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A New Proof of the Garoufalidis-Lé-Zeilberger
Quantum MacMahon Master Theorem

Dominique Foata and Guo-Niu Han

ABSTRACT. We propose a new proof of the quantum version of
MacMahon’s Master Theorem, established by Garoufalidis, L.é and Zeil-
berger.

RESUME. Nous proposons une nouvelle démonstration de la version
quantique du Master Théoreme de MacMahon, établi par Garoufalidis, Lé
et Zeilberger.

1. Introduction

MacMahon’s Master Theorem is still regarded as a keystone in Com-
binatorial Analysis. It was proved by MacMahon himself [Mal5, vol. 1,
p. 93-98], who also gave numerous applications. Several other proofs are
due to Good [Go62], Cartier [CaT72]. As the Master Theorem is a special
case of the multivariable Lagrange Inversion Formula [Ge87], as was shown
by Good [Go60] (see also Hofbauer [Ho82]), each proof of the latter for-
mula yields a proof of this theorem. Its first noncommutative version can
be found in [Fo65], which was later implemented into an appropriate alge-
braic set-up [CF69]. Recently Garoufalidis, L.é and Zeilberger have derived
another noncommutative version [GLZ05] (called “quantum Master The-
orem”) by using difference operator techniques developed by Zeilberger
[Z80]. In this paper we propose a new proof of this quantum Master The-
orem. As indicated in [FHO5], the formal parameter ¢ in the Garoufalidis-
Lé-Zeilberger version plays no role; we will then let ¢ = 1 in the present
derivation without loss of generality.

Let r be a positive integer; the set A = {1,2,...,7} is referred to as
the underlying alphabet. A biword on A is a 2 X n matrix o (n > 0), whose
entries are in A, the first (resp. second) row being called the top word
(resp. bottom word) of the biword . The number n is the length of a; we
write {(a) = n. Let B be the set of all biwords on A. Each biword can
also be viewed as a word of biletters (z) written vertically. The product
of two biwords is just the concatenation of them viewed as two words of
biletters. The biword of length 0 is denoted by () =1

Let Z be the ring of all integers. The set A = Z({(B)) of the formal sums
Yoo (), where a € B and ¢(«) € Z for all a € B, together with the
above multiplication, the free addition and the free scalar product is an
algebra over Z, called the free biword large Z-algebra.
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The right quantum algebra R is defined to be the associative algebra,
which is the quotient of A by the two-sided ideal Z generated by the
commutation relations

(R1) (o) = (%)
(R2) (op) = () + () — G

for all letters a, b, x, y in A and = # y. Notice that the associativity of
the right quantum algebra is set by definition. In fact, the associativity is
a consequence of the commutation relations (R1) and (R2), as was proved
in [FHO5]. All further calculations in the paper will be made in the right
quantum algebra R, unless explicitly indicated. The elements of R will be
called expressions. If “can” is the canonical homomorphism of A onto R,
we identify canB with B and each biword (' #2 " ¥ ) occurring in an

7132 Im
expression from R with the product (f;ll) (2122) e (le) in the quotient
algebra R.

For each word w let w be its non-decreasing rearrangement. The bosonic
sum is defined to be the infinite sum

Bos := Y (Z) ,

w

where the sum is over all words w from the free monoid A* generated
by A. The fermionic sum is defined by

R 3 (09 3 (e (7))ol

JCA cESy

where J = {i; < is < --- <4} and Sy is the permutation group acting on
the set J. Both bosonic and fermionic sums will be regarded as elements
of R using the above identification. The quantum Master Theorem [GLZ05]
is stated next.

Theorem 1. The identity
Ferm x Bos =1

holds in the right quantum algebra R.

