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Glory to Viennot, No one can beat him.
Wizard of Bordeaux, Only verbatim
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Sure, in Viennotics.  Such a happy fate.
He builds bijections, Sixty years have gone,
Top calculations. He still is our don.
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Abstract. The MacMahon Verfahren is fully exploited to derive further
multivariable generating functions for the hyperoctahedral group B,
and for rearrangements of signed words. Using the properties of the
fundamental transformation the generating polynomial for B,, by the flag-
major and inverse flag-major indices can be derived, and also by the length
function, associated with the flag-descent number.

1. Introduction

To paraphrase Leo Carlitz [Cab6|, the present paper could have been
entitled “Expansions of certain products,” as we want to expand the
product

(1.1) Koo(w):= [] !

i>0,j>0 (1 —uZijqiq3)

in its infinite version, and

(1.2) K w:= ] !

i
0<i<r,0<j<s (1 —uZijqig)

in its graded version, where
Z, if i and j are both odd;
Z;j =4 1, ifiand j are both even;
0, if ¢ and j have different parity.
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The second pair under study, which depends on r variables uq, ... , u,,
reads

(1.3) Loo(uy,...oun) == ] ! !

(1.4)  Ls(uy,...,up):= H ( 1 1

1 Ziy (Ui %) s/2)+1 (Wi Z;q%) (s+1)/2)

In those expressions we have used the usual notations for the g¢-

ascending factorial .
(1.5) (a;9)n += (1—a)(1—aq)...(1—aq"t), ifn>1;

in its finite form and

(1.6) (@; Q)00 :=limy(a;q)n = [] (1 — ag™);
n>0
in its infinite form.

All those products will be the basic ingredients for deriving the distri-
butions of various statistics attached to signed permutations and words.
By signed word we understand a word w = x12s . ..x,,, whose letters are
integers, positive or negative. If m = (mj,mo,...,m,) is a sequence of
nonnegative integers such that my +ms +---+m, = m, let By, be the set
of rearrangements w = x1x5...x,, of the sequence 1"12™2 .. . r™ with
the convention that some letters i (1 < i < r) may be replaced by their
opposite values —i. For typographical reasons we shall use the notation
1 := —i in the sequel. When m; = mg = --- = m, = 1, the class B
is simply the hyperoctahedral group B,, (see [Bo68], p. 252-253) of the
signed permutations of order m (m = r).

Using the y-notation that maps each statement A onto the value
X(A) = 1 or 0 depending on whether A is true or not, we recall that
the usual inversion number, inv w, of each signed word w = z125...2, is

defined by
invw := Z Zx(xz > ).

1<<n 1<j
It also makes sense to introduce

invw := Z ZX(@ > 1),

1<j<n i<j
and define the flag-inversion number of w by
finv w := inv w + invw + neg w,
where negw := >  x(z; < 0). As noted in our previous paper
[FoHa0bal, the ﬂagfnJX/SeT;sion number coincides with the traditional length
function ¢, when applied to each signed permutation.
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The flag-major index “fmaj” and the flag descent number “fdes”, which
were introduced by Adin and Roichman [ARO1] for signed permutations,
are also valid for signed words. They read

fmajw := 2majw + neg w;
fdesw := 2desw + x(z1 < 0);

where majw := ijx(xj > x;41) denotes the usual major index of w
and desw the number of descents desw := 3, x(z; > x;41). Finally, for

each signed permutation w let w~—! denote the inverse of w and define

ifdes w := fdesw™! and ifmaj := fmajw~1.

Notations. In the sequel B, (resp. Bp,) designates the hyperocta-
hedral group of order n (resp. the set of signed words of multiplicity
m = (my,mg,...,m,)), as defined above. Each generating polynomial
for B,, (resp. for By,) by some k-variable statistic will be denoted by
B,(ty,...,tk) (resp. Bm(t1,...,tr)). When the variable ¢; is missing in
the latter expression, it means that the variable ¢; is given the value 1.

The main two results of this paper corresponding to the two pairs of
products earlier introduced can be stated as follows.

Theorem 1.1. Let
(1.7) Bp(ti,te, q1,q2, Z) == Z tdes wyifdesw jfmajw Hmajuw 7neg w
weEB,

be the generating polynomial for the group B,, by the five-variable statistic
(fdes, ifdes, fmaj, ifmaj, neg). Then,

(r8) > “

n>0 (t%; q%)n—kl (t%; q%)n—kl

n

(I 4+t1)(1+t2)Bn(ti,t2,q1,92, 2)
= Z t”lﬂtg K”nas(u>7

where K, s(u) is defined in (1.2). r20,520

Theorem 1.2. For each sequence m = (myq,...,m;) let

(19) Bm(t,q, Z) — Z tfdeswquaijnegw
WE Bm

be the generating polynomial for the class By, of signed words by the
three-variable statistic (fdes, fmaj, neg). Then

