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ABSTRACT. We construct two bijections of the symmetric group S,
onto itself that enable us to show that three new three-variable statistics
are equidistributed with classical statistics involving the number of fixed
points. The first one is equidistributed with the triplet (fix,des, maj),
the last two with (fix, exc, maj), where “fix,” “des,” “exc” and “maj”
denote the number of fixed points, the number of descents, the number of
excedances and the major index, respectively.

1. Introduction

In this paper Fiz-Mahonian Calculus is understood to mean the study
of multivariable statistics on the symmetric group &,,, which involve the
number of fixed points “fix” as a marginal component. As for the two
transformations mentioned in the title, they make it possible to show that
the new statistics defined below are equidistributed with the classical ones.

The descent set, DESw, and rise set, RISE w, of a word w = x12x3 - - - Xy,
whose letters are nonnegative integers, are respectively defined as being
the subsets:

DESw:={i:1<i<n—1,2; > x;11};
(12) RISEw := {Z 1 <i<n,z; < .’,EZ'_|_1}.

By convention, ¢ = zp41 = 4+00. If 0 = o(1)0(2)---0(n) is a permu-
tation of 12---n, we can then consider RISE o, but also a new statistic
RIZE o, which is simply the rise set of the word w derived from o by re-
placing each fized point o(i) =i by 0. For instance, with 0 = 32541 hav-
ing the two fixed points 2, 4, we get w = 30501, so that RISEc = {2, 5}
and RIZE o = RISEw = {2,4,5}. It is quite unexpected to notice that the
two set-theoretic statistics “RISE” and “RIZE” are equidistributed on each
symmetric group &,,. Such an equidistribution property, which is a conse-
quence of our Theorem 1.4, has become a powerful tool, as it has enabled
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Xin and the second author [HaXi07] to give an immediate proof of a con-
jecture of Stanley [St06] on alternating permutations. More importantly,
the equidistribution properties are proved by means of new transforma-
tions of the symmetric group, the bijections ® and F3 introduced in the
sequel, whose properties will be fully exploited in our next paper [FoHa07].
Those transformations will be described not directly on G,,, but on classes
of shuffles, as now introduced.

Let 0 < m < n and let v be a nonempty word of length m, whose letters
are positive integers (with possible repetitions). Designate by Sh(0™~™v)
the set of all shuffles of the words 0™~ and v, that is, the set of
all rearrangements of the juxtaposition product 0"~ ™wv, whose longest

subword of positive letters is v. Let w = z129---z, be a word from
Sh(0™™v). It is convenient to write: Posw := v, Zerow = {i : 1 <
i <mn,z; =0}, zerow := #Zerow (= n —m), so that w is completely

characterized by the pair (Zerow, Posw).
The major index of w is defined by

(1.3) majw := Zz (i € DESw),
i>1
and a new integral-valued statistic “mafz” by

zerow

(1.4) mafz w := Z P — Z ¢t + majPosw.

i€Zerow i=1

Note that the first three definitions are also valid for each arbitrary
word with nonnegative letters. The link of “mafz” with the statistic “maf”
introduced in [CHZ97] for permutations will be further mentioned.

We shall also be interested in shuffle classes Sh(0"~™v) when the word v
is a derangement of the set [m] := {1,2,...,m}, that is, when the word
v = y1Y2 - Ym is a permutation of 12---m and y; # ¢ for all ¢. For
short, v is a derangement of order m. Let w = x129 - - - x, a be word from
the shuffle class Sh(0"~™v). Then v = yiy2 - - Ym = x5, - - x;,, for a
certain sequence 1 < j; < ja < -+ < J; < n. Let “red” be the increasing
bijection of {j1, jo, ..., Jm} onto [m]. Say that each positive letter z; of w
is excedent (resp. subexcedent) if and only if z > red k (resp. zj < red k).
Another kind of rise set, denoted by RISE® w, can then be introduced as
follows.

