sequence.

When using the commutations Comtrue or Comfalse we always reach the same
minimal biword, but the commutation sequence is not unique. With an arbi-
trary commutation “Com” neither the minimal biword, nor the commutation
sequence are necessarily unique. We then define a particular commutation se-
quence (i1, . . . , in) called the minimal sequence by the following two conditions:

(i) it is of minimum length;

(ii) it is minimal with respect to the lexicographic order.

Clearly the minimal sequence is uniquely defined by those two conditions and
depends only on the top word h in (h, b). The minimal biword derived from
(h, b) by using the minimal sequence is called the straightening of the biword
(h, b). The derivation is described in the following algorithm SORTB.

Algorithm SORTB: sorting a biword: Given a biword (h, b) and a com-
mutation “Com” the following algorithm transforms (h, b) into its straightening
(h′, b′).

Prototype (h′, b′) := SORTB(h, b,Com).

(1) Let (h′, b′) := (h, b).

(2) If h′ is non-decreasing, RETURN (h′, b′).

(3) Else, let j be the smallest integer such that h′(j) > h′(j + 1). Then let
(h′, b′) := Com(h′, b′; j). Go to (2).
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Example 10.6.3. Consider the biword id
h
b

 =

 1 2 3 4 5 6 7 8 9
2 1 2 3 3 4 5 1 5
2 2 1 3 5 3 4 5 1

 .
The sequence of the indices j that occur in Algorithm SORTB applied to the
biword is:
1, that transforms h′ into 1,2,2,3,3,4,5,1,5
7, ibid. 1,2,2,3,3,4,1,5,5
6, ibid. 1,2,2,3,3,1,4,5,5
5, ibid. 1,2,2,3,1,3,4,5,5
4, ibid. 1,2,2,1,3,3,4,5,5
3, ibid. 1,2,1,2,3,3,4,5,5
2, ibid. 1,1,2,2,3,3,4,5,5

so that the minimal sequence is: 1,7,6,5,4,3,2, and accordingly the final word h′

is 1,1,2,2,3,3,4,5,5. Notice that the final word b′ depends on the commutation
rule Com.

10.7. The two commutations

We shall introduce two commutations associated with two specific Boolean func-
tions Q.

7.1. The Cartier-Foata commutation. We denote by ComCF the commuta-
tion induced by the following Boolean function QCF :

QCF

(
x, y

z, t

)
true if and only if x = y. (10.7.1)

7.2. The contextual commutation. For each letter x let x+ = x + 1
2 and

denote by ComH the commutation induced by the following Boolean function
QH :

QH

(
x, y

z, t

)
true iff (z − x+)(z − y+)(t− x+)(t− y+) > 0. (10.7.2)

Notice that both QCF and QH are bi-symmetric, so that Q2
CF = Q2

H =
the identity map.

The second commutation can also be defined by means of the following
“cyclic intervals.” Place the r elements 1, 2, . . . , x, (x + 1), . . . , (r − 1), r on a
circle or on a square (!) counterclockwise and place a bracket on each of those
elements as shown in Fig. 10.1. For x, y ∈ X (x ̸= y) the cyclic interval

]]
x, y

]]
is the subset of all the elements that lie between x and y when the circle is
read counterclockwise. The brackets (in the French notation) indicate if the
extremities of the interval are to be included or not.

For instance, suppose 1 < x < r. Then
]]
1, x

]]
= {2, . . . , x} (the origin 1

excluded, but the end x included), while
]]
x, 1

]]
= {x+ 1, . . . , r, 1} (x excluded

but 1 included); finally, let
]]
x, x

]]
= ∅.
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Figure 10.1. Cyclic Interval

Proposition 10.7.1. The Boolean function QH

(
x, y

z, t

)
is true if and only if

both z, t are in
]]
x, y

]]
or neither in

]]
x, y

]]
.

The proof is a lengthy but easy verification and is omitted. Notice that
condition (10.7.2) is efficient in programming while the other condition involving
cyclic intervals is more adapted for human beings!

10.8. The main algorithm

It is denoted by T and is defined for any Boolean function Q. Let Com be the
commutation induced by Q. Then T transforms each word b into a rearrange-
ment c of b.

Prototype c := T(b,Com).

(1) Let h be the nondecreasing rearrangement of b. Form the standard circuit
Γ(b) = (h, b):  id

h
b

 =

 1 2 · · · m
h1 h2 · · · hm
b1 b2 · · · bm

 ,
let c := b and α be the empty cycle α =

 ..
.

.
(2a) If all the places 1, 2, · · · ,m occur in α, RETURN c (the juxtaposition product

of the bottom words in α.)

(2b) Else, let D be the greatest place not occurring in α.

(2c) Let M be the greatest letter in h not in α, so that hD =M and the initial
biword has been changed into:
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α︷ ︸︸ ︷ id
h
c

 =

 ∗ · · · ∗ D∗ · · · ∗ M
∗ · · · ∗ ∗

  ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 · · ·
 ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 .
(3a) Let B := cD.

(3b) If B =M , terminate the dominated cycle

 ∗ · · · ∗∗ · · · M
M · · · ∗

 and add it to the

left of α, so that the new α reads

 ∗ · · · ∗∗ · · · M
M · · · ∗

α. Go to (2a).

(3c) Else, look for the greatest place j ≤ D − 1 such that B = hj ; in short id
h
c

 =

 · · · j · · · D · · · ∗· · · B · · · ∗ · · · M
· · · ∗ · · · B · · · ∗

 ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 · · ·
 ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 .
If j ≤ D − 2, apply the commutation:

(h, c) = Com(h, c; j, j + 1, · · · , D − 2),

so that hD−1 = B after running the commutation; in short: id
h
c

 =

 · · · j · · · D − 1 D · · · ∗
· · · ∗ · · · B ∗ · · · M
· · · ∗ · · · ∗ B · · · ∗

 ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 · · ·
 ∗ · · · ∗∗ · · · ∗
∗ · · · ∗

 .
(3d) Let D := D − 1 and go to (3a).