Our proof of Theorem 1 is based on specific techniques of Circuit Cal-
culus (Section 2) and determinantal identities in the context of the right
quantum algebra (Section 3). The end of the proof is made in Section 4.
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2. Real and imaginary expressions

A circuit is a biword whose top word is a rearrangement of its bottom
word. Each formal sum F =) c¢(a)a € A is said to be imaginary (resp.
real), if ¢c(a)) = 0 for all circuits a (resp. non-circuits «). If E,E’ € A
and ' = E (mod Z), then E’ is imaginary (resp. real) if and only if F
is imaginary (resp. real), as easily verified by considering the commuta-
tion relations (R1) and (R2). Accordingly, it makes sense to say that an
expression in R is imaginary (resp. real). Notice that 0 is both real and
imaginary. The terminology is directly inspired from Complex Analysis.
The following properties, although easy to verify, are essential for the proof
of the theorem.

(P1) Each expression E € R can be decomposed in a unique way as a
sum of a real expression R(F) and an imaginary expression (E):

(P2) The real part operator &8 and the imaginary part operator J are
linear. This means that for any two expresssions F, E’ and scalars ¢, ¢/
we have

R(cE+E') = cR(E) + IR(E'),
S(cE+ dE') = cS(E) + 'S(F).

(P3) The real part operator  and the imaginary part operator & are
idempotent and orthogonal to each other. This means that for every ex-
presssion F we have

RR(E)) = R(E), I(I(E)) = I(E) and R(I(E)) = S(R(E) = 0.

(P4) If E, E’ are two nonzero expressions from R and if F is real, then
E x E' is real (resp. imaginary) if and only if E’ is real (resp. imaginary).

Lemma 2. If E, E' are two nonzero expressions from R and if E is real,
then

R(E x E') = E x R(E").

Proof. From the above properties we have

REx E')=R(E x (R(E")+S(E)))
R(E x R(E') + E x S(E'))
R(E x R(E')) + R(E x S(E))

=ExR(E). []
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Now, define the universe “Univ” to be the sum of all biwords whose
top words are nondecreasing, that is,

Univ:= " (ZJ)

u,w

where u (resp. w) runs over the set of all nondecreasing words (resp. all
words) and where u and w are of the same length: |u| = |w|. Both bosonic
and fermionic sums involve only circuits. Moreover, R(Univ) = Bos. By
Lemma 2 the quantum Master Theorem is equivalent to the following
theorem.

Theorem 3. The following identity
R(Ferm x Univ) =1

holds in the right quantum algebra R.

3. Determinantal Calculus

Let A = (a;;)1<i,j<r be a square matrix whose entries are expressions
from R. We define the determinant of A to be

det(A> - Z(_1>invaa01,1a0272 © Qo

g

In this formula ¢ runs over the permutation group Su of the set A. The
ordering of the factors as,. 1, Ggy.2, - .-, G0, r» matters, as the underlying
algebra is noncommutative. However, several classical properties of the
determinant still hold.

Property 4 (Linearity). When writing matrices as sequences of their r
columns (c1, ¢, ..., ¢,), we have

det(ci,...,Ci ... cn)+det(cr, ... ... cr) =det(cr,...,ci+chy ..o ).

Property 5 (Cofactor expansion). Let A = (a;;)1<i,j<r be a matrix of
expressions and A;; be the matrix obtained from A by deleting the i-th
row and j-th column. Then

T

det(A) = (1) det(A;p)air.

=1

In the above identity we recognize the usual expansion of det(A) by
cofactors of the rightmost column.



Let a;, b;, ¢; (i =1,2,...,7) and x, y be scalars and form the r x r-

matrix
mh() b))

az + bg (925) Co + b2 (5)

ar+b:(3) e 400 ()
where besides the two consecutive columns explicitly displayed the other

columns are arbitrary. Let B denote the matrix derived from A by trans-
posing those two consecutive columns.

Property 6 (Interchanging two columns). Let A and B be the two ma-
trices just defined. Then det A = — det B.

