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Zernike polynomials have been widely used to describe the aberrations in wavefront sensing of the eye. The
Zernike coefficients are often computed under different aperture sizes. For the sake of comparison, the same
aperture diameter is required. Since no standard aperture size is available for reporting the results, it is im-
portant to develop a technique for converting the Zernike coefficients obtained from one aperture size to an-
other size. By investigating the properties of Zernike polynomials, we propose a general method for establish-
ing the relationship between two sets of Zernike coefficients computed with different aperture sizes. © 2006
Optical Society of America
OCIS codes: 330.4460, 220.1010, 000.3870.
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. INTRODUCTION
n the past decades, interest in wavefront sensing of the
uman eye has increased rapidly in the field of oph-
halmic optics. Several techniques have been developed
or measuring aberrations of the eye.1,2 In general, these
echniques typically represent the aberrations as a wave-
ront error map at the corneal or pupil plane. Zernike
olynomials, due to their properties such as orthogonality
nd rotational invariance, have been extensively used for
tting corneal surfaces.3–6 Moreover, the lower terms of
he Zernike polynomial expansion can be related to
nown types of aberrations such as defocus, astigmatism,
oma, and spherical aberration.7 When the Zernike coef-
cients are computed, an aperture radius describing the
ircular area in which the Zernike polynomials are de-
ned must be specified. Such a specification is usually af-
ected by the measurement conditions and by variation in
atural aperture size across the human population. Since
he Zernike coefficients are often obtained under different
perture sizes, the values of the expansion coefficients
annot be directly compared. Unfortunately, this type of
omparison is exactly what needs to be done in repeatabil-
ty and epidemiological studies. To solve this problem, a
echnique for converting a set of Zernike coefficients from
ne aperture size to another is required.

Recently, Schwiegerling8 proposed a method to derive
he relationship between the sets of Zernike coefficients
1084-7529/06/081960-7/$15.00 © 2
or two different aperture sizes, but he did not provide a
ull demonstration for his results. Campbell9 developed
n algorithm based on matrix representation to find a
ew set of Zernike coefficients from an original set when
he aperture size is changed. The advantage of Campbell’s
ethod is its easy implementation. In this paper, by in-

estigating the properties of Zernike polynomials, we
resent a general method for establishing the relation-
hip between two sets of Zernike coefficients computed
ith different aperture sizes. An explicit and rigorous
emonstration of the method is given in detail. It is
hown that the results derived from the proposed method
re much more simple than those obtained by Schwieger-
ing, and moreover, our method can be easily imple-

ented.

. BACKGROUND
ernike polynomials have been successfully used in many
cientific research fields such as image analysis,10 pattern
ecognition,11 and astronomical telescopes.12 Some effi-
ient algorithms for fast computation of Zernike moments
efined by Eq. (7) below have also been reported.13–15 Re-
ently, Zernike polynomials have been applied to describe
he aberrations in the human eye.1 There are several dif-
erent representations of Zernike polynomials in the lit-
rature. We adopt the standard Optical Society of
006 Optical Society of America



A
i
m

Z

w

a

H

m
r
T
s
(

w

u
t
=

o
W
Z

w
s

p
fi
u
i
p
b
t
t
f

w
f

w
t
t

3
I
n
a
c
n
t
s

w

S

Shu et al. Vol. 23, No. 8 /August 2006 /J. Opt. Soc. Am. A 1961
merica notation. The Zernike polynomial of order n with
ndex m describing the azimuthal frequency of the azi-

uthal component is defined as

n
m��,�� = �Nn

mRn
m���cos�m�� for m � 0

− Nn
mRn

m���sin�m�� for m � 0�,

�m� � n, n − �m� even, �1�

here the radial polynomial Rn
m��� is given by

Rn
m��� = �

s=0

�n−�m��/2 �− 1�s�n − s�!

s ! ��n + �m��/2 − s� ! ��n − �m��/2 − s�!
�n−2s,

�2�

nd Nn
m is the normalization factor given by

Nn
m =	2�n + 1�

1 + �m,0
. �3�

ere �m,0 is the Kronecker symbol.
Equations (2) and (3) show that both the radial polyno-
ial Rn

m��� and the normalization factor Nn
m are symmet-

ic about m, i.e., Rn
m���=Rn

−m���, Nn
m=Nn

−m, for m�0.
hus, for the study of these polynomials, we can only con-
ider the case where m�0. Let n=m+2k with k�0; Eq.
2) can be rewritten as