(110) S (1+)Bumlt,q, 2) b — = 3"t Ly(ur,. . u,),

- (tQ;q2)1—|—|m| s>0

where |[m| :=my + ---+m, and Ls(uy,...,u,) is defined in (1.4).
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It is worth noticing that Reiner [Re93a] has calculated the generating
polynomial for B,, by another 5-variable statistic involving each signed per-
mutation and its inverse. The bibasic series he has used are normalized by
products of the form (¢1; q1)ni1(t2; g2)n instead of (t3;q3)n11(t3; G5 )ns1-

Using the properties of the fundamental transformation on signed
words described in our first paper [FoHaO5a] we obtain the following
specialization of Theorem 1.1. Let

(111) ﬁnVBn(t7Q) — Z tfdeswqﬁnvw
weB,

be the generating polynomial for the group B, by the pair (fdes, finv).
Then, the g-factorial generating function for the polynomials i%VB,, (¢, q)
(n > 0) has the following form:

/Un nv
= (0%5¢%)n
= B 1-—t
- P+ (1= 17)i0)
From identity (1.12) we deduce the generating function for the polynomials
B (tq) =2 e B, tdesswalinve where “dess” is the traditional number
of descents for signed permutations defined by

(t+ (1 = £*)g5¢")0).

dessw :=desw + x(x1 < 0) instead of fdesw :=2desw + x(z; < 0)

and recover Reiner’s identity [Re93a]

(L13) 3 B ) =

2. 42
=5 (6% 0%)n

1—t 1
1—teg(u(l—1) (0(1 —1);¢%)0’

where e, (v(1 — t?)) = 1/(v(1 — t?); ¢)oo is the traditional g-exponential.
This is done in section 4.

As in our second paper [FoHa05b| we make use of the MacMahon Ver-
fahren technique to prove the two theorems, which consists of transferring
the topology of the signed permutations or words measured by the var-
ious statistics, “fdes”, “fmaj”, to a set of pairs of matrices with integral
entries in the case of Theorem 1.1 and a set of plain words in the case of
Theorem 1.2 for which the calculation of the associated statistic is easy.
Each time there is then a combinatorial bijection between signed permu-
tations (resp. words) and pairs of matrices (resp. plain words) that has the
adequate properties. This is the content of Theorem 3.1 and Theorem 4.1.

In all our results we have tried to include the variable Z that takes the
number “neg” of negative letters of each signed permutation or word into
account. This allows us to re-obtain the classical results on the symmetric
group and sets of words.
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In the next section we recall the MacMahon Verfahren technique, which
was developed in our previous paper [FoHa05b] for signed permutations.
Notice that Reiner [Re93a, Re93b, Re93c, Re95a, Re95b], extending
Stanley’s [St72] (P,w)-partition approach, has successfully developed a
(P, w)-partition theory for the combinatorial study of the hyperoctahedral
group, which could have been used in this paper. Section 3 contains the
proof of Theorem 1.1, whose specializations are given in Section 4. We end
the paper with the proof of Theorem 1.2 and its specializations. Noticeably,
the generating polynomial for the class By, of signed words by the two-
variable statistic (fdes,fmaj) is completely explicit, in the sense that we
derive the factorial generating function for those polynomials and also a
recurrence relation, while only the generating function given by (1.10) has
a simple form when the variable Z is kept.

2. The MacMahon Verfahren

Let N™ (resp. NIW(n)) be the set of words (resp. nonincreasing words)
of length n, whose letters are nonnegative integers. As done in [FoHa05b]
the MacMahon Verfahren consists of mapping each pair (b, w) € NIW(n) x
B,, onto a word ¢ € N as follows. Write the signed permutation w as
the linear word w = x12s...%,, where x; is the image of the integer k
(1 <k <mn). Foreach k = 1,2,...,n let z; be the number of descents
in the right factor zgxry1...2, and € be equal to 0 or 1 depending on
whether zy, is positive or negative. Next, form the words z(w) := z122... 2,
and e(w) := €162 ... €.

Now, take a nonincreasing word b = b1bs .. .b,, and define ay, := by + 2,

¢, = 2ar + €, (1 <k < n), then a(b,w) := ajaz...a, and ¢'(b,w) :=
/

/ /
cichy...c . Finally, form the two-row matrix <‘;11| ‘;22| ‘;Z|) Its

bottom row is a permutation of 12 ...n; rearrange the columns in
such a way that the bottom row is precisely 12 ... n. Then the word
c(b,w) = ¢1ea ... ¢, which corresponds to the pair (b, w) is defined to be
the top row in the resulting matrix.