We can verify that each step in the previous algorithm is feasible. For exam-
ple, the place j in step (3c) is well-defined: at this stage

(
h
c

)
is the product of the

left factor (in square brackets)
[
h′

c′

]
by α and h′ is necessarily a rearrangement

of c′.

Define the two transformations:

ϕ(b) = T(b,ComCF ) and Φ(b) = T(b,ComH). (10.8.1)

Example 10.8.1. Consider the word b = 2, 1, 2, 3, 3, 5, 4, 5, 1 and the circuit

Γ(b) =

 id
h
b

 =

 1 2 3 4 5 6 7 8 9
1 1 2 2 3 3 4 5 5
2 1 2 3 3 5 4 5 1
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and calculate the image of b under ϕ and Φ.
For the first transformation we easily obtain id

h
c

 7→
 1
2
2

2
3
3

3
4
4

4
5
5

5 6 7 8 9
3 2 1 1 5
5 3 2 1 1

 ,
so that c = ϕ(b) = 2 3 4 5 5 3 2 1 1.

For the second we indicate all the commutations needed in bold-face:[
h
b

]
=

[
1 1 2 2 3 3 4 5 5
2 1 2 3 3 5 4 5 1

]
7→

[
1 2 1 2 3 3 4 5 5
2 2 1 3 3 5 4 5 1

]
7→

[
1 2 2 1 3 3 4 5 5
2 2 1 3 3 5 4 5 1

]
7→

[
1 2 2 3 1 3 4 5 5
2 2 1 3 3 5 4 5 1

]
7→

[
1 2 2 3 3 1 4 5 5
2 2 1 3 5 3 4 5 1

]
7→

[
1 2 2 3 3 4 1 5 5
2 2 1 3 5 3 4 5 1

]
7→

[
1 2 2 3 3 4 5
2 2 1 3 5 3 4

1 5
5 1

]
7→

[
1 2 2 3
2 2 1 3

3 4 5
5 3 4

1 5
5 1

]
7→

[
1 2 2
2 2 1

3
3

3 4 5
5 3 4

1 5
5 1

]
7→

[
2
2

1 2
2 1

3
3

3 4 5
5 3 4

1 5
5 1

]

so that c = Φ(b) = 2 2 1 3 5 3 4 5 1.

10.9. The inverse of the algorithm

Given a commutation Com, the following algorithm denoted by T−1 transforms
a word c into a word b such that b = T−1(c,Com).

Prototype b := T−1(c,Com).

(1) Let i := 1, S := c1;

(2a) If i = length(c), let hi := S, (h, b) := SORTB(h, c,Com). RETURN b.

(2b) Else, let B := ci+1.

(2c) If B ≥ S, let hi := S, S := B. Else, let hi := B.

(3) Let i := i+ 1. Go to (2a).

Now examine algorithm T. Before returning c in step (2a) the algorithm
provides the juxtaposition product α = γ1γ2 . . . of cycles. Let u1, u2, . . . be the
bottom words of those cycles and let pre(u1), pre(u2), . . . be the first letters of
those bottom words. Steps (2c) and (3b) say that each cycle γi was terminated
as soon as pre(ui) was greater than all the other letters in the cycle. Accordingly,
all the cycles γi are dominated. Furthermore, pre(u1) ≤ pre(u2) ≤ · · ·

Thus u1u2 . . . is the increasing factorization of c (in the terminology of sec-

tion 6), while α = γ1γ2 . . . =

(
δu1 δu2 . . .
u1 u2 . . .

)
is the increasing product of domi-

nated cycles, i.e., α is equal to the well-factorized circuit ∆(c). We can say that
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the algorithm T maps b onto Γ(b), then transforms each standard circuit Γ(b)
into a well-factorized circuit ∆(c), the word c being a rearrangement of b. Let
U be the mapping U : Γ(b) 7→ ∆(c), so that T is the composition product

b 7→ Γ(b)
U7→ ∆(c) 7→ c (10.9.1)

As each commutation applied to a pointed biword is involutive, U and therefore
T are bijective.

Further examine Algorithm T−1 and let u1u2 · · · be the increasing factor-
ization of c as a product of dominated words. Once we have reached step (2a),
verified that the test i = length(c) was positive and executed hi := S, the
biword (h, c) is exactly the well-factorized circuit

∆(c) =

(
h
c

)
=

(
δu1 δu2 . . .
u1 u2 . . .

)
.

Thus Algorithm T−1 first builds up the well-factorized circuit ∆(c) and applies
algorithm SORTB to ∆(c) to produce a standard circuit Γ(b), so that T−1 may
be represented as the sequence

c 7→ ∆(c) 7 SORTB−−−−→ Γ(b) 7→ b. (10.9.2)

Again as each local commutation applied to a pointed biword is involutive, T−1

is a bijection.
Finally, to prove thatT andT−1 are inverse of each other, we simply examine

Algorithm T. The commutations are made only in steps (2c) and (3c). In both
steps the reverse operation can be written as

(h, c) := SORTB(h, c,Com).

We have then proved the following property

Property 10.9.1. Algorithms T and T−1 are inverse of each other, i.e., for
each word b we have

T−1(T(b,Com),Com) = T(T−1(b,Com),Com) = b.

Remark 10.9.2. Algorithms T and T−1 are valid for each bi-symmetric Boo-
lean function Q. However only the Cartier-Foata and the contextual commuta-
tions will be used to derive the next results on statistics on words.