Rm+2k
m ��� = �

s=0

k �− 1�s�m + 2k − s�!

s ! �k − s� ! �m + k − s�!
�m+2k−2s

= �
s=k

0 �− 1�k−s�m + k + s�!

s ! �k − s� ! �m + s�!
�m+2s

�making the change of variables = k − s�

= �
s=0

k

ck,s
m �m+2s, �4�

here

Ck,s
m = �− 1�k−s

�m + k + s�!

s ! �k − s� ! �m + s�!
. �5�

Since the Zernike polynomials are orthogonal over the
nit circle, the polar coordinates �r ,�� must be scaled to
he normalized polar coordinates �� ,�� by setting �

r /rmax, where rmax denotes the maximum radial extent s
f the wavefront error surface. The wavefront error,
�r ,��, can thus be represented by a finite set of the

ernike polynomials as

W�r,�� = �
n=0

N

�
m

an,mZn
m�r/rmax,��, �6�

here N denotes the maximum order used in the repre-
entation, and an,m are the Zernike coefficients given by

an,m =

0

rmax

0

2�

Zn
m�r/rmax,��W�r,��rdrd�. �7�

Equation (7) shows clearly that the coefficients an,m de-
end on the choice of rmax. This dependence makes it dif-
cult to compare two wavefront error measures obtained
nder different aperture sizes. To surmount this difficulty,

t is necessary to develop a method that is capable of com-
uting the Zernike coefficients for a given aperture size r2
ased on the expansion coefficients for a different aper-
ure size r1. Without loss of generality, we assume that r1
akes a value of 1, and the problem can be formulated as
ollows.

Assume that the wavefront error can be expressed as

W�r,�� = �
n=0

N

�
m

an,mZn
m�r,��, �8�

here the coefficients an,m are known. The same wave-
ront error must be represented as

W�r,�� = �
n=0

N

�
m

bn,mZn
m��r,��, �9�

here � is a parameter taking a positive value. We need
o find the coefficient conversion relationships between
wo sets of coefficients �bn,m� and �an,m�.

. METHODS AND RESULTS
n this section, we propose a general method that allows a
ew set of Zernike coefficients �bn,m� corresponding to an
rbitrary aperture size to be found from an original set of
oefficients �an,m�. As indicated by Schwiegerling,8 the
ew coefficients bn,m depend only on the coefficients an,m
hat have the same azimuthal frequency m. Thus, we con-
ider a subset of terms in Eq. (8), all of which have the

ame azimuthal frequency m:
Wm�r,�� = ��k=0

K

am+2k,mNm+2k
m Rm+2k

m �r��cos�m��, for m � 0

− ��
k=0

K

a−m+2k,mN−m+2k
−m R−m+2k

−m �r��sin�m��, for m � 0� , �10�

here K is given by

K = ��N − �m��/2, if N and m have the same parity

�N − 1 − �m��/2, otherwise � . �11�

imilarly, the subset of terms in Eq. (9) with the same azimuthal frequency m can be expressed as
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Wm�r,�� = ��k=0

K

bm+2k,mNm+2k
m Rm+2k

m ��r��cos�m��, for m � 0

− ��
k=0

K

b−m+2k,mN−m+2k
−m R−m+2k

−m ��r��sin�m��, for m � 0.� �12�
t
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y equating Eqs. (10) and (12), the sine and cosine depen-
ence immediately cancels, and this leads to the following
elation:

�
k=0

K

bm+2k,mNm+2k
m Rm+2k

m ��r� = �
k=0

K

am+2k,mNm+2k
m Rm+2k

m �r�.

�13�

ote that we have taken into account only the case of m
0; the case where m�0 can be treated in a similar man-

er. Let

R̄m+2k
m �r� = Nm+2k

m Rm+2k
m �r�. �14�

quation (13) can be rewritten as

�
k=0

K

bm+2k,mR̄m+2k
m ��r� = �

k=0

K

am+2k,mR̄m+2k
m �r�. �15�

To solve Eq. (15), we will use the following basic re-
ults.