Ezample. Start with the pair (b, w) below and calculate all the neces-
sary ingredients:

b =4221100
w =3516742
zlw) =2111100
ew) =0110010
alb,w) = 6 332200
dbyw)=1277 4410
clbyw) = 70121744
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For each ¢ = ¢1...¢, € N" and let totc := ¢; + -+ + ¢, maxc :=
max{ci,...,c,} and let odd ¢ denote the number of odd letters in ¢ . The
proof of the following theorem can be found in [FoHa05b, Theorem 4.1].

Theorem 2.1. For each nonnegative integer s the above mapping is a
bijection (b, w) — ¢(b, w) of the set of pairs

(b,w) = (byby...by, 122 ...x,) € NIW(n) x B

such that 2b; + fdesw = s onto the set of words ¢ = ci¢a .. .c, € N™ such
that max ¢ = s. Moreover,

(2.1) 2by 4 fdesw = maxc(b,w); 2totb+ fmajw = tot c(b, w);
negw = odd ¢(b, w).

We end this section by quoting the following classical identity, where
by is the first letter of b.

(2.2) o Zu Z qt°re.

s>0 beENIW(n), b1 <s

3. Proof of Theorem 1.1
We apply the MacMahon Verfahren just described to the two pairs

(b, w) and (B, w™1!), where b and § are two nonincreasing words. The pair
(b, w) (resp (B,w™1)) is mapped onto a word ¢ := c(b,w) = cicz...cy
(resp. C :=c(B,w™t) = C1Cs...C,) of length n, with the properties
(3.1) 2b; + fdesw = maxc; 2totb+ fmajw = totc;

(3.2) 23y + ifdesw = max C; 2tot S+ ifmajw = tot C.

There remains to investigate the relation between the two words ¢ and C'
before pursuing the calculation. Form the two-row matrix

A\ (& & ... d
C c, Cy ... C,)°
where ¢ = |c,...c], designates the nonincreasing rearrangement of the

word c. The following two properties can be readily verified:

(i) for each i =1,2,...,n the letters ¢; and C; are of the same parity;
(i) if ¢; = ¢} is even (resp. is odd), then C; > Cii1 (resp. C; < Ciq1).
Conversely, the following property holds:

(iii) of (CC/) is a two-row matriz of length n having properties (1) and (ii),

there exists one and only one signed permutation w and two nonincreasing
words b, B satisfying (3.1) and (3.2).
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Ezxample. We take the same example for w as in the previous section,
but we also calculate C' = (3, w™1).

b =4221100 B =3211000

w =3516742 w~? =3716245
z(w) =2111100 z(w™1h) =2210000
e(w) =0110010 e(w™1) =1001100
a(b, w) 6332200 a(B,w! 5421000
d=dbw)=127T7 4410 C'=cdB,w =118 43100
ci=clbyw) = 70121744 C:=c(Bw!) =41110038

\_/g

c 127 74410
C 41110038
Let (i1 < i1 < --- <) (resp. (j1 < j2 < -+ < js)) be the increasing

sequence of the integers i (resp the integers j) such that ¢ is even (resp.

¢} is odd). Define (“¢” for “even” and “o” for “odd”)

2de — <2f€) . (021 022 C;;T ) .

2g°¢ Cil 01'2 . . Cir ’

2d0—|—1:(2f0+1) ::(Cgl 092 C&s)?
2g° +1 le o e st

)

so that the two two-row matrices

o= ()= (aly &y o &),
o= ()= (@208 @205 o @ET0R),

’

may be regarded as another expression for the two-row matrix (‘é)
Define the integers iyax and jmax by:

P (maxc—1)/2, if maxc is odd;
AT ] max¢/2, if max c is even;

o = { (maxC —1)/2, if maxC is odd,;
max

max C'/2, if max C' is even.

Then, to the pair d°, d° there corresponds a pair of unique finite matrices
D¢ = (dfj), D° = (dfj) (0 <@ < imax,0 < J < jmax) (and no other pair
of smaller dimensions), where df; (resp. df;) is equal to the number of the
two-letters in d° (resp. in d°) that are equal to (;)
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On the other hand, with |f| designating the length of the word f,

tot c = tot 2f¢ + tot(2f° + 1) = 2tot f¢ + 2tot f° + | f°|
=23 didj; +23idy; + 3 dj;
1,7 1,7 2y
tot C' = tot 2¢° + tot(2g° + 1) = 2tot g° + 2tot g° + |g°|
=23 jdi; +235dY + 3 dy;
1,7 1,7 2y

The following proposition follows from Theorem 2.1.

Proposition 3.1. For each pair of nonnegative integers (r,s) the map
(b, 8,w) — (D¢ D°) is a bijection of the triples (b,[,w) such that
2by + fdesw < r, 21 +ifdesw < s onto the pairs of matrices D¢ = (d ;),
D? = (d7;) (0<i<r0<j<s). Moreover,

(3.3) 2tot b+ fmajw =2 id; + 23 idY + 3 dY;
1,7 1,7 2¥)

(3.4) 2t0t6—|—ifmajw:2Zjdfj+22jd%+Zd?j9
1,7 2V 2,3

(3.5) neg w = iZjdi;’j-

(3.6) iZjd?j + iZjd?j = |wl.

