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A New Proof of the Garoufalidis-Lê-Zeilberger

Quantum MacMahon Master Theorem

Dominique Foata and Guo-Niu Han

ABSTRACT. We propose a new proof of the quantum version of
MacMahon’s Master Theorem, established by Garoufalidis, Lê and Zeil-
berger.

RÉSUMÉ. Nous proposons une nouvelle démonstration de la version
quantique du Master Théorème de MacMahon, établi par Garoufalidis, Lê
et Zeilberger.

1. Introduction

MacMahon’s Master Theorem is still regarded as a keystone in Com-
binatorial Analysis. It was proved by MacMahon himself [Ma15, vol. 1,
p. 93–98], who also gave numerous applications. Several other proofs are
due to Good [Go62], Cartier [Ca72]. As the Master Theorem is a special
case of the multivariable Lagrange Inversion Formula [Ge87], as was shown
by Good [Go60] (see also Hofbauer [Ho82]), each proof of the latter for-
mula yields a proof of this theorem. Its first noncommutative version can
be found in [Fo65], which was later implemented into an appropriate alge-
braic set-up [CF69]. Recently Garoufalidis, Lê and Zeilberger have derived
another noncommutative version [GLZ05] (called “quantum Master The-
orem”) by using difference operator techniques developed by Zeilberger
[Z80]. In this paper we propose a new proof of this quantum Master The-
orem. As indicated in [FH05], the formal parameter q in the Garoufalidis-
Lê-Zeilberger version plays no role; we will then let q = 1 in the present
derivation without loss of generality.

Let r be a positive integer; the set A = {1, 2, . . . , r} is referred to as
the underlying alphabet. A biword on A is a 2×n matrix α (n ≥ 0), whose
entries are in A, the first (resp. second) row being called the top word

(resp. bottom word) of the biword α. The number n is the length of α; we
write ℓ(α) = n. Let B be the set of all biwords on A. Each biword can
also be viewed as a word of biletters

(

x

a

)

written vertically. The product

of two biwords is just the concatenation of them viewed as two words of
biletters. The biword of length 0 is denoted by

()

= 1.
Let Z be the ring of all integers. The set A = Z〈〈B〉〉 of the formal sums

∑

α c(α)α, where α ∈ B and c(α) ∈ Z for all α ∈ B, together with the
above multiplication, the free addition and the free scalar product is an
algebra over Z, called the free biword large Z-algebra.
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The right quantum algebra R is defined to be the associative algebra,
which is the quotient of A by the two-sided ideal I generated by the
commutation relations

(

xy

aa

)

=
(

yx

aa

)

,(R1)
(

xy
ab

)

=
(

yx
ab

)

+
(

yx
ba

)

−
(

xy
ba

)

,(R2)

for all letters a, b, x, y in A and x 6= y. Notice that the associativity of
the right quantum algebra is set by definition. In fact, the associativity is
a consequence of the commutation relations (R1) and (R2), as was proved
in [FH05]. All further calculations in the paper will be made in the right
quantum algebra R, unless explicitly indicated. The elements of R will be
called expressions. If “can” is the canonical homomorphism of A onto R,
we identify canB with B and each biword

(

x1 x2 ··· xm

xj1
xj2

···xjm

)

occurring in an

expression from R with the product
(

xi1
x1

)(

xi2
x2

)

· · ·
(

xim

xm

)

in the quotient
algebra R.

For each word w let w be its non-decreasing rearrangement. The bosonic
sum is defined to be the infinite sum

Bos :=
∑

w

(

w

w

)

,

where the sum is over all words w from the free monoid A
∗ generated

by A. The fermionic sum is defined by

Ferm :=
∑

J⊂A

(−1)|J|
∑

σ∈SJ

(−1)invσ
(

σ(i1) σ(i2) · · ·σ(il)
i1 i2 · · · il

)

,

where J = {i1 < i2 < · · · < il} and SJ is the permutation group acting on
the set J . Both bosonic and fermionic sums will be regarded as elements
ofR using the above identification. The quantum Master Theorem [GLZ05]
is stated next.