Lemma 1. Let a function f�r� be expressed as

f�r� = �
n=0

K

anPn�r� = �
n=0

K

bnPn��r�, �16�

here Pn�r� is a polynomial of order n given by

Pn�r� = �
k=0

n

cn,krk, cn,n � 0; �17�

hen we have

bi =
1

�i�ai + �
n=i+1

K ��
k=i

n cn,kdk,i

�k−i �an�, i = 0,1,2, . . . ,K,

�18�

rom which CK= �cn,k�, with 0�k�n�K, is a �K+1�	 �K
1� lower triangular matrix, and DK= �dn,k� is the inverse
atrix of CK.
The proof of Lemma 1 is deferred to Appendix A.
We are interested in a special case of Lemma 1 for

hich each polynomial order n can be expressed as n
m+qk where m and q are given positive integers, k
0,1, . . . ,K. The corresponding result is described in the

ollowing corollary.
Corollary. Given the positive integer numbers m, q,

nd K, let Pn
m�r� be a set of polynomials defined as

Pn
m�r� = Pm+qk

m �r� = �
s=0

k

ck,s
m rm+qs, k = 0,1,2, . . . ,K.

�19�

et f�r� be a function that can be represented as
f�r� = �
k=0

K

am+qk,mPm+qk
m �r� = �

k=0

K

bm+qk,mPm+qk
m ��r�; �20�

hen we have

m+qk =
1

�m+qk�am+qk + �
i=k+1

K ��
j=k

i ci,j
mdj,k

m

��j−k�q�am+qi�,

k = 0,1,2, . . . ,K, �21�

rom which DK
m= �di,j

m� is the inverse matrix of CK
m= �ci,j

m�;
oth matrices are a �K+1�	 �K+1� lower triangle matrix.
Both Lemma 1 and Corollary are valid for any type of

olynomials. To apply them, an essential step consists of
nding the inverse matrix DK or DK

m when the original
atrix CK or CK

m is known. For the purpose of this paper,
e are particularly interested in the use of Zernike poly-
omials. For the radial polynomials Rm+2k

m �r� defined by
q. (4), we have the following proposition.
Proposition 1. For the lower triangular matrix CK

m

hose elements ck,s
m are defined by Eq. (5), the elements of

he inverse matrix DK
m are given as follows:

dk,s
m =

�m + 2s + 1�k ! �m + k�!

�k − s� ! �m + k + s + 1�!
. �22�

The proof of Proposition 1 is deferred to Appendix A.
For the normalized radial polynomials R̄m+2k

m �r� defined
y Eq. (14), it can be rewritten as

R̄m+2k
m �r� = Nm+2k

m Rm+2k
m �r�

=	2�m + 2k + 1�

1 + �m,0
Rm+2k

m �r� = �
s=0

k

c̄k,s
m rm+2s,

�23�

here

c̄k,s
m =	2�m + 2k + 1�

1 + �m,0
ck,s

m

= �− 1�k−s	2�m + 2k + 1�

1 + �m,0

�m + k + s�!

s ! �k − s� ! �m + s�!
.

�24�

ince the normalization factor Nm+2k
m depends only on m

nd k, by using Proposition 1, we can easily derive the fol-
owing result without proof.
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Proposition 2. For the lower triangular matrix C̄K
m

hose elements c̄k,s
m are defined by Eq. (24), the elements

f the inverse matrix D̄K
m are given as follows:

d̄k,s
m =	 1 + �m,0

2�m + 2s + 1�
dk,s

m

=	�1 + �m,0��m + 2s + 1�

2

k ! �m + k�!

�k − s� ! �m + k + s + 1�!
.