Say that ¢ € RISE® w if and only if 1 < ¢ < n and if one of the following
conditions holds (assuming that x,+1 = +00):

(1) 0<z <Tig1;

(2) z; = i1 = 0;

(3) z; = 0 and x4 is excedent;

(4) x; is subexcedent and x;41 = 0.
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Note that if z; = 0 and z;4; is subexcedent, then ¢ € RISEw \ RISE® w,
while if z; is subexcedent and z;4; = 0, then i € RISE® w \ RISE w.

Ezxample. Let v =512364 be a derangement of order 6. Its excedent
letters are 5, 6. Let w = 501200364 € Sh(03v). Then, RISEw =
{2,3,5,6,7,9} and RISE®*w = {3,4,5,7,9}. Also mafzw = (2+ 5+ 6) —
(14+243)+maj(512364) =7+ 6 = 13.

Theorem 1.1. For each derangement v of order m and each integer
n > m the transformation ® constructed in Section 2 is a bijection of
Sh(0™~ ") onto itself having the property that

(1.5) RISE w = RISE® ®(w)

holds for every w € Sh(0"~™wv).

Theorem 1.2. For each arbitrary word v of length m with positive letters
and each integer n > m the transformation F3 constructed in Section 4 is
a bijection of Sh(0"~™wv) onto itself having the property that

(1.6)
(1.7)

majw = mafz F3(w);
Lw= LF3(w) (“L” for “last” or rightmost letter);

hold for every w € Sh(0"~™v).

We emphasize the fact that Theorem 1.1 is restricted to the case where v
is a derangement, while Theorem 1.2 holds for an arbitrary word v with
possible repetitions. In Fig. 1 we can see that “RISE” and “RISE®” (resp.
“maj” and “mafz”) are equidistributed on the shuffle class Sh(02312) (resp.
Sh(0%121)).

RISE w w ®(w) | RISE*®(w) majw w F3(w) | mafz F3(w)

1,2,4,5/00312|00312 1,2,4,5 2 1200100121 2
1,3,4,5]03012|03120 1,3,4,5 3 0120101021 3
1,4,5 |103102]03012 1,4,5 4 00121|10021 4

1,3,5 103120(03102 1,3,5 1020101201
2,3,4,5/30012[31200| 2,3,4,5 5 |10021]|10201 5

2,4,5 [30102]30012] 2,4,5 12100]01210
31200(31020 6 0102112001 6

2,3,5 [30120(30102 2,3,5 1201010210
3,4,5 [31002[30120 3,4,5 7 01210/12010 7
3,5 31020(31002 3,5 8 1021012100 8

Sh(02312) Sh(02121)

Fig. 1

Those two transformations are fully exploited once we know how to
map those shuffle classes onto the symmetric groups. The permutations
from the symmetric group &, will be regarded as linear words o =
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o(l)o(2)---o(n). If o is such a permutation, let FIXo denote the set
of its fixed points, ie., FIXo = {i : 1 < i < n,0(i) = i} and let
fixo := #FiXo. Let (j1,J2,--.,Jm) be the increasing sequence of the
integers k such that 1 < k <n and o(k) # k and “red” be the increasing
bijection of {j1,j2,...,Jm} onto [m]. The word w = z1x9-- -z, derived
from 0 = o(1)0(2)---0(n) by replacing each fixed point by 0 and each
other letter o(jx) by red o(ji) will be denoted by ZDer(o). Also let

(1.8) Dero :=redo(j1) redo(ja) - - red o(jm),

so that Der o is the word derived from ZDer(o) by deleting all the zeros.
Accordingly, Der o = Pos ZDer(o).

It is important to notice that Der o is a derangement of order m. Also
o(ji) is excedent in o (i.e. o(ji) > ji) if and only red o(j) is excedent in
Dero (i.e. red o(j) > red ji)

Recall that the statistics “DES,” “RISE” and “maj” are also valid for
permutations ¢ = o(1)o(2) - --o(n) and that the statistics “des” (number
of descents) and “exc” (number of excedances) are defined by

(1.9) des o := # DES 7;
(1.10) exco:=#{i:1<i<n-—1,0(i) >}
We further define:

1.11) DEZ o := DES ZDer(0);
) RIZE 0 := RISE ZDer(0);
) dez o := # DEZ o = des ZDer(0);
1.14) maz o := maj ZDer(o);
)

maf o := mafz ZDer (o).