10.10. Statistics on circuits

Let C(X) denote the set of all circuits. Remember that a circuit is a pair of
words α =

(
h
b

)
, where h = y1y2 . . . ym and b = x1x2 . . . xm are rearrangements

of each other and h is not necessarily non-decreasing. Two circuits α and β are
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said to be H-equivalent, written α ∼ β, if one can be obtained from the other
by a sequence of commutations ComH (see paragraphe 7.2).

The two statistics “des” and “maj” for each circuit α =
(
h
b

)
are defined

as follows. They depend only on the bottom word b. First let desα = des b.
Then the statistic “maj” is based on the notion of cyclic interval, as introduced
in section 10.7. Put xm+1 = ∞ (an auxiliary letter greater than every letter
of X). Then for each i = 1, 2, . . . ,m define qi to be the number of j such that
1 ≤ j ≤ i − 1 and xj ∈

]]
xi, xi+1

]]
. The sequence (q1, q2, . . . , qm) is said to be

the maj-coding of α. Define

majα = q1 + q2 + · · ·+ qm. (10.10.1)

Now given the commutation ComH we can apply Algorithm SORTB of section
10.6 to each circuit α. It produces a standard circuit β to which the rearrange-
ment U defined in (10.9.1) can be further applied to derive a well-factorised
circuit γ:

α 7 SORTB−−−−→ β
U7→ γ (10.10.2)

Let Ψ denote the mapping α 7→ γ. Because of (10.9.1) and (10.9.2) we have
Ψ(α) = α if α is well-factorized. In particular, Ψ is surjective.

Theorem 10.10.1. There exists at most one bivariate statistic (f, g) defined
on C(X) having the following two properties:

(1) α ∼ α′ ⇒ (f, g)α = (f, g)α′;

(2) if α is well-factorized, then

(f, g)α = (des,maj)α. (10.10.3)

Proof. Both algorithms SORTB and U involve sequences of commutations ComH ,
so that if γ = Ψ(α), we have (f, g)α = (f, g) γ = (des,maj) γ.

Our next task is to give an explicit definition of the pair (f, g). For each
circuit α =

(
h
b

)
with h = y1y2 . . . ym and b = x1x2 . . . xm define exc α to the

the number of integers i such that 1 ≤ i ≤ m and xi > yi. For each place i
(1 ≤ i ≤ m) define pi to be the number of j such that 1 ≤ j ≤ i − 1 and
xj ∈

]]
xi, yi

]]
. The sequence (p1, p2, . . . , pm) is said to be the den-coding of α.

Furthermore, define
denα = p1 + p2 + · · ·+ pm. (10.10.4)

Example 10.10.2. The following circuit

α =

 id
h′

b′

 =

 1 2 3 4 5 6 7 8 9
2 1 2 3 3 4 5 1 5
2 2 1 3 5 3 4 5 1

 .
was already considered in Example 10.6.3. It has an excedance at places 2, 5, 8,
so that excα = 4. For its den-coding we first have p1 = p2 = 0. As 2 ∈

]]
1, 2

]]
,
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we have p3 = 2. Then p4 = 0. As
]]
5, 3

]]
= {1, 2, 3}, p5 = 4. Next p6 = 0. Also]]

4, 5
]]
= {5}, so that p7 = 1 and

]]
5, 1

]]
= {1}, so that p8 = 1. As

]]
1, 5

]]
=

{2, 3, 4, 5}, we get p9 = 7. Thus denα = 0+ 0 + 2 + 0 + 4 + 0 + 1 + 1 + 7 = 15.

Theorem 10.10.3. The pair (exc,den) is the unique bivariate statistic defined
on C(X) having properties (1) and (2) of Theorem 10.10.1.

Proof. Proving that α ∼ α′ ⇒ (exc,den)α = (exc,den)α′ is lengthy but easy,
as the property is to be proved only when α and α′ differ by a commutation
ComH . The proof is omitted.

To show that (exc,den)α = (des,maj)α when α is well-factorized proceed
as follows.

Let

(
a2 . . . ai+1 ai+2 . . . ak a1
a1 . . . ai ai+1 . . . ak−1 ak

)
and

(
b2 . . .
b1 . . .

)
be two successive domi-

nated cycles in the increasing factorization of α, so that

α =

(
. . . a2 . . . ai+1 ai+2 . . . ak a1 b2 . . .
. . . a1 . . . ai ai+1 . . . ak−1 ak b1 . . .

)
.

Inside each dominated cycle a pair like (ai, ai+1) occurs horizontally and verti-
cally, so that there is a descent aiai+1 if and only if there is an excedance

(
ai+1

ai

)
.

Furthermore, the letters in w to the left of ai that fall into the cyclic interval]]
ai, ai+1

]]
bring the same contribution to both majα and denα. If

(
ai+1

ai

)
is

the j-th biletter of α (when read from left to right), we have pj = qj in the
notations used in (10.10.4)) and (10.10.1).

At the end of a dominated cycle we have to compare the contributions of
the horizontal pair (ak, b1) with the contribution of the vertical pair

(
a1

ak

)
. But

ak < a1 ≤ b1 by definition of the increasing factorization, so that (ak, a1) is
never an excedance and (ak, b1) never a descent.

Now if a1 = b1, the two cyclic intervals
]]
ak, b1

]]
and

]]
ak, a1

]]
that serve in

the calculation of majα and denα are identical. If a1 < b1, there is no letter x
in w to the left of b1 such that a1 < x ≤ b1. For any two sets A,B let A + B
denote the union of A and B when the intersection A ∩B is empty. As]]

ak, b1
]]
=

]]
ak, a1

]]
+ {x : a1 < x ≤ b1},

there are as many letters to the left of ak falling into the interval
]]
ak, b1

]]
as

letters falling into
]]
ak, a1

]]
.