Again work with the same example as above. To the two-row matrix
A\ (127 7 4410
) \41110038
there corresponds the pair
e (6220 o (330
d _(2004)’ d _(051)'
As maxc = 12 is even (resp. maxC = 11 is odd), we have iy = 6,
Jmax = D and

012 3 45 012 3 45
0 1 0 1
1. 1
2| 2 2

D¢ = 3 . D°= 3|1 1
4 4
5 . 5
6 1 6

Also verify that 2totb+ fmajw =35=2x (24+246) +2 x (3+ 3) + 3;
2tot B+ ifmajw =27=2x (2+4)+2x (1+5)+ 3 and negw = 3.
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In the following summations b and S run over the set of nonincreasing
words of length n. By using identity (2.2) we have

u
2:2.2

n>0 (t1; ¢ n+1 (t%; q%)n-i-l

= Zun(l+t1)(1-I-tg)Bn(tl,tQ,ql,qQ, Z 121" 428 2 totb 20t B

n>0 r’>0,s">0
baﬁ7b1§71/a Bl SS/

_ Z (t2r + t2r —|—1>( + tQS —|—1)

n,r’,s’ % Z tfdes wtlfdes wquaJ w+2 tot bqlfmaj w2 tot ,aneg w
1 2 1

n

(1+t1)(1 4+ t2)Bp(ti,t2,q1,q2, Z)

wEB,
baﬁ7b1 ST/7 ﬁl SS/

_ nyr’ 4s’ fdes w,ifdes w fmajw-+2totd ifmajw+2tot 8 negw
—EUHQE t to a; ds Z

n,r’,s’ weB,
b,5,2b1§7", 261§8/
. Nnyrys fmajw-+2tot b ifmajw-+2tot S rnegw
= E u tyty E a4 P Z .
n,r,s wEB,,b,B

2b1 +des w<r, 231 +ifdes w<s

We can continue the calculation by using (3.3), (3.4), (3.5) the last
summation being over matrices D¢, D° of dimensions (r + 1) x (s + 1),
that is,
SidS,;+25 i, +S d2; 25 jdS,+25 jd2+5 df; o
n,r,s De De

e € € o 3 o d° o
:Ztr Z”LLEd 2 (2i)d5; E(Qj)d Z Sdg; 2(21—|—1)dZ q;] (2741) ”ZEd

Zzt’{SZHuql ¢’) wZHquQ’+1 2L (0<i<r,0<)<s)

De ) Do ]
:Ztrts 12 s (0<i<r,0<j<s)
— ug?iq; )H(l uZg? g
2] ij
1
= Yt —. [
r>0,5>0 [T 1 —uZijqiq3)

0<i<r,0<j<s

4. Specializations and Flag-inversion number

First, when Z := 0 and t1, t2, q1, g2 are replaced by their square roots,
identity (1.8) becomes

(4.1) Z( w An(t17t27Q1aQQ>:Z ( e

b
50 115 q1)n+1(t2; G2)nt1 50850 U3 1, G2)r 41,541
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where A, (t1,t2,q1,q2) is the generating polynomial for the symmetric
group &,, by the quadruple (des, ides, maj,imaj), an identity first derived
by Garsia and Gessel [GaGeT78]. Other approaches can be found in [Ra79],
[DeFo85].

Remember that when a variable is missing in B,(t1,t2,q1,q2, Z) it
means that the variable has been given the value 1. Multiply both sides
of (1.8) by (1 —t2) and let to = 1. We get:

(12) Y

o (1500 )nr1(a3; 63)n

n

(1 + t1>Bn(t17q17q27 Z)

= E t] 1 i
r>0 —uZijq1q)
0<Z<7”,]>0

Again multiply both sides by (1 — ¢1) and let ¢; = 1:

u" 1
Bn(Q17q27Z) = N
;O (415 41)n (455 5 )n [T (1—uZijqiq)

120,520

(4.3)

Also the (classical) generating function for the polynomials A, (g1, g2) can
be derived from identity (4.3) and reads:

> Y An(grg2) = ——

=5 (@:a1)n(g2; 42)n (U3 q1,G2) 00,00

With ¢; = 1 the denominator of the fraction on the right side of identity
(4.2) becomes

{ (u; QQ)(T/Q)H(U%Z' q%)ZéQ, if r is even;
(U QQ)(TH)/Q(UQ Z5q5 )(TH)/Q, if r is odd.