As the zeros of ZDer(o) correspond to the fixed points of o, we also have

fixo
(1.16) maf o 1= Z i — Zi—l—maj Dero.
i€FIXo  i=1

Ezample. Let 0 = 821356497; then DESo = {1,2,6,8}, deso = 4,
majo = 17, exco = 2. Furthermore, ZDer(c) = w = 501200364 and
Posw = Deroc = 512364 is a derangement of order 6. We have FIX 0 =
{2,5,6}, fixoc = 3, DEZo = {1,4,8}, RIZEw = {2,3,5,6,7,9}, dez = 3,
mazo = 13 and maf o = (24+5+6) —(14+2+3)+maj(512364) = 746 = 13.

For each n > 0 let D,, be the set of all derangements of order n and 6,5) e
be the union: &P := |J Sh(0"™v) (0 <m <n,v € D,,).

m,v
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Proposition 1.3. The map ZDer is a bijection of &,, onto GEer having
the following properties:

(1.17) RIZE o = RISE ZDer(0) and RISEo = RISE® ZDer(o).

Proof. 1t is evident to verify that ZDer is bijective and to define
its inverse ZDer . On the other hand, we have RIZE = RISE ZDer by
definition. Finally, let w = x1x2 - - -x,, = ZDer(o) and o(i) < (i + 1) for
1 <4 <n-—1. Four cases are to be considered:

(1) both ¢ and i + 1 are not fixed by ¢ and 0 < z; < T;41;

(2) both ¢ and ¢ + 1 are fixed points and x; = ;41 = 0;

(3) o(i) = i and o(i + 1) is excedent; then z; = 0 and x;4 is also
excedent;

(4) o(i) <i<i+1=o0(i+1); then x; is subexcedent and z;;1 = 0.
We recover the four cases considered in the definition of RISE®. The case
i = n is banal to study. []

We next form the two chains:

1

(1.18) 0B wBw S o,
—1

(1.19) Fy:o B wisw BS o

The next theorem is then a consequence of Theorems 1.1 and 1.2 and
Propositions 1.3.

Theorem 1.4. The mappings ®, F3 defined by (1.18) and (1.19) are
bijections of &,, onto itself and have the following properties

(1.20) (fix, RIZE, Der) o = (fix, RISE, Der) ®(0);
(1.21) (fix, maz, Der) o = (fix, maf, Der) F3(o);
(1.22) (fix, maj, Der) o = (fix, maf, Der) F5 0 &1 (0);

for every o from G,,.

It is evident that if Dero = Der 7 holds for a pair of permutations
o, 7 of order n, then exco = exct. Since DESc = [n] \ RISEc and
DEZo = [n] \ RIZE o it follows from (1.20) that

(1.23) (fix, DEZ, exc) o = (fix, DES, exc) ®(0);
(1.24) (fix, dez, maz, exc) o = (fix, des, maj, exc) ®(o).

On the other hand, (1.21) implies that
(1.25) (fix, maz, exc) o = (fix, maf, exc) F3(o).

As a consequence we obtain the following Corollary.

5
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Corollary 1.5. The two triplets (fix,dez, maz) and (fix,des, maj) are
equidistributed over &,,. Moreover, the three triplets (fix,exc, maz),
(fix, exc, maj) and (fix, exc, maf) are also equidistributed over &,,.