Suppose that α is of length m and take up again the notations of (10.1) and
(10.2). It remains to compare qm and pm. Let

(
ym

xm

)
be the rightmost biletter

of α. The letter ym is necessarily equal to the greatest letter occurring in w.
Hence the cyclic intervals

]]
xm,∞

]]
used for evaluating qm and

]]
xm, ym

]]
for

evaluating pm are equal.

As the transformation U is a sequence of commutations ComH we have

(exc,den)α = (exc,den)U(α) = (des,maj)U(α). (10.10.5)
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The above development can be reproduced for the commutation ComCF .
However the proofs are far simpler. In the same manner, we can prove that the
statistic “exc” is the unique statistic having the following properties:

(1) α ∼ α′ (for ComCF )⇒ excα = excα′;

(2) if α is well-factorized, then excα = desα.

Hence, if ComCF is used, we have

excα = excU(α) = desU(α). (10.10.6)

10.11. Statistics on words and equidistribution properties

To get the definitions of desw, majw, excw and denw for a word w we simply
form the standard circuit Γ(w) and put

desw = des Γ(w), majw = maj Γ(w),
excw = excΓ(w), denw = denΓ(w). (10.11.1)

The definitions given for desw and excw are identical with the definitions given
in the introduction. The definition of denw is new, while that of majw differs
from the definition given in the introduction. However we have the following
result.

Theorem 10.11.1. The statistic majw given in (10.11.1) and the statistic
majw given in the introduction are identical.

This theorem is easy to prove by induction on the length of the word.

The excedance index of w is defined as the sum, excindexw, of all i such that
i is an excedance in w. When a certain correcting term is added to excindexw,
we get the second definition of denw. To fully describe that correcting term we
need the further definitions. For each word w = x1x2 . . . xm let

invw = #{1 ≤ i < j ≤ m : xi > xj},
imvw = #{1 ≤ i < j ≤ m : xi ≥ xj}. (10.11.2)

Now if excw = e, let i1 < i2 < · · · < ie be the increasing sequence of the
excedances of w and let j1 < j2 < · · · < jm−e be the complementary sequence.
Form the two subwords

Excw = xi1xi2 . . . xie ; Nexcw = xj1xj2 . . . xjm−e .

Then the Denert statistic of w is also defined to be

denw = excindexw + imvExcw + invNexcw. (10.11.3)
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Theorem 10.11.2. For every word w the two definitions of denw occurring
in (10.11.1) and (10.11.3) are identical.

Surprisingly this theorem is not easy to prove, see the Notes below.

Theorem 10.11.3. The transformations ϕ and Φ defined in (10.8.1) have the
equidistribution properties

exc(w) = des ϕ(w) and (exc,den)w = (des,maj)Φ(w).

Proof. As shown in (10.8.1) both transformations ϕ and Φ are defined by means

of the main algorithm T which itself is defined by the chain: b 7→ Γ(b)
U7→

∆(c) 7→ c (see (10.9.1).)
If ComCF is used, then exc Γ(b) = des∆(c) by (10.10.6). On the other

hand, exc b = excΓ(b) by (10.11.1) and des∆(c) = des c, as the definition of
“des” depends only on the bottom word c of the circuit. Thus exc b = des c.

If ComH is used, then (exc,den) Γ(b) = (des,maj)∆(c) by (10.10.5). Also
(exc,den) b = (exc,den) Γ(b) by (10.11.1) and (des,maj)∆(c) = (des,maj)(c),
as the definition of (des,maj) depends only on the bottom word c. Hence
(exc,den) b = (des,maj)(c).

Example 10.11.4. Again consider the word b = 2, 1, 2, 3, 3, 5, 4, 5, 1 and its

standard circuit Γ(b) =

 id
h
b

 =

1 2 3 4 5 6 7 8 9
1 1 2 2 3 3 4 5 5
2 1 2 3 3 5 4 5 1

. Then exc b = 3. Using

the definition (10.11.3) for the Denert statistic we find: den b = (1 + 4 + 6) +
imv(2, 3, 5) + inv(1, 2, 3, 4, 5, 1) = 11 + 0 + 4 = 15.

The images ϕ(b) = 2, 3, 4, 5, 5, 3, 2, 1, 1 and Φ(b) = 2, 2, 1, 3, 5, 3, 4, 5, 1 have
been determined in Example 10.8.1. Observe that desϕ(b) = 3 = exc b. The
word Φ(b) has also three descents. Furthermore, its major index is equal to
2 + 5 + 8 = 15, so that (exc,den) b = (des,maj)Φ(b) = (3, 15).

Notes

With his treatise on Combinatory Analysis and his numerous papers MacMa-
hon (1915, 1978) may be regarded as the initiator of the study of permutation
statistics that includes methods for deriving analytical expressions for generat-
ing functions. In particular, he made a clever use of his Master Theorem (see
MacMahon 1915, p. 97) that allowed him to show that the generating polyno-
mials for each rearrangement class by the number of descents “des” and by the
number of excedances “exc” were equal, so that “des” and “exc” are equidis-
tributed on every rearrangement class. Back in the sixties, as initiated by the
late Schützenberger, it was natural to prove such equidistribution properties in
a bijective manner. The transformation ϕ that satisfies (10.0.2) was constructed
in Foata 1965. A further presentation was made in Knuth 1973, p. 24–29, a
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more algebraic version appeared in Cartier and Foata 1969 and also in Lothaire
1983, chap. 10.

In studying the genus zeta function of local minimal hereditary orders Den-
ert (1990) introduced a new permutation statistic, that was later christened
“den”. She observed and conjectured that the generating polynomials for each
rearrangement class by the pairs (des,maj) and (exc,den) were equal. Foata
and Zeilberger (1990) proved the conjecture for permutations by making use of
the linear partial recurrence operator algebra. Then Han (1990a, 1990b) proved
the result combinatorially.