Theorem 1. The identity

Ferm×Bos = 1

holds in the right quantum algebra R.

Our proof of Theorem 1 is based on specific techniques of Circuit Cal-
culus (Section 2) and determinantal identities in the context of the right
quantum algebra (Section 3). The end of the proof is made in Section 4.
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2. Real and imaginary expressions

A circuit is a biword whose top word is a rearrangement of its bottom
word. Each formal sum E =

∑

α c(α)α ∈ A is said to be imaginary (resp.
real), if c(α) = 0 for all circuits α (resp. non-circuits α). If E,E′ ∈ A
and E′ ≡ E (mod I), then E′ is imaginary (resp. real) if and only if E
is imaginary (resp. real), as easily verified by considering the commuta-
tion relations (R1) and (R2). Accordingly, it makes sense to say that an
expression in R is imaginary (resp. real). Notice that 0 is both real and
imaginary. The terminology is directly inspired from Complex Analysis.
The following properties, although easy to verify, are essential for the proof
of the theorem.

(P1) Each expression E ∈ R can be decomposed in a unique way as a
sum of a real expression ℜ(E) and an imaginary expression ℑ(E):

E = ℜ(E) + ℑ(E).

(P2) The real part operator ℜ and the imaginary part operator ℑ are
linear. This means that for any two expresssions E, E′ and scalars c, c′

we have
ℜ(cE + c′E′) = cℜ(E) + c′ℜ(E′),

ℑ(cE + c′E′) = cℑ(E) + c′ℑ(E′).

(P3) The real part operator ℜ and the imaginary part operator ℑ are
idempotent and orthogonal to each other. This means that for every ex-
presssion E we have

ℜ(ℜ(E)) = ℜ(E), ℑ(ℑ(E)) = ℑ(E) and ℜ(ℑ(E)) = ℑ(ℜ(E) = 0.

(P4) If E, E′ are two nonzero expressions from R and if E is real, then
E ×E′ is real (resp. imaginary) if and only if E′ is real (resp. imaginary).

Lemma 2. If E, E′ are two nonzero expressions from R and if E is real,

then

ℜ(E × E′) = E × ℜ(E′).

Proof. From the above properties we have

ℜ(E ×E′) = ℜ(E × (ℜ(E′) + ℑ(E′)))

= ℜ(E × ℜ(E′) +E ×ℑ(E′))

= ℜ(E × ℜ(E′)) + ℜ(E × ℑ(E′))

= E ×ℜ(E′).
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Now, define the universe “Univ” to be the sum of all biwords whose
top words are nondecreasing, that is,

Univ :=
∑

u,w

(

u

w

)

,

where u (resp. w) runs over the set of all nondecreasing words (resp. all
words) and where u and w are of the same length: |u| = |w|. Both bosonic
and fermionic sums involve only circuits. Moreover, ℜ(Univ) = Bos. By
Lemma 2 the quantum Master Theorem is equivalent to the following
theorem.

Theorem 3. The following identity

ℜ(Ferm×Univ) = 1

holds in the right quantum algebra R.

3. Determinantal Calculus

Let A = (ai,j)1≤i,j≤r be a square matrix whose entries are expressions
from R. We define the determinant of A to be

det(A) =
∑

σ

(−1)invσaσ1,1aσ2,2 · · ·aσr,r.

In this formula σ runs over the permutation group SA of the set A. The
ordering of the factors aσ1,1, aσ2,2, . . ., aσr,r matters, as the underlying
algebra is noncommutative. However, several classical properties of the
determinant still hold.

Property 4 (Linearity). When writing matrices as sequences of their r

columns (c1, c2, . . . , cr), we have

det(c1, . . . , ci, . . . , cr)+ det(c1, . . . , c
′
i, . . . , cr) = det(c1, . . . , ci + c′i, . . . , cr).