The distributions of (fix, des, maj) and (fix, exc, maj) have been calcu-
lated by Gessel-Reutenauer ([GeRe93], Theorem 8.4) and by Shareshian
and Wachs [ShWa06], respectively, using the algebra of the g-series (see,
e.g., Gasper and Rahman ([GaRa90], chap. 1). Let

An(S, t,q, Y) — Z g%¢ Utdes quaj O’YﬁXO’ (n > 0)
GGGn
Then, they respectively derived the identities:

r - UQT—l—l_
Zt( Z > UYQT+1

(1.26) Y An(1,t,q,Y)

7>0 t q n+1
un 1— Y
(1.27) > Au(s, 1,4, - (1= sq)ey ”) .
= (q; Dn  eqlsqu) — sqeq(u)

In our third paper [FoHa07al] we have shown that the factorial generating
function for the four-variable polynomials A,,(s,t, q,Y") could be evaluated
under the form

(1.28) Y Au(st.q, Y 7_Ztr 1 - 861) (43 @)r (usg; @)r
n—|—1

>0 — sq(usq; q)r) (WY ;) pi1’

the two identities (1.26) and (1.27) becoming simple specializations.
We then know the distributions over &,, of the triplets (fix, dez, maz),
(fix, exc, maz) and (fix, exc, maf) and also the distribution of the quadru-
plet (fix, dez, maz, exc). Note that the statistic “maf” was introduced by
Clarke et al. [CHZ97]. Although it was not explicitly stated, their bijection
“CHZ” of G, onto itself satisfies identity (1.22) when F3 o0 ®~! is replaced
by “CHZ.”

As is shown in Section 2, the transformation ® is described as a
composition product of bijections ¢;. The image ¢;(w) of each word w
from a shuffle class Sh(0™~ ") is obtained by moving its I-th zero, to the
right or to the left, depending on its preceding and following letters. The
description of the inverse bijection ¥ of ® follows an analogous pattern.
The verification of identity (1.5) requires some attention and is made in
Section 3. The construction of the transformation Fg3 is given in Section 4.
Recall that F3 maps each shuffle class Sh(0™"~ ™) onto itself, the word v
being an arbitrary word with nonnegative letters. Very much like the
second fundamental transformation (see, e.g., [Lo83], p. 201, Algorithm
10.6.1) the construction of F3 is defined by induction on the length of the
words and preserves the rightmost letter.

6
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2. The bijection ®

Let v be a derangement of order m and w = x1x5 - - - x,, be a word from
the shuffle class Sh(0"~™v) (0 < n < m), so that v = xj, 2, - - xj,,
for 1 < j; < jo < «++ < jm < n. Let “red” (“reduction”) be the
increasing bijection of {ji,j2,...,jm} onto the interval [m]. Remember
that a positive letter xj of w is said to be excedent (resp. subexcedent)
if and only if zx > red k (resp. zr < red k). Accordingly, a letter is non-
subexcedent if it is either equal to 0 or excedent.

We define n bijections ¢; (1 < 1 < n) of Sh(0" ™wv) onto itself in the
following manner: for each [ such that n —m +1 <1 < n let ¢;(w) := w.
When 1 <1 <n—m, let z; denote the [-th letter of w, equal to 0, when w
is read from left to right. Three cases are next considered (by convention,
Ty = Tpi1 = +00):

(1) xj—1, ;41 both non-subexcedent;

(2) x;-1 non-subexcedent, z,i; subexcedent; or x;_i, z;11 both
subexcedent with z;_1 > x,41;

(3) x;—1 subexcedent, x;y; non-subexcedent; or x;_i, ;11 both
subexcedent with x;_1 < x;41.

When case (1) holds, let ¢;(w) := w.
When case (2) holds, determine the greatest integer k > j+ 1 such that

Tijp1 < Tjq2 << T < red(k),

so that
w:x.l”'xj—lOxj+1"'$k$k+1"'$n

and define:

¢l(w) = xl"'xj—l m]+1.xk 0mk+1.xn
When case (3) holds, determine the smallest integer i < j — 1 such that

red(i) > Ty > Tiyp1 > -0 > Tj—1,

so that
W =21 " "Tij_1 x’i"'xj—loxj—i—l"'xn

and define:

It is important to note that ¢; has no action on the 0’s other than
the [-th one. Then the mapping ® in Theorem 1.1 is defined to be the
composition product

D =102 On_1Pn.