Hence,

n

Z(l t2)n1—ib-1<q 2) (1+t1)Bn(t1,q2,Z)

n>0 2’q2
t2s 1
2) >s+1 + Z (( .42 .42 s . A2

t28+1

=27

S (45.63) 0 (U273 63) oo 5 (4503)00 (U225 45) 00 )* (45 43) oo
B 1
—t] + (43 63) oo (422 63)

(t1 + (ug2 Z; B)oc)-

Now replace u by v(1 — t2). This implies the following result stated as a
theorem.

10
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Theorem 4.1. Let B,(t1,q2,Z) be the generating polynomial for the
group B,, by the triple (fdes, ifmaj, neg). Then,

n

v
(4.4) Z mBn(tlaQQaZ>
n=0 1—t

St (1 - 1) 3) o (v(1 — 19)42Z3 45) o
Several consequences are drawn from Theorem 4.1. First, when Z = 0
and when t1, ¢o are replaced by their square roots, we get

45X A =

nS0 V423 92)n —t1+ (w1 —t1);¢2) 00

(t1+ (w1 = t1)q2Z; ¢3) o) -

where A, (t1,q2) is the generating polynomial for the group &,, by the pair
(des,imaj), but also by the pair (des,inv) (see [St76], [FoHa97]).

Let iw := w™! denote the inverse of the signed permutation w. At this
stage we have to remember that the bijection ¥ of B,, onto itself that we
have constructed in our first paper [FoHa0b5a] preserves the inverse ligne
of route [FoHa0ba, Theorem 1.2], so that the chain

i v i
w — w1 — wWo — w3

fdes ifdes ifdes fdes

ifmaj fmayj finv finv
shows that the four pairs (fdes,ifmaj), (ifdes,fmaj), (ifdes,finv) and
(fdes, finv) are all equidistributed over B,,. Therefore,

Z 2ffdes wqifmaj w_ Z tifdes wquaj w__ Z tifdes wqﬁnv w__ Z tfdes wqﬁnv w,

w w w w
where w runs over B,. The rightmost generating polynomial was des-
ignated by B, (t,q) in (1.11). Therefore we can derive a formula
for 82vB, (t,q) by using its (fdes,ifmaj) interpretation. We have then
fivvp (t,q) = Bn(ti,q2,Z) with t; = t, go = gand Z = 1. Let Z := 1
in (4.4); as (v(1 = 17); ¢3)oo (V(1 = 11)@2: 3 )00 = (v(1 — 17); g2) oo, identity
(4.4) implies identity (1.12).

To recover Reiner’s identity (1.13) we make use of (1.12) by sorting the
signed permutations according to the parity of their flag descent numbers:
B,(t,q) =: B! (t?,q) + t B!(t?,q), so that 9B, (t2,q) = B! (t? q) +
t2 B! (2, q). Hence

V" desspy 2 o (01— — 7 51— (v(1—2)q;¢%)

D ey A USK e ey ) v e e ey g
B 1—1¢2

2+ (0(1 = 12); @)oo

n>0

(v(1 = t*)¢; ¢°)o-

11



DOMINIQUE FOATA AND GUO-NIU HAN

As 1/(v(1—1?); q) oo can also be expressed as the g-exponential e, (v(1—t?)),
we then get identity (1.13).

5. The MacMahon Verfahren for signed words

Let w = z129...2,, be a signed word belonging to the class By,
where m = (mq,ma,...,m,) is a sequence of nonnegative integers such
that m; + ms + -+ + m, = m. Remember that this means that w is a
rearrangement of 112™2 . ™ with the convention that some letters ¢
(1 < 4 < r) may be replaced by their opposite values i. Again, let
€ := €(w) := €1€2...€, be the binary word defined by ¢, = 0 or 1,
depending on whether x; is positive or negative.

The MacMahon Verfahren bijection for signed words is constructed as
follows. First, compute the word z = z125...2,,, where z; is equal to
the number of descents in the right factor xyxgi1 ...z, as well as the
word € = €165 ...€, mentioned above, so that, as in the case of signed
permutations,

(5.1) fmajw = 2tot z + tote.
Next, define ap = by + 2, ¢, = 2ap + € (1 < k < m), then
a:= ayas...a, and ¢ = cicy...c,, . Finally, form the two-row matrix
/ / / /
¢ = (1 2 ) Tts bottom row is a rearrangement of
abs w |z1] |z2| - .. | T
the word 1™12™2 y™Mr,

Make the convention that two biletters (|;;’z|) and (lfjll) commute if

and only if |zx| and |z;| are different and rearrange the biletters of that
biword in such a way that the bottom row is precisely 1™12™2 . . r™r,

The top row in the resulting two-row matrix is then the juxtaposition

product of r nonincreasing words b)) = bgl) . .b%i, b2 = ng) - .bfﬁl,

b = bgr) .. .b%l, of length mq, ms, ... , m,, respectively. Moreover,

tot b +tot b + ... 4 tot b = tot ¢ = 2tota + tot e
=2totb+ 2tot z + tot e
(5.2) = 2tot b + fmajw.