The definition of “den” for arbitrary words (with repetitions) is due to Han
(1994) who also constructed a bijection Φ having property (10.0.3) for an arbi-
trary rearrangement class. In the case of permutations the equivalence between
the two definitions (10.11.1) and (10.11.3) of the Denert statistic was given in
Foata and Zeilberger 1990. Another proof appeared in Clarke 1995. The general
case for arbitrary words was derived by Han (1994), who also introduced the
defintion (10.10.1) of “maj”, which was basic for constructing the bijection Φ.

When the underlying alphabet X is partitioned into two subalphabets S
of small letters and L of large letters, the classical permutation statistics can
be further refined to take large inequalities into account (see Clarke and Foata
1994, 1995a, 1995b). Those statistics are denoted by desk, exck, . . . (or by desU ,
excU , . . . in Problem 10.5.2). It is also possible to derive explicit formulas for
the generating polynomials by using the techniques developed in sections 10.2–
4. Furthermore, a bijection Φk of each rearrangement class can be constructed
(see Clarke and Foata 1995a) such that (exck,denk)w = (desk,majk) Φk(w)
holds identically. As shown in Foata and Han 1998 there is a common frame
for constructing all the bijections ϕ, Φ, Φk based on the concept of biword
commutation as presented in sections 10.5–8.

When c = 1r the generating polynomial for (des,maj) is the celebrated q-
Eulerian polynomial Ar(t, q) whose first study goes back to Carlitz (1954, 1959,
1975). Also see Problem 10.5.1. There is another class of q-Eulerian polynomials
that can be introduced as generating functions for the permutation group by
the pair (des, inv), where “inv” is the number of inversions Stanley 1976.

The basic material on q-calculus can be found in Andrews 1976, Gasper and
Rahman 1990. The MacMahon Verfahren takes its rise in MacMahon 1913.
Formula (10.2.1) already appeared in MacMahon 1915, vol. 2, p. 211. Stanley
(1972) and his disciple Reiner (1993) have extended the MacMahon Verfahren
from the linear model used in this chapter and in Problem 10.2.2 to the poset
environment and developed an adequate P -partition theory. There have been
several papers that propose various techniques to derive analytical expressions
for the permutation or word distributions, for example, Gessel 1977, Garsia
1979, Garsia and Gessel 1979, Gessel 1982, Zeilberger 1980 for the “commaed”
permutation technique; Fedou and Rawlings 1995 for an adjacency study; Foata
and Han 1997 for an iterative method. A systematic permutation statistic study
has been undertaken by Clarke, Steingrimsson, and Zeng (1997a, 1997b).
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Problems

Section 10.1

10.1.1 (The q-binomial theorem). Using the notation (a; q)∞ =
∞∏
j=0

(1 − aqj)
the q-binomial theorem reads:

∞∑
n=0

(a; q)n
(q; q)n

un =
(au; q)∞
(u; q)∞

.

The symbols q and u can be taken as complex numbers such that |q| < 1,
|u| < 1 or as variables. In the latter case the previous identity holds in
the algebra of formal power series in two variables with coefficients in
a given ring. See Andrews 1976, Theorem 2.1 or Gasper and Rahman
1990, paragraphe 1.3. Consider the following special cases. For a = 0,

∞∑
n=0

un

(q; q)n
=

1

(u; q)∞
= eq(u) (the first q-exponential.)

For u→ −u/a, a→∞,

∞∑
n=0

q(
n
2)un

(q; q)n
= (−u; q)∞ = Eq(u) (the second q-exponential.)

With a = qk+1,
∞∑

n=0

[
k + n

n

]
un =

1

(u; q)k+1
,

and with a = q−k, u→ −uqk,
∞∑

n=0

q(
n
2)
[
k

n

]
un = (−u; q)k.

Extraction of coefficients of un in the next to the last identity gives[
k + n

k

]
=

∑
k≥a1≥···≥an≥0

qa1+···+an ,

and in the last one

q(
n
2)
[
k

n

]
=

∑
k−1≥a1>···>an≥0

qa1+···+an .

This provides another proof of Proposition 10.1.1.
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Section 10.2

10.2.1 For each Ferrers diagram λ with m boxes (see section 6.1) and each
vector c = (c1, c2, . . . , cr) of positive integers such that c1+c2+· · ·+cr =
m let K(λ, c) denote the set of Young tableaux containing c1 1’s, c2
2’s, . . . , cr r’s. Let σ be a permutation of the set {1, 2, . . . , r}. The
symmetry argument that is carried over the proof of Theorem 10.2.1 can
be used to construct a one-to-one correspondence between K(λ, c) and
K(λ, σ c). Proceed as follows. Let c = (c1, . . . , ci, ci+1, . . . , cr) and c′ =
(c1, . . . , ci+1, ci, . . . , cr) differ only by a transposition of two adjacent
terms and consider a tableau T in K(λ, c) in its planar representation
(as in section 6.1). Write all the pairs i, i + 1 in bold-face whenever
those two integers occur in the same column with (i + 1) just above i.
The remaining i’s and (i + 1)’s in T occur as horizontal blocks ia jb

(a ≥ 0, b ≥ 0). We define a bijection T 7→ T ′ of K(λ, c) onto K(λ, c′) by
replacing each block ia jb in T by ib ja and rewriting the vertical pairs
i, i + 1 in roman type. This argument provides another proof of the
symmetry of the Schur function (see section 6.4).