�25�

We are now ready to establish the relationship between
he two sets of Zernike coefficients �bm,m ,bm+2,m ,
m+4,m , . . . ,bm+2K,m� and �am,m ,am+2,m ,am+4,m , . . . ,
m+2K,m� that appear in Eq. (13). Applying the Corollary
o the normalized radial polynomials R̄m+2k

m �r� with q=2
nd using Eqs. (24) and (25), we have Theorem 1.
Theorem 1. For given integers m and K, and real posi-

ive number �, let �bm,m ,bm+2,m ,bm+4,m , . . . ,bm+2K,m� and
am,m ,am+2,m ,am+4,m , . . . ,am+2K,m� be two sets of Zernike
oefficients corresponding to the aperture sizes 1 and �,
espectively; we then have

bm+2k,m =
1

�m+2k�am+2k,m + �
i=k+1

K

�
j=k

i � c̄i,j
md̄j,k

m

�2�j−k� �am+2i,m�
=

1

�m+2k�am+2k,m + �
i=k+1

K

C�m,k,i�am+2i,m�,

k = 0,1, . . . ,K, �26�
here
C�m,k,i� = 	�m + 2i + 1��m + 2k + 1�

	 �
j=k

i �− 1�i−j

�2�j−k�

�m + i + j�!

�i − j� ! �j − k� ! �m + j + k + 1�!

for i = k + 1,k + 2, . . . ,0. �27�

The relationship established in Theorem 1 is explicit,
nd the coefficient bm+2k,m depends only on the set of co-
fficients �am+2k,m ,am+2�k+1�,m , . . . ,am+2K,m�; thus, it is
ore simple than that given by Schwiegerling.8 Note also

hat even though the above results were demonstrated for
he case m�0, they remain valid for m�0 due to the
ymmetry property of the radial polynomials Rn

m�r� about
.
Table 1 shows the conversion relationship between the

oefficients bn,m and an,m for Zernike polynomial expan-
ions up to 45 terms (up to order 8). The results are the
ame as those given by Schwiegerling8 except for b1,m.

As correctly indicated by Schwiegerling,8 an interesting
eature can be observed from Table 1: For a given radial
olynomial order n, the conversion from the original to
he new coefficients has the same form regardless of the
zimuthal frequency m. This can be demonstrated as fol-
ows.

Theorem 2. Let C�m ,k , i� defined by Eq. (27) be the co-
fficient of am+2i,m in the expansion of bm+2k,m given by
q. (26), and let C�m+2l ,k− l , i− l� be the coefficient of
m+2i,m+2l in the expansion of bm+2k,m+2l where l is an in-
eger number less than or equal to k; then we have

C�m,k,i� = C�m + 2l,k − l,i − l�. �28�
Proof. From Eq. (27), we have
C�m + 2l,k − l,i − l�=	�m + 2i + 1��m + 2k + 1� �
j=k−t

i−l �− 1�i−l−j

�2�j−k+l�

�m + l + i + j�!

�i − l − j� ! �j − k + l� ! �m + l + j + k + 1�!

=	�m + 2i + 1��m + 2k + 1� �
j=k−l

i �− 1�i−j

�2�j−k�

�m + i + j�!

�i − j� ! �j − k� ! �m + j + k + 1�!
. �29�

Table 1. Coefficient Conversion Relationships for Zernike Polynomial Expansions up to Order 8

m New Expansion Coefficients bn,m

0 b0,m=a0,m−	3�1− 1
�2 �a2,m+	5�1− 3

�2 + 2
�4 �a4,m−	7�1

− 6
�2 + 10

�4 − 5
�6 �a6,m+3�1− 10

�2 + 30
�4 − 35

�6 + 14
�8 �a8,m

−1,1 b1,m= 1
��a1,m−2	2�1− 1

�2 �a3,m+	3�3− 8
�2 + 5

�4 �a5,m−4�2
− 10

�2 + 15
�4 − 7

�6 �a7,m�
−2,0,2 b2,m= 1

�2�a2,m−	15�1− 1
�2 �a4,m+	21�2− 5

�2 + 3
�4 �a6,m

−	3�10− 45
�2 + 63

�4 − 28
�6 �a8,m�

−3,−1,1,3 b3,m= 1
�3�a3,m−2	6�1− 1

�2 �a5,m+2	2�5− 12
�2 + 7

�4 �a7,m�

−4,−2,0,2,4 b4,m= 1
�4�a4,m−2	35�1− 1

�2 �a6,m+3	5�3− 7
�2 + 4

�4 �a8,m�

−5,−3,−1,1,3,5 b5,m= 1
�5�a5,m−4	3�1− 1

�4 �a7,m�

−6,−4,−2,0,2,4,6 b6,m= 1
�6�a6,m−3	7�1− 1

�2 �a8,m�
−7,−5,−3,−1,1,3,5,7 b7,m= 1

�7a7,m

−8,−6,−4,−2,0,2,4,6,8 b8,m= 1
�8a8,m
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omparing Eqs. (27) and (29), we obtain the result of the
heorem.