On the other hand,

2by + fdesw = 2by + 221 + €1 = ¢}
(5.3) = max; bgi) (1<i<r).

As in the case of signed permutations, we can easily see that for each
nonnegative integer s the map (b, w) — (b, 6 .. b(") is a bijection of

12
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the set of pairs (b, w) € NIW(m) X Ry, such that 2b;+ fdes w=s onto the
set of juxtaposition products bMb(2) .. (") such that max; bgi) = s. The
reverse bijection is constructed in the same way as in the case of signed
permutations.

Ezample. Start with the pair (b,w), where w belongs to By, with

m = (2,2,2,2,2,2),r =6, m = 12, the negative elements being overlined.

Id =123 456 7 89101112
b — 4 4 4 4 4 4 422111
w =15 22331460546
2 322211110000
€ 011011101100
a 76 6655 532111
¢ 1413 13121111116 5 3 2 2
absw =15 2 2 3 3 1 46 5 46
b(l)...b(’"):1411‘1312’1111’62‘133‘52
1™ pmr =1 112 2|3 3|44/55|6 6

We verify that 2 tot b+fmajw = 2tot b+2tot z+tot e = 2x354+2x13+7 =
103 = totb® + -+ + totb©® and 2by 4 fdesw = 2b; + 221 + € =
2x44+2x34+0=14=¢ :maxibgz).

The combinatorial theorem for signed words that corresponds to The-
orem 2.1 is now stated.

Theorem 5.1. For each nonnegative integer s the above mapping is a
bijection of the set of pairs (b,w) = (biba ...by, x1T2 ... Ty ) € NIW(m) x
B, such that 2b, + fdesw = s onto the set of juxtaposition products
bW . b") € NIW(my) x - - -x NIW(m,.) such that max; bgi) = s. Moreover,
(5.2) and (5.3) hold, together with

(5.4) negw = odd(b™® ... bp™)

Relation (5.4) is obvious, as the negative letters of w are in bijection
with the odd letters of the juxtaposition product. Now consider the
generating polynomial By, (%, q, Z), as defined in (1.9). Making use of (2.2)
and of the usual g-identities

1 N+n-1]
-2

(U; Q)N >0

N+n _ tot b,
[n ]q_ T g

bENIW(N), b1 <n

13
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we have

1+t p p m—+ s’
e Bm(t,q,2) = > _(t** +t* “)l } Bum(t, q)
2_ 2 9 b b

(t 1 4 )m+1 s>0 s q2

_ Z # {m +/ //QJ} ) Bm(t, q, Z)

— Zts' Z q2t0tb Z tfdeswquaijnegw

s/>0 beNIW(m), wWEBm
2b1 gs'

_ Z 15 Z q2 tot b+fmayj w neg w

$20 beENIW(m), wEBm
2by +fdes w<s

But using (5.2), (5.3), (5.4) we can write

1+t s totb<1>+ +tot b"rrodd b 4+ +odd b(")
7(152_ 2 m(t,q, Z t Z
47 )m+ 5>0 b(l),...,b(’"),
(4)
max; b, ' <s
and L=

Z(Ht)Bm(t,q,Z)—g; e —Zts IT S S wmgrorttizodas®
+

m h 1<i<r m;>0 p()

using the notation: |m| :=m; + -+ m,.

There remains to evaluate > >, umq©tt 7044t - where the second
sum is over all nonincreasing words b = by ...b,, of length m such that
by < s . Letl <ip < - <ip <mi(resp. 1 <j < - <7 <m)
be the sequence of the integers i (resp. j) such that b; is even (resp. b;
is odd). Then, b is completely characterized by the pair (b¢,b°), where
b := (bs,/2) ... (bs,/2) and b° := ((bj, —1)/2)...((bj, — 1)/2). Moreover,
totb = 2tot b® + 2tot b° + |b°|. Hence,

Z Z umqtothoddb:Z u|b|qtothoddb

m2>0b,|b|=m,b1<s b,b1<s
_ b°| 2tot b® b°| 2tot b°
= E ul Iq E (qu>| Iq
be, 26 <s bo, 269 <s—1

1 1
(u56%) 1s/2)+1 (WG Z5G%) | (s41) /2]

This achieves the proof of Theorem 1.3.

14
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6. Specializations

As has been seen in this paper a graded form such as (1.10) has an
infinite version (again obtained by multiplying the formula by (1 —t) and
letting ¢ := 1) given by

<oy 1 1
6.1 Bm(q, 2)——"— =
CEDY T o~ Al G ez

= H eqz(ui)6q2(uiqz)a

1<:<r

where e,2(u) denotes the usual g-exponential with basis ¢* ([GaRa90],

p. 9).
The polynomial By, (g, Z) is the generating polynomial for the class By,
by the pair (fmaj, neg), namely

(6.2) Bm(q,Z) = _q™™"Z"8"Y  (w € By,).