10.2.2 (The MacMahon Verfahren revisited). Let U = (S<, S≤, L<, L≤) be a
partition of the alphabet X = {1, . . . , r} such that S<∪S≤ = {1, . . . , h}
(the small letters) and L< ∪ L≤ = {h + 1, . . . , r} (the large letters)
for a certain h (0 ≤ h ≤ r). Let w = x1x2 . . . xm be a word in the
alphabet and let xm+1 = h + 1

2 . An integer i such that 1 ≤ i ≤ m
is said to be an U -descent in w, if either xi > xi+1, or xi = xi+1 and
xi ∈ S≤ ∪L≤. Let desU w (resp. majU w) denote the number (resp. the
sum) of the U -descents in w. For each sequence c = (c1, . . . , cr) consider
the generating polynomial for the class R(c) by the pair (desU ,majU ),
i.e., AU

c (t, q) =
∑

w t
desU w qmajU w (w ∈ R(c)). The identity to be

proved reads

1

(t; q)1+∥c∥
AU

c (t, q) =
∑
s≥0

ts
∏
i∈S<

[
ci + s

ci

] ∏
i∈S≤

q(
ci
2 )
[
s+ 1

ci

]

×
∏
i∈L<

qci
[
ci + s− 1

ci

] ∏
i∈L≤

q(
ci+1

2 )
[
s

ci

]
,

and can be derived as follows. As in Section 10.2 the left-hand side is
equal to the sum of the series

∑
ts

′+desU wq∥a∥+majU w over all triples
(s′,a, w). By using the last two identities of 10.1.1 the right-side is

equal to the sum of the series
∑
ts q∥a

(1)∥+···+∥a(r)∥, where each a(i) =
(ai,1, . . . , ai,ci) is a sequence of integers satisfying s ≥ ai,1 ≥ · · · ≥
ai,ci ≥ 0, if i ∈ S<; s ≥ ai,1 > · · · > ai,ci ≥ 0, if i ∈ S≤; s ≥ ai,1 ≥
· · · ≥ ai,ci ≥ 1, if i ∈ L<; s ≥ ai,1 > · · · > ai,ci ≥ 1, if i ∈ L≤. The
bijection (s′,a, w) 7→ (s,a(1), . . . ,a(r)) such that s = s′ + desU w and
∥a∥ + majU w = ∥a(1)∥ + · · · + ∥a(r)∥ can be constructed by rewriting
the MacMahon Verfahren developed in Section 10.2 almost verbatim.
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(See Foata and Krattenthaler 1995.)

10.2.3 The identity derived in 10.2.2 is equivalent to the following identity
between q-series

∑
c

AU
c (t, q)

uc

(t; q)1+∥c∥
=

∑
s≥0

ts

∏
i∈S≤

(
−ui; q

)
s+1

∏
i∈L≤

(
−q ui; q

)
s∏

i∈S<

(
ui; q

)
s+1

∏
i∈L<

(
qui; q

)
s

.

(See Foata and Krattenthaler 1995.)

10.2.4 Write the previous identity as∑
c

AU
c (t, q)

uc

(t; q)1+∥c∥
=

∑
s≥0

ts as(u; q)

and let

a∞(u; q) =

∏
i∈S≤

(
−ui; q

)
∞

∏
i∈L≤

(
−q ui; q

)
∞∏

i∈S<

(
ui; q

)
∞

∏
i∈L<

(
qui; q

)
∞

.

The sequence (as(u; q)) (s ≥ 0) converges to a∞(u; q) in the topology
of the formal power series in the variables u1, . . . , ur. Let a−1(u; q) =
0; then the sequence (as(u; q) − as−1(u; q)) (s ≥ 0) is summable of
sum a∞(u; q). As we have (1 − t)

∑
s t

s as(u; q) =
∑

s t
s (as(u; q) −

as−1(u; q)), it makes sense to multiply the identity in 10.2.3 by (1− t)
and make t = 1. This yields∑

c

AU
c (1, q)

uc

(q; q)∥c∥
= a∞(u; q).

(See Foata and Krattenthaler 1995.)

Section 10.3

10.3.1 Take up again the notations of 10.2.2 with the further assumption that
the subalphabets S≤ and L< are empty, so that {1, . . . , h} (resp. {(h+
1), . . . , r}) is the set of small (resp. large) letters. With 1 ≤ h < r
the following recurrence relations for the polynomials AU

c (t, q) can be
derived by using the insertion technique:

(1− qch+1)AU
c+1h

(t, q) = (1− tq1+∥c∥)AU
c (t, q)− qch+1(1− t)AU

c (tq, q);

(1−q−cr−1)AU
c+1r (t, q) = −(1−tq

1+∥c∥)AU
c (t, q)−q−cr (1−t)AU

c (tq, q).

(See Clarke and Foata 1995a.)
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Section 10.4

10.4.1 With the specializations of 10.3.1 for U the identity written in 10.2.3
becomes

∑
c

AU
c (t, q)

uc

(t; q)1+∥c∥
=

∑
s≥0

ts

∏
h+1≤i≤r

(
−q ui; q

)
s∏

1≤i≤h

(
ui; q

)
s+1

.

The latter identity can be derived directly from the recurrence relations
in 10.3.1. (See Clarke and Foata 1995a.)

10.4.2 (q-Eulerian polynomials). With the specializations of 10.3.1 for U and
for c = 1r the identity in 10.2.2 becomes

1

(t; q)1+r
AU

1r (t, q) =
∑
s≥0

ts ( [s+ 1]q )
h qr−h ( [ s ]q )

r−h.

Let Ah
r (t, q) = AU

1r (t, q) (0 ≤ h ≤ r) and form

Ar(x, y; t, q) =

r∑
h=0

(
r

h

)
xr−h yhAh

r (t, q).

Then ∑
r≥0

ur

r!