Another interesting feature was also observed that is
ummarized in the following theorem.

Theorem 3. For a fixed value of N, let N=m+2K=m�
2K�; from Theorem 1, we have

bm+2�K−l�,m =
1

�N−2l�am+2�K−l�,m + �
i=K−l+1

K

C�m,K

− l,i�am+2i,m� =
1

�N−2l�am+2�K−l�,m + �
i=0

l−1

C�m,K

− l,i + K − l + 1�aN+2i−2l+2,m�, l = 0,1, . . . ,K,
�30�

C
v

u

4
W
a
t
d
s
n
d
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bm�+2�K�−l�,m =
1

�N−2l�am�+2�K�−l�,m�

+ �
i=K�−l+1

K�

C�m�,K� − l,i�am�+2i,m��
=

1

�N−2l�am�+2�K�−l�,m� + �
i=0

l−1

C�m�,K�

− l,i + K� − l + 1�aN+2i−2l+2,m��,

l = 0,1, . . . ,K. �31�

hen

C�m,K − l,i + K − l + 1� = C�m�,K� − l,i + K� − l + 1�.

for i = 0,1, . . . ,l − 1, l = 0,1, . . . ,min�K,K��. �32�

Proof. From Eq. (27), we have
C�m,K − l,i + K − l + 1� = 	�m + 2i + 2K − 2l + 3��m + 2K − 2l + 1�

	 �
j=k−l

i+K−l+1 �− 1�i+K+1−l−j

�2�j−K+l�

�m + i + K − l + j + 1�!

�i + K − l + 1 − j� ! �j − K + l� ! �m + j + K − l + 1�!

= 	�N + 2i − 2l + 3��N − 2l + 1��
j=0

i+1 �− 1�i+1−j

�2j

�N + i − 2l + j + 1�!

j ! �i + 1 − j� ! �N + j − l + 1�!
. �33�

imilarly,

C�m�,K� − l,i + K� − l + 1� = 	�m� + 2i + 2K� − 2l + 3��m + 2K� − 2l + 1�

	 �
j=k�−l

i+K�−l+1 �− 1�i+K�+1−l−j

�2�j−K�+l�

�m� + i + K� − l + j + 1�!

�i + K� − l + 1 − j� ! �j − K� + l� ! �m� + j + K� − l + 1�!

= 	�N + 2i − 2l + 3��N − 2l + 1��
j=0

i+1 �− 1�i+1−j

�2j

�N + i − 2l + j + 1�!

j ! �i + 1 − j� ! �N + j − l + 1�!
. �34�
omparison of Eqs. (33) and (34) shows that Eq. (32) is
alid.

Table 2 shows the case of N=m+2K=7 for different val-
es of m and K.

. CONCLUSION
e have developed a method that is suitable to determine
new set of Zernike coefficients from an original set when

he aperture size is changed. An explicit and rigorous
emonstration of the proposed approach was given, and
ome useful features have been observed and proved. The
ew algorithm allows a fair comparison of aberrations,
escribed in terms of Zernike expansion coefficients that
ere computed with different aperture sizes. The pro-
osed method is simple, and can be easily implemented.
Table 2. Coefficient Conversion Relationships for
Different Values of m and K Where N=m+2K=7