7
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Ezample. The following word w has four zeros, so that ®(w) can be
reached in four steps:

Id =123456789 1011

w =5012003607 4 j=09,apply ¢q4,case (1);
501200360 7 4 j=6,apply ¢3,case (2), k=T;
5012030607 4 j=D5,apply ¢o,case (3), i =4,
5010230607 4 j=2apply ¢1,case (2), k =3;

S(w)=510023060 7 4.

We have: RISEw = RISE® ®(w) = {2,3,5,6,7,9,11}, as desired.

To verify that ® is bijective, we introduce a class of bijections v;, whose
definitions are parallel to the definitions of the ¢;’s. Let w = z125---x,, €
Sh(0"~™v) (0 < m < n). For each [ such that n — m +1 <1 < n let
Yi(w) := w. When 1 <1 <n—m,let z; denote the [-th letter of w, equal
to 0, when w is read from left to right. Consider the following three cases
(remember that zg = 2,41 = +00 by convention):

(1) = (1) zj—1, xj+1 both non-subexcedent;

(2)) x;_1 subexcedent, x;y; non-subexcedent; or z;_1, ;41 both
subexcedent with z;_1 > x,41;

(3') x;—1 non-subexcedent, x;4q1 subexcedent; or x;_1, ;11 both
subexcedent with x;_1 < x;41.

When case (1) holds, let ¢;(w) := w.
When case (2') holds, determine the smallest integer ¢ < j—1 such that

Ty <Tigp1 << xj—1 < red(j - 1)7
so that

w:xl-.-xi_l xi.-.xj_loxj+1-.-xn
and define:

¢l<w) =1 Ti—1 0 X ',ij_l x]+1 R T
When case (3') holds, determine the greatest integer k > j+1 such that

red(j +1) > zj41 > xjp0 > -0 > ay,
so that

w:xl...xj—lOxj—’—l...xkxk—’—l...xn
and define:

wl(w) ::xl...x]—l x]"l_l...xkoxkﬂ—l."wn-
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We now observe that when case (2) (resp. (3)) holds for w, then case (2)
(resp. (3')) holds for ¢;(w). Also, when case (2") (resp. (3')) holds for w,
then case (2) (resp. (3)) holds for ¢;(w). Therefore

O = Y19 = Identity map
and the product W := 9,1, _1 - - - 121 is the inverse bijection of .

3. Verification of RISEw = RISE® ®(w)

Let us introduce an alternate definition for ®. Let w belong to
Sh(0™~"™v) and w’ be a nonempty left factor of w, of length n’. Let w’
have p’ letters equal to 0. If p’ > 1, write

I h
w =Ty "Tj-1 0 LTj+hLj+h+1 " Tnl,

where 1 < h <p', z;_1 # 0 and where the right factor =, nt1 - Tn
contains no 0. By convention x4, = 4oo if j+h = n' + 1. If
Zj4+n is subexcedent let k& be the greatest integer k > j + h such that
Tjrn < Tjpne1 < -+ < xp < red(k). If ;1 is subexcedent let i be the
smallest integer i < j — 1 such that red(i) > z; > 241 > -+ > 1.
Examine four cases:

(1) if ;1 and x ;45 are both excedent, let

— r._ oh
U=+ Tj—-1, u =0 LTj+hLj+h+1 """ Tn!
and define
O(u') :=u'.
(2) if x;_; is excedent and x4 subexcedent, or if z;_1, ;45 are both

subexcedent with x;_1 > x4, let

- r._ nh
ui=x1-Tj—1, W :=0"Tjpp TR Tpy1 Ty

and define
/ h
9(“)::$j+h"'$k:0 xk+1...xn,_

(3) if 1, x4, are both subexcedent with z;_1 < x4, let
— r.o_ h
U:=T1 " Tj—-1, u = xi~-~xj_10 Tjth Tk Tk+1 " Tn!
and define
N . h—1
O(u') =0z zj1Tjpn - T 0" Tppr - Ty
(4) if z;_4 is subexcedent and z ;. excedent, let
._ . h
U =T " Tj—1, u .—.’132'"'.’13]'_10 Lj4+h " Tn!
and define