Ar(x, y; t, q)

(t; q)r+1
=

∑
s≥0

ts exp
(
u(xq [ s ]q + y[s+ 1]q)

)
.

For h = r the polynomial Ar
r(t, q) is the traditional q-Eulerian polyno-

mial for the symmetric group Sr by the pair (des,maj). (See Carlitz
1975.)

10.4.3 (The t-extension of the q-evaluation of a tableau). With the notations
of Problem 6.5.1 let desT be the number of the recoils of a tableau T
of shape λ with m boxes. The following identity is the t-extension of
the identity in 6.5.1, question 4):∑

T∈STab(λ)

tdesT qmajT = (t; q)m+1

∑
k≥0

tk sλ(1, q, q
2, . . . , qk).

(See Désarménien and Foata 1985, theorem 4.1.)

10.4.4 (The Schur function method). Again let Ac(t, q) = Ades,maj
c (t, q). To

each word w ∈ R(c) there corresponds a unique pair of tableaux (P,Q)
such that ev(P ) = c andQ is a standard tableau such that desw = desQ
and majw = majQ (see Problem 6.5.1). Hence∑
c

Ac(t, q)
uc

(t; q)1+∥c∥
=

∑
c

uc

(t; q)1+∥c∥

∑
|λ|=∥c∥

∑
(P,Q)

tdesQ qmajQ
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=
∑
c

∑
|λ|=∥c∥

∑
P

uev(P ) × 1

(t; q)1+∥c∥

∑
Q

tdesQ qmajQ

=
∑
λ

sλ(u1, . . . , ur)×
∑
k≥0

tk sλ(1, q, q
2, . . . , qk),

by the definition of a Schur function (see Definition 6.4.1) and Prob-
lem 10.4.3. The last product is equal to

∑
s≥0 t

s/(u; q)s+1 by us-
ing the Cauchy identity (see Theorem 6.4.2) with the alphabets ξ ←
{u1, . . . , ur} and η ← {1, q, . . . , qk}. (See Foata 1995.)

+

Section 10.5+

The remaining problems refer to the last seven sections of this chapter and will
be numbered 10.5.n.

10.5.1 (Euler-Mahonian statistics). As seen in Problem 10.4.2, the polyno-
mial Ar

r(t, q) = A1r (t, q) is the q-Eulerian polynomial that can be in-
terpreted as the generating function for the symmetric group Sr by the
pair (des,maj). Let Ar

r(t, q) =
∑

s≥0A
r
r,s(q) t

s. With c = 1r−1, j = r,
cr = 0 the recurrence relation (10.3.3) specializes into

Ar
r,s(q) = [1 + s]q A

r−1
r−1,s(q) + qs [r − s]q Ar−1

r−1,s−1(q), (∗)

for 1 ≤ s ≤ r − 1 with the initial conditions Ar
r,0(q) = 1 for all r ≥ 0

and Ar
r,s(q) = 0 for s ≥ r. The first values of the polynomials Ar

r,s(q)
read:

s = 0 1 2 3

r = 0 1

1 1

2 1 q

3 1 2q + 2q2 q3

4 1 3q + 5q2 + 3q3 3q3 + 5q4 + 3q5 q6

Let E = (Er) (r ≥ 0) be a family of finite sets such that CardEr = r!
for every r ≥ 0. A family (f, g) = (fr, gr) (r ≥ 0) is said to be Euler-
Mahonian on E, if f0 = g0 = 0, f1 = g1 = 1 and if for every r ≥ 2
both fr and gr are integral-valued functions defined on Er and there
exists a bijection ψr : (w′, j) 7→ w of Er−1 × [0, r − 1] onto Er having
the properties:

gr(w) = gr−1(w
′) + j;

fr(w) =

{
fr−1(w

′), if 0 ≤ j ≤ fr−1(w
′);

fr−1(w
′) + 1, if fr−1(w) + 1 ≤ j ≤ r − 1.

(∗∗)
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Each pair (fr, gr) is called a Euler-Mahonian statistic on Er.
1) Let (f, g) be Euler-Mahonian on E and for every triple (r, s, l) let
Ar

r,s,l be the number of elements w ∈ Er such that fr(w) = l and

gr(w) = s and form Ar
r,s(q) =

∑
lA

r
r,s,l q

l. Then the family (Ar
r,s(q))

satisfies the above recurrence relation (∗).

2) A word w = x1 . . . xr of length r is said to be subexcedent if its letters
are integral numbers and satisfy 0 ≤ xi ≤ i − 1 for all i = 1, . . . , r.
Denote by SEr the set of those words. Let the sum of w be defined by
sumw = x1 + · · ·+ xr and its Eulerian value, eulw, by: eul = 0 if w is
of length 1, and for r ≥ 2

eulx1 . . . xr =

{
eulx1 . . . xr−1, if xr ≤ eulx1 . . . xr−1;

eulx1 . . . xr−1 + 1, if xr ≥ eulx1 . . . xr−1 + 1.

Then the pair (sum, eul) is a Euler-Mahonian statistic on SEr for ev-
ery r ≥ 0. The bijection ψr is obvious to imagine.

3) Let r ≥ 2 and let w′ = x1x2 . . . xr−1 be a permutation of 12 . . . (r−1)
having s descents. Let x0 = 0, xr =∞ and for each i = 0, 1, . . . , (r− 1)
label the r slots xixi+1 as follows: xr−1xr gets label 0, then reading the
permutation from right to left label 1, 2, . . . , s the s descents xi > xi+1;
then reading from left to right label (s + 1), . . . , r − 1 the (r − 1 − s)
non-descents xi < xi+1 (0 ≤ i ≤ r − 2). If the slot xixi+1 gets label j
define ψr(w

′, j) = x1 . . . xi r xi+1 . . . xr−1. Then with (f, g) = (des,maj)
the mapping ψr has the properties (∗∗), so that (des,maj) is a Euler-
Mahonian statistic on each permutation group Sr. (see Carlitz 1954,
Rawlings 1981.)