On the other hand, Let

(63) ﬁan Z qﬁnv w neg w

WE Bm

be the generating polynomial for the class By, by the pair (finv, neg). Using
a different approach (the derivation is not reproduced in the paper), we
can prove the identity

(CI;(Dm +-tm

6.4 iR (0, 2) = (= Z¢: Q)my 4o g, ! a
(6.4) (2.2)=( ket (@ Dmy - (G Dm,
my 4 - +m,
— (= Z¢ Dt ,
(=26 Q)my+-+ { . L

using the traditional notation for the ¢g-multinomial coefficient. In general,
Bm(q, Z) # 5By, (¢, Z). This can be shown by means of a combinatorial
argument.

Let Z :=1in (6.1) and make use of the g-binomial theorem (see [An76],
p. 17, or [GaRa90], chap. 1), on the one hand, and let Z :=1 in (6.4), on
the other hand. We get the evaluations

m1+...+mr
mi,...,My

(6.5) Bun(q) = (=G Dmy+-+m, [ } = "B (q).

15
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This shows that “fmaj” and “finv” are equidistributed over each class By,
a property proved “bijectively” in our first paper [FoHa05a).
Next, let ¢ :== 1 in (6.4). We obtain

= Bm(2)),

(66) ﬁnVBm(Z) — (1 + Z>m1—|—---—|—mq~ (ml + .4 mr) (

mi,..., My

an identity which is equivalent to
My

(6.7) ZB 771 = H exp(u;) exp(u;Z).

m]! :
1<:i<lr

Thus, the ¢g-analog of (6.6) yields (6.4) with a combinatorial interpretation
in terms of the flag-inversion number “finv,” while (6.1) may be interpreted
as ¢?-analog of (6.7) with an interpretation in terms of the flag-maj index
number “fmaj.”

Finally, for Z = 0, formula (1.10) yields the identity

ZA (t,q)d " Ur —Ztﬂ%

550 1<i<r Ui q)s+1
where A (t, q) is the generating polynomial for the class of the rearrange-
ments of the word 1™12™2 .. . r™r by (des,maj). As done by Rawlings
[Ra79], [Ra80], the polynomials Ay, (¢, ¢) can also be defined by a recur-
rence relation involving either the polynomials themselves, or their coeffi-
cients.

t q)1+|m|

7. The Signed-Word-Euler-Mahonian polynomials

We end the paper by showing that the polynomials By, (t,q) =
Bwm(t,q,Z) |z=1 can be calculated not only by their factorial generating
function given by (1.10) for Z := 1, but also by a recurrence formaula.

Definition. A sequence (Bm(t, q) = Zthm,k(q)) (m = (mq,...,m.);
k>0
my > 0,...,m, > 0)) of polynomials in two variables t, ¢, is said to
be signed-word-Fuler-Mahonian, if one of the following four equivalent
conditions holds:

(1) The (t?, ¢?)-factorial generating function for the polynomials
(7.1) Cm(t,q) = (14 1) Bm(t, q)

is given by identity (1.10) when Z =1, that is,

72 YO () W—&sﬂ%

- .
“)im| s>0 1<igr(“Q)5+1
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(2) For each multiplicity m we have:

(7.3) (tf Zts {ml + 5} - [mT; S} )

1+|m|

Let m+ 1, := (mq,...,m,—1,m + 1).

(3) The recurrence relation

(7.4) (1—=¢™ ) Bmy1,(t,9)
= (1= ¢*"™N B (t,q) — ¢ (1 = £)(1 + tq) Bm(tq, q),

holds with By, o) (t,q) = 1.

(4) The following recurrence relation holds for the coefficients By, 1(q)

(75) (L4+q+-+¢")Bmt1,6(@) =1+q+-+¢" ) Bmi(q)
+ ¢ Brmr—1(q) + (@7 4 g 4 P B o (a),

while B(o,...0),0(q) = 1 and Bq,... 0),x(q) = 0 for every k # 0.

Theorem 7.1. The conditions (1), (2), (3) and (4) in the previous
definition are equivalent.