0(u’) = OCL’i L1 Oh_l Tjt+h " Tn'-
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By construction w’ = uu’. Call it the canonical factorization of w’. In the
four cases we evidently have:

(3.1) RISE ' = RISE® §(u').
Define O(w’) to be the three-term sequence:

(3.2) Ow') = (u,u,0(u")).

Let g be the length of u. Then ¢ = j —1 in cases (1) and (2) and ¢ =i —1
in cases (3) and (4).

Lemma 3.1. We have

(3.3) RISE z,u’ = RISE® z,6(u'),
(3.4) RISE z,u’ = RISE® 00(u'), if x, is subexcedent.

Proof. Let « (resp. B) be the leftmost letter of u’ (resp. of O(u')).
Because of (3.1) we only have to prove that RISEx,o = RISE® z,0 for
(3.3) and RISEz,a = RISE® 05 when z, is subexcedent for (3.4). Let us
prove identity (3.3). There is nothing to do in case (1). In case (2) we have
to verify RISEx;_10 = RISE® xj_12;45,. When z;_; is excedent and x4
subexcedent, then 1 € RISEx;_10 and 1 ¢ RISE®* 2;_12;1,. When z;_1,
Zj4n are both subexcedent with z;_; > x4, then 1 € RISEx;_10 and
1 € RISE® Tj—1Tj+h-

In cases (3) and (4) we have to verify RISEz;_12; = RISE® x;,_10. If
x;—1 = 0 (resp. excedent), then 1 € RISEz;_1z; (resp. 1 € RISEx;_1x;)
and 1 € RISE® z;_10 (resp. 1 ¢ RISE® x;_10). When z;_; is subexcedent,
then z;_ 1 < x; by definition of i. Hence 1 € RISEx; 1x; and 1 €
RISE® x;_10.

We next prove identity (3.4). In case (1) z, is always excedent, so
that identity (3.4) need not be considered. In case (2) we have to verify
RISEx;_10 = RISE® Oz ;. But if x;_; is subexcedent, then z;4, is also
subexcedent, so that the above two sets are empty. In cases (3) and (4) we
have to verify RISE x;_1x; = RISE® 00 = {1}. But if x;_; is subexcedent,
then x;_1 < x; by definition of i, so that 1 € RISEz;_1x;. []

Now, if w has p letters equal to 0 with p > 1, it may be expressed as
the juxtaposition product

w = w; 0" wy 0" -+ - w, 0w,y
where hy > 1, ho > 1, ... , h, > 1 and where the factors wy, wo, ... , w,,
wy41 contain no 0 and wa, ... , w, are nonempty. We may define: ©(w) :=

/

.. is the canonical factorization of w. As wu,

(ur,u..,0(ul)), where w = u,u

10
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is a left factor of w, we next define O(u,) := (uy—1,u._q,0(ul._;)), where
Ur = Up_qu,_; is the canonical factorization of w,, and successively
O(ur—1) = (Up—2,ul_o,0(ul._5)) with u,_1 = up_oul._o, ... , Oug) :=
(uy,uy, 0(u))) with ug = wqu}, so that w = wyujul---u. and ®(w) =
ur 0 )0(u) - O(u).

It can be verified that u, 6(u.) = ¢p_pn, 41 Pp—1Pp(W),
ur—10(u,_1)0(uy) = Gp—h,—n, 141 Pp_1¢p(w), ete.

With identities (3.1), (3.3) and (3.4) the proof of (1.5) is now completed.