4) Let r ≥ 2 and let w′ = x1x2 . . . xr−1 be a permutation of 12 . . . (r−1)
having s excedances. Let (xi1 > · · · > xis) be the decreasing sequence
of the excedance values xk > k and let (xis+1 < · · · < xir−1) be the
increasing sequence of the non-excedance values xk ≤ k. By convention,
let xi0 = r.
Define ψr(w, 0) = x1x2 . . . xr−1r. If 1 ≤ j ≤ s (resp. s+ 1 ≤ j ≤ r − 1)
replace each letter xim in w′ such that 1 ≤ m ≤ j (resp. such that
1 ≤ m ≤ s) by xim−1 , leave the other letters invariant and insert xij
(resp. xis) to the ij-th place in w′. Let w = ψr(w

′, j) be the permutation
thereby obtained.
For example, w′ = 32 5 4 1 has the s = 2 excedances x3 = 5 > 3,
x1 = 3 > 1 (in decreasing order) and three non-excedances x5 = 1 ≤ 5,
x2 = 2 ≤ 2, x4 = 4 ≤ 4 (in increasing order), so that (i1, i2, i3, i4, i5) =
(3, 1, 5, 2, 4). With j = 1 we have ij = 3 and x3 = 5. To obtain ψ6(w

′, 1)
replace xi1 = 5 by xi0 = 6, leave the other letters invariant and insert
xi1 = 5 to the i1-th=3rd place. Thus ψ6(w

′, 1) = 3 2 5 6 4 1. For j = 3
we have ij = 5 and x5 = 1. As j = 3 > s = 2, replace xi1 = x3
by xi? = 6, then xi2 = x1 = 3 by xi1 = 5, leave the other letters
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invariant and insert xis = xi2 = x1 = 3 to the i3-th=5-th place to yield
ψ6(w

′, 3) = 5 2 6 4 3 1.
With (f, g) = (exc,den) the mapping ψr has the properties (∗∗), so that
(exc,den) is a Euler-Mahonian statistic on each permutation group Sr.
(see Han 1990b.)

5) Let (f, g) be a Eulerian-Mahonian family on E = (Er). For each
w ∈ Er (r ≥ 2) let ψ−1

r (w) = (w′, jr), ψ
−1
r−1(w

′) = (w′′, jr−1), . . . ,

ψ−1
2 (w(r−2)) = (w(r−1), j2) and j1 = 0; the word Ψ(w) = j1j2 . . . jr−1jr

is a subexcedant word and Ψ is a bijection of Er onto SEr such that
f(w) = sumΨ(w) and g(w) = eulΨ(w). The bijection Ψ is called the
(f, g)-coding of Er.
Let Ψ(des,maj) (resp. Ψ(exc,den)) be the (des,maj)-coding (see ques-
tion 3)) (resp. the (exc,den)-coding (see question 4) of Sr. Then
Θ = Ψ−1

(des,maj) ◦ Ψ(exc,den) is a bijection of Sr onto itself that satifies

(exc,den)w = (des,maj)Θ(w). (see Han 1990b.)

10.5.2 With the assumptions of Problem 10.3.1 the alphabet X = {1, . . . , r} is
split into two disjoint parts, the set S = {1, . . . , h} of the small letters
and L = {h + 1, . . . , r}, the set of the large letters. An U -descent of
the word w = x1 . . . xm is an integer i such that 1 ≤ i ≤ m and either
xi > xi+1, or xi = xi+1 ∈ L (by convention, xm+1 = h+ 1

2 .) Denote by
desU w (resp. majU w) the number (resp. the sum) of the U -descents
in w.
Now if y1y2 . . . ym is the nondecreasing rearrangement of the word w
let excU w be the number of i such that xi > yi, or xi = yi ∈ L. The
definition of denU requires the introduction of three further statistics.
The U -excedance index of w is defined as the sum, excindexU w, of all i
such that i is an U -excedance in w. Also let

invU w = #{1 ≤ i < j ≤ m : xi > xj or xi = xj ≥ h+ 1}
+#{1 ≤ i ≤ m : xi ≥ h+ 1},

imvU w = #{1 ≤ i < j ≤ m : xi > xj or xi = xj ≤ h}.

If excU w = e, let i1 < i2 < · · · < ie be the increasing sequence of the
U -excedances of w and let j1 < j2 < · · · < jm−e be the complementary
sequence. Form the two subwords ExcU w = xi1xi2 . . . xie , NexcU w =
xj1xj2 . . . xjm−e

. Then the U -Denert statistic, denU w, of w is defined
to be

denU w = excindexU w + imvU ExcU w + invU NexcU w.

When the set L of large letters is empty, all the statistics without any
subscript U that were defined in the chapter are recovered.
The algorithm T described in section 10.8 can be adequately modified
to make up a bijection Φ of each rearrangement class R(c) onto itself
having the property

(excU ,denU )w = (desU ,majU ) Φ(w)
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for every word w in R(c). Thus the generating polynomial for R(c) by
the pair (excU ,denU ) is the polynomial AU

c (t, q) whose factorial gener-
ating polynomial is shown in Problem 10.4.1. (See Foata and Han 1998
for the details of the construction of Φ, see Clarke and Foata 1994 for
an earlier construction and Han 1995 for another equivalent definition
for denU .)

10.5.3 In section 10.10 it is proved that if α = (h, b) and α′ = (h′, b′) are
H-equivalent, then (exc,den)α = (exc,den)α′. The converse is true
whenever the words h, h′, b, b′ are words without repetitions. (See
Clarke 1997.)
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