Proof. The proofs of the equivalences [(1) < (2)] and [(3) & (4)]
are easy and therefore omitted. For proving the equivalence [(1) < (3)]
proceed as follows. Let C(t, ¢;u1, ..., u,) denote the right side of (7.2) and
form the g-difference C(t,q;uq, ..., u.) — C(t,q;u1, ..., ur_1,u-q) applied
to the sole variable u,.. We get

(7.6) C(t,q;uq,...,u) —C’(t,q;ul,...,ur_l,uTq)
tS

B Z u1 q s+1 - (Ur;Q)s+1 B Z (U1;Q)s+1 .. (UTQ; Q)s+1

s>0 s>0

Z ts |:1 1-— Uy :|
S (Wi @err - (U@l b 1= urgt

18 |:1 st 1-— Uy ]
>0 (u1§ Q>s—|—1 e (ur§ Q>s—|—1 1- urqs+1

:uT'

- U’I’(C(t7q;u17 .- '7“7’) - qC(tq,q, Uy, .. '7u7‘—17u7’q))'

NOW7 let C(t7 q;ug, ..., ur) = Zm Cm(t7 Q)U/Tl T 'LLT’"/(tQ, q2)1—|—|m| and
express each term C(...) occurring in identity (7.6) as a factorial series in

17
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the u;’s. We obtain

31— g™ i, (t Q)M
" (t%54%) 24 |m|

m
Ugnl . umr+1

_ 1— 22 2mh o ) P EEL
%:( 4 JCm(t, ) (t%54*) 24 |m|

u;nl .« 0. umr+1

N (1 = ) (b, ) A
;q ( )Cm(tq,q) &P

Mr—1, my+1

Taking the coefficients of wy"* ... u, "7 ul yields

(1=¢™*)Cimy1, (@) = 1 =22 Cn(t,q) —¢™ " (1—1%) Cn(tg, ),
which in its turn is equivalent to (7.6) in view of (7.1). All the steps of the
argument are reversible. []

Remark 1. The fact that By, (¢, q) is the generating polynomial for the
class Bpy by the pair (fdes,fmaj) can also be proved by the insertion
technique using (7.5). The argument has been already developed in
[ClFo95a, § 6] for ordinary words. Again let m := |m| = my + -+ + m,..
With each word from By,yi- associate (m, + 1) new words obtained by
marking one and only one letter equal to r or 7. Let By, ;- denote the
class of all those marked signed words. If w* = z;...2] ... 241 is such
a word, where the i-th letter is marked (accordingly, equal to either r
or 7), let mark; be the number of letters equal to r or 7 in the right factor
Tit1Tit2 ... Tmy1 and define:

fmaj* w* := fmajw + mark; w*.

On the other hand, let

Bm,k(Q) — Z qfrnajw.

WE Bm, fdesw=k

S S ) B )

w™ GB:‘nJrlr , fdes w=Ek

Clearly,

Now each word w from the class By, gives rise to 2(m+1) distinct marked
signed words of length (m + 1), when the marked letter r or 7 is inserted
between letters of w, as well as in the beginning of and at the end of the
word. As in the case of the signed permutations, we can verify that for
each 7 =0,1,...,2m+1 there is one and only one marked signed word w*
of length (m + 1) derived by insertion such that fmaj* w* = fmajw + j.

On the other hand, “fdes” is not modified if r is inserted to the right
of w, or if r or 7 is inserted into a descent x; > x;,1. Furthermore, “fdes”
increases by one, if 1 > 0 (resp. 1 < 0) and 7 (resp. r) is inserted to the
left of w. For all the other insertions “fdes” increases by 2.

18
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Hence, all the marked signed words w* from By, , |, such that fdes w* =
k are derived by insertion from three sources:
(i) the set {w € By, : fdesw = k} and the contribution is:
(L4 g4+ g ) B o (q);
(ii) the set {w € By, : fdesw = k — 1} and the contribution is:
¢ * Bm k-1(9);
(iii) the set {w € By, : fdesw = k — 2} and the contribution is:
(@™ 4+ P By oo (q)- (]

Remark 2. Let m := 1™ and B,(t,q) = Bml(t,q), so that B,(t,q)
is now the generating polynomial for the set of signed permutations of
order n. Then (7.3), (7.4) and (7.5) become

(1+t)B
7.7 t*(I+qg+---+
( ) (tqu n—|—1 Z 1 1 )

(7.8) (1= q)Bn(t,q) = (1 — t2q2n>Bn—1(t7 q) —q(1 —t)(1+tq)Bn_1(tq, q).
(7.9) Bui(q)=(1+q+ - +¢")Bn_1(q)
+¢"Boip-1(q) + (¢ + T+ + 2B k—a(q).

The last three relations have been derived by Brenti et al. [ABRO1], Chow
and Gessel [ChGe04], Haglund et al. [HLRO4].

Concluding remarks. The statistical study of the hyperoctahedral
group B, was initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a,
[Re95b]). It had been rejuvenated by Adin and Roichman [ARO01] with
their introduction of the flag-major index, which was shown [ABRO1] to
be equidistributed with the length function. See also their recent papers on
the subject [ABRO5], [ReRo05]. Another approach to Theorems 1.1 and 1.2
would be to make use of the Cauchy identity for the Schur functions, as
was done in [C1Fo95b].
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