Proof. In the expansion of det A the sum of the two terms
Siy im (g + by () (e by (0)) - F o+ g + b (0))es + bi() -+
may be put in a one-to-one correspondence with the sum
Ty im (e b))y b5 (0) -+ F oo (e + b)) + Bi(() -+
in the expansion of det B. But

Sij ==E--- (aicj + a;b; (;) + ¢;b; (;) + bib; (;?y)
— a;C — Cljbi (;) — Cibj (i) — bzb] (g;)) .
Tij==+--- (Ciaj + cib; (i) + b;a; (;) + bib; (;;)

— cja; — c;b; (;) —bja; (?JJ) — bib; (;;)) e

Because of the identity (;‘;) — (i;) = —((;;) — (;;)) and the fact that
the commutation relations can be made at any position within each bi-
word (using the associativity property of the right quantum algebra) we

conclude that S;; = —T;;. []

It is worth noticing that Property 6 is only stated for very special
matrices. In general, the column interchanging property does not hold for
arbitrary matrices with entries in R.

Consider the 7 x r-matrix B(") = ( (;’) )1<7: i<r

in B(" is a biletter. Define the fermion-matriz to be the matrix F(") =
I — B("). Using Property 4 (linearity) we have

=) =) . -0
G 1-Q . -0
) - 10
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Ferm = det(F(™) = det



Let i« < r — 1 and replace the rightmost column in F(") by the i-th
column of F("). Let F; be the resulting matrix, so that F; has two identical
columns.

Lemma 7. We have: det(F;) = 0.

Proof. Permute columns ¢ and ¢+ 1, then columns ¢+ 1 and i+ 2, - - -,
finally columns r — 2 and r — 1, We obtain a matrix A whose rightmost

two columns are identical. Property 6 implies that det(A) = 0 and also
det(F;) = +det(A) =0. []

4. The proof
First, define
;= (’I’) = Z Z L Z N
s.=50= (1) + (5) ++ ()
1
K, =K"= =3 s
e AP O

Lemma 8. The universe defined in Section 2 is equal to
Univ = KlKQ cee Kr-

Proof. By definition of “Univ” we have

w3 ()= 2 (W) ()

u,w W1, W2, Wy
11---1 22-.-2 Y
()22 ()
w1 w2 Wy

=K1Ky K. []

Lemma 9. We have: SZSJ = SJSZ and KZKJ = K]Kz

Proof. Grouping the biwords by pairs if necessary we have:

8i8; = (‘Z,) + (57)) t2 (j)

a<b
() (s ()
55 [



Proof of Theorem 3. Let M be the matrix obtained from the fermion-
matrix F(") by adding all the leftmost » — 1 columns to the rightmost

column: ) )
1-() -() ... 1=-5

| O D s

-0 -G o 1=8
By Property 4 and Lemma 7: det(M) = det(F()) = Ferm. Let

E™ := Ferm x Univ = det(M) x Univ

By Lemmas 8 and 9

1= G) _(é) (1_51) % Univ
E™ — det -3 1-(3) ... (1-52) x Univ
_(7{) _(;) (1 _ Sr>‘ % Univ
1_(1) _(é) ... KyKs3---K,
= det _§1) 1 —. (2) e KlKg.' K,
_(7{) —(’2") KlK?'."qu

Now applying Property 5 to the above determinant yields

EM =(—1)"1 det(M1,) Ky K3 - - - K,
(=)™ det(Ma, ) K1 K3 - - Ky + - -
+ det(M,, ) K1 Ky - K,_q,

where, as in Property 5, M;; denotes the minor at position (4, j). For each
biword occurring in Fy := det(My,) K3 K3 - - - K, there is a letter 1 in the
bottom, but none in the top. This means that F}; does not contain any
circuit. Thus R(F}) = 0. This argument is also valid for the other terms
in the above summation of E(") except for the last term. When taking
the real part of the E(") we obtain:

%(E(T)) = %(det(Mm«)KlKg tee KT—1)~

When expanding the product det(M,,)K1K>--- K, 1 we get a sum of
biwords. The biwords containing biletters (i) with 1 < ¢ < r — 1 vanish
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under the application of . Therefore, each K; can be replaced by K Z-(r_l).
Hence

R(ET) = R(det(F) K VES ™Y KUYy = R(ECY).
Then, by iteration

1

REM) = RECD) =... = REDV) = R((1 - <1

D=1 1
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