K New Expansion Coefficients bn,m

1 b7,5= 1
�7

a7,5

b5,5= 1
�5�a5,5−4	3�1− 1

�2 �a7,5�

2 b7,3= 1
�7a7,3

b5,3= 1
�5�a5,3−4	3�1− 1

�2 �a7,3�
b3,3= 1

�3�a3,3−2	6�1− 1
�2 �a5,3+2	2�5− 12

�2 + 7
�4 �a7,3�

b7,1= 1
�7a7,1

b5,1= 1
�5�a5,1−4	3�1− 1

�2 �a7,1�
3 b3,1= 1

�3�a3,1−2	6�1− 1
�2 �a5,1+2	2�5− 12

�2 + 7
�4 �a7,1�

b1,1= 1
��a1,1−2	2�1− 1

�2 �a3,1+	3�3− 8
�2 + 5

�4 �a5,1−4�2
− 10

�2 + 15
�4 − 7

�6 �a7,1�
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Note that the formulas derived in this paper are math-
matically correct for all values of �=r1 /r2, where r1 and
2 represent the original and new aperture sizes. But for
pplication purposes, it is still recommended to make r2
ess than r1. In the case where r2 is greater than r1, the
avefront error data must be extrapolated outside the re-
ion of the original fit. It is worth mentioning that such a
rocess could produce erroneous results since the Zernike
olynomials are no longer orthogonal in this region and
hey have high-frequency variations in the peripheries.8

PPENDIX A
roof of Lemma 1. Equation (16) can be expressed in
atrix form as

f�r� = �a0,a1,a2, . . . ,aK��
P0�r�

P1�r�

P2�r�

�

PK�r�
�

= �b0,b1,b2, . . . ,bK��
P0��r�

P1��r�

P2��r�

�

PK��r�
� . �A1�

sing Eq. (17), we have

�
P0�r�

P1�r�

P2�r�

�

PK�r�
� = CK�

1

r

r2

�

rK
� , �A2�

�
P0��r�

P1��r�

P2��r�

�

PK��r�
� = CK�

1

�r

�2r2

�

�KrK
� = CK diag�1,�,�2, . . . ,�K��

1

r

r2

�

rK
� .

�A3�

ubstitution of Eqs. (A2) and (A3) into Eq. (A1) yields

a0,a1,a2, . . . ,aK�CK�
1

r

r2

�

rK
�

= �b0,b1,b2, . . . ,bK�CK diag�1,�,�2, . . . ,�K��
1

r

r2

�

rK
� . �A4�

hus
b0,b1,b2, . . . ,bK�

= �a0,a1,a2, . . . ,aK�CK �diag�1,�,�2, . . . ,�K��−1CK
−1

= �a0,a1,a2, . . . ,aK�CK diag�1,�−1,�−2, . . . ,�−K�DK.

�A5�

quation (18) can be easily obtained by expanding Eq.
A5).

Proof of Proposition 1. To prove the proposition, we
eed to demonstrate the following relation:

�
s=l

k

ck,s
m ds,l

m = �k,l, 0 � l � k � K. �A6�

or k= l, by using Eqs. (5) and (22), we have

ck,k
m dk,k

m =
�m + 2k�!

k ! �m + k�!
	

�m + 2k + 1�k ! �m + k�!

�m + 2k + 1�!
= 1.

�A7�

or l�k, we have

�
s=l

k

ck,s
m ds,l

m = �
s=l

k �− 1�k−s�m + 2l + 1��m + k + s�!

�s − l� ! �k − s� ! �m + s + l + 1�!

= �− 1�k�m + 2l + 1��
s=l

k

F�m,k,l,s�, �A8�

here

F�m,k,l,s� =
�− 1�s�m + k + s�!

�s − l� ! �k − s� ! �m + s + l + 1�!
. �A9�

et

�m,k,l,s�

=
�− 1�s+1�m + k + s�!

�s − l� ! �k + 1 − s� ! �m + l + s�!

�k + 1 − s��s − l�

�k − l��m + k + l + 1�
.

�A10�

t can then be easily verified that

F�m,k,l,s� = G�m,k,l,s + 1� − G�m,k,l,s�. �A11�

hus

�
s=l

k

F�m,k,l,s� = �
s=l

k

�G�m,k,l,s + 1� − G�m,k,l,s��

= G�m,k,l,k + 1� − G�m,k,l,l� = 0.

�A12�

e deduce from Eq. (A8) that

�
s=l

k

ck,s
m ds,l

m = 0 for l � k. �A13�

he proof is now complete.
Note that the proof of Proposition 1 was inspired by a

echnique proposed by Petkovsek et al.16
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