Property 5 (Cofactor expansion). Let A = (ai,j)1≤i,j≤r be a matrix of

expressions and Aij be the matrix obtained from A by deleting the i-th

row and j-th column. Then

det(A) =
r

∑

i=1

(−1)r+i det(Air)air.

In the above identity we recognize the usual expansion of det(A) by
cofactors of the rightmost column.
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Let ai, bi, ci (i = 1, 2, . . . , r) and x, y be scalars and form the r × r-
matrix

A =











· · · a1 + b1
(

1
x

)

c1 + b1
(

1
y

)

. . .

· · · a2 + b2
(

2
x

)

c2 + b2
(

2
y

)

. . .

. . .
...

...
. . .

· · · ar + br
(

r
x

)

cr + br
(

r
y

)

. . .











,

where besides the two consecutive columns explicitly displayed the other
columns are arbitrary. Let B denote the matrix derived from A by trans-
posing those two consecutive columns.

Property 6 (Interchanging two columns). Let A and B be the two ma-

trices just defined. Then detA = − detB.

Proof. In the expansion of detA the sum of the two terms

Sij := ± · · · (ai + bi
(

i

x

)

)(cj + bj
(

j

y

)

) · · · ∓ · · · (aj + bj
(

j

x

)

)(ci + bi
(

i

y

)

) · · ·

may be put in a one-to-one correspondence with the sum

Tij := ± · · · (ci + bi
(

i
y

)

)(aj + bj
(

j
x

)

) · · · ∓ · · · (cj + bj
(

j
y

)

)(ai + bi
(

i
x

)

) · · ·

in the expansion of detB. But

Sij = ± · · ·
(

aicj + aibj
(

j
y

)

+ cjbi
(

i
x

)

+ bibj
(

ij
xy

)

− ajci − ajbi
(

i
y

)

− cibj
(

j
x

)

− bibj
(

ji
xy

)

)

· · ·

Tij = ± · · ·
(

ciaj + cibj
(

j

x

)

+ biaj
(

i

y

)

+ bibj
(

ij

yx

)

− cjai − cjbi
(

i

x

)

− bjai
(

j

y

)

− bibj
(

ji

yx

)

)

· · · .

Because of the identity
(

ij
xy

)

−
(

ji
xy

)

= −(
(

ij
yx

)

−
(

ji
yx

)

) and the fact that
the commutation relations can be made at any position within each bi-
word (using the associativity property of the right quantum algebra) we
conclude that Sij = −Tij .

It is worth noticing that Property 6 is only stated for very special
matrices. In general, the column interchanging property does not hold for
arbitrary matrices with entries in R.

Consider the r× r-matrix B(r) =
( (

i
j

) )

1≤i,j≤r
. Notice that every entry

in B(r) is a biletter. Define the fermion-matrix to be the matrix F(r) =
I−B(r). Using Property 4 (linearity) we have

Ferm = det(F(r)) = det











1−
(

1
1

)

−
(

1
2

)

. . . −
(

1
r

)

−
(

2
1

)

1−
(

2
2

)

. . . −
(

2
r

)

...
...

. . .
...

−
(

r
1

)

−
(

r
2

)

. . . 1−
(

r
r

)











.
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Let i ≤ r − 1 and replace the rightmost column in F(r) by the i-th
column of F(r). Let Fi be the resulting matrix, so that Fi has two identical
columns.

Lemma 7. We have: det(Fi) = 0.

Proof. Permute columns i and i+1, then columns i+1 and i+2, · · ·,
finally columns r − 2 and r − 1, We obtain a matrix A whose rightmost
two columns are identical. Property 6 implies that det(A) = 0 and also
det(Fi) = ± det(A) = 0.

4. The proof

First, define

Si = S
(r)
i :=

(

i

1

)

+

(

i

2

)

+ · · ·+

(

i

r

)

;

Ki = K
(r)
i :=

1

1− Si

=
∑

n≥0

Sn
i .

Lemma 8. The universe defined in Section 2 is equal to

Univ = K1K2 · · ·Kr.

Proof. By definition of “Univ” we have

Univ =
∑

u,w

(

u

w

)

=
∑

w1,w2,···,wr

(

11 · · ·1

w1

)(

22 · · ·2

w2

)

· · ·

(

rr · · · r

wr

)

=
∑

w1

(

11 · · · 1

w1

)

∑

w2

(

22 · · ·2

w2

)

· · ·
∑

wr

(

rr · · · r

wr

)

= K1K2 · · ·Kr.

Lemma 9. We have: SiSj = SjSi and KiKj = KjKi.

Proof. Grouping the biwords by pairs if necessary we have:

SiSj =
∑

a<b

(

(

ij

ab

)

+

(

ij

ba

)

) +
∑

a

(

ij

aa

)

=
∑

a<b

(

(

ji

ab

)

+

(

ji

ba

)

) +
∑

a

(

ji

aa

)

= SjSi.
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Proof of Theorem 3. Let M be the matrix obtained from the fermion-
matrix F(r) by adding all the leftmost r − 1 columns to the rightmost
column:

M =











1−
(

1
1

)

−
(

1
2

)

. . . 1− S1

−
(

2
1

)

1−
(

2
2

)

. . . 1− S2

...
...

. . .
...

−
(

r
1

)

−
(

r
2

)

. . . 1− Sr











By Property 4 and Lemma 7: det(M) = det(F(r)) = Ferm. Let

E(r) := Ferm×Univ = det(M)× Univ

By Lemmas 8 and 9

E(r) = det











1−
(

1
1

)

−
(

1
2

)

. . . (1− S1)×Univ

−
(

2
1

)

1−
(

2
2

)

. . . (1− S2)×Univ
...

...
. . .

...
−
(

r
1

)

−
(

r
2

)

. . . (1− Sr)× Univ











= det











1−
(

1
1

)

−
(

1
2

)

. . . K2K3 · · ·Kr

−
(

2
1

)

1−
(

2
2

)

. . . K1K3 · · ·Kr

...
...

. . .
...

−
(

r

1

)

−
(

r

2

)

. . . K1K2 · · ·Kr−1











.

Now applying Property 5 to the above determinant yields

E(r) =(−1)r+1 det(M1r)K2K3 · · ·Kr

(−1)r+2 det(M2r)K1K3 · · ·Kr + · · ·

+ det(Mrr)K1K2 · · ·Kr−1,

where, as in Property 5, Mij denotes the minor at position (i, j). For each
biword occurring in F1 := det(M1r)K2K3 · · ·Kr there is a letter 1 in the
bottom, but none in the top. This means that F1 does not contain any
circuit. Thus ℜ(F1) = 0. This argument is also valid for the other terms
in the above summation of E(r), except for the last term. When taking
the real part of the E(r) we obtain:

ℜ(E(r)) = ℜ(det(Mrr)K1K2 · · ·Kr−1).

When expanding the product det(Mrr)K1K2 · · ·Kr−1 we get a sum of
biwords. The biwords containing biletters

(

i
r

)

with 1 ≤ i ≤ r − 1 vanish
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under the application of ℜ. Therefore, each Ki can be replaced by K
(r−1)
i .

Hence

ℜ(E(r)) = ℜ(det(F(r−1))K
(r−1)
1 K

(r−1)
2 · · ·K

(r−1)
r−1 ) = ℜ(E(r−1)).

Then, by iteration

ℜ(E(r)) = ℜ(E(r−1)) = · · · = ℜ(E(1)) = ℜ((1−

(

1

1

)

)K
(1)
1 ) = 1.
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7, rue René-Descartes
F-67084 Strasbourg, France

guoniu@math.u-strasbg.fr

8