Again, consider the word w of the preceding example
w=50120036074,

sothat r =3, hy =1, ho =2, hg =1, w;y =5, wy = 12 and w3z = 36,
wy = 74. We have

O(w) = (us,us,0(uy)) = (50120036; 074; 074); case (1)

O(uz) = (ug,ub, O(uy)) = (501; 20036; 02306);  case (3)

O(ugz) = ul,ull,ﬁ(ull)) (5 01; 10); case (2)
)

4. The transformation F3

The bijection F3 we are now defining maps each shuffle class Sh(0"~"v)
with v an arbitrary word of length m (0 < m < n) onto itself. When
n = 1 the unique element of the shuffle class is sent onto itself. Also let
F3(w) = w when des(w) = 0. Let n > 2 and assume that F3(w’) has been
defined for all words w’ with nonnegative letters, of length n’ < n — 1.
Further assume that (1.6) and (1.7) hold for all those words. Let w be a
word of length n such that des(w) > 1. We may write

w = w'a0"b,
where a > 1, b > 0 and r > 0. Three cases are considered:
(a<b; (2)a>br>1; (3)a>b,r=0.

In case (1) define: F3(w) = F3(w'a0"b) := (F3(w’'a0"))bd.
In case (2) we may write Fg(w’a0") = w”0 by Property (1.7). We then
define

v F3(w'ad”) := Ow
F3(w) = F3(w'a0™d) := (yF (w’aOr))b = 0w"d.
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In short, add one letter “0” to the left of F3(w’a0"), then delete the

rightmost letter “0” and add b to the right.
In case (3) remember that r = 0. Write

Fs(w'a) = 0™ 21v10™ 2005 - - - 0% 20,

where m; > 0, mao, ..., my are all positive, then x1, xo, ... , T} are positive
letters and vy, vs, ... , v are words with positive letters, possibly empty.
Then define:

dF3(w'a) := 210™ v1220™2 0013 - - - 20" vy
F3(w) = F3(w'ab) := (§ F3(w'a))b.

In short, move each positive letter occurring just after a 0-factor of Fs(w’a)
to the beginning of that 0-factor and add b to the right.

Example. w=00031220013
F3(0003)=0003 no descent
F5(00031)=6(0003)1=30001 case (3)
F5(0003122)=3000122 case (1)
F3(00031220)=5(3000122)0=31000220 case (3)
F3(000312200)=~(31000220)0=031000220  case (2)
F3(0003122001) = ~(031000220)1 =0031000221 case (2)

F3(00031220013)=00310002213.

We have: majw = maj(00031220013) =447 = 11 and mafzF3(w) =
mafz(00310002213) = (14+245+6+7) — (14+2+3+4+5)+(1+4) = 11.

By construction the rightmost letter is preserved by Fj3. To prove
(1.6) proceed by induction. Assume that mafzw’a0” = mafz F3(w’'a0")
holds. In case (1) “maj” and “mafz” remain invariant when b is jux-
taposed at the end. In case (2) we have majw = maj(w'a0"d) =
maj(w'a0”), but mafzyFs(w'a0") = mafzFs(w'a0”) — |w'a0"|>1 and
mafz (7 Fs(w'a0"))b = mafzy Fs(w'a0") + |w'a0"|>1, where |w'a0"|>; de-
notes the number of positive letters in w’a0". Hence (1.6) holds. In case (3)
remember r = 0. We have maj(w’ab) = maj(w’a) + |w’a|, where |w'a| de-
notes the length of the word w’a. But mafz 0F3(w'a) = mafz F3(w'a) +
zero(w’a) and mafz(dF3(w'a))b = mafz 0F3(w’'a) 4+ |w'al>1. The equality
holds for b = 0 and b > 1, as easily verified. As zero(w'a)+|w'a|>1 = |w'al,
we have mafzF3(w) = mafz (6F3(w'a))b = mafzF3(w'a) + |w'a|] =
majw’ab = majw. Thus (1.6) holds in the three cases.
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To define the inverse bijection Fg U of F3 we first need the in-
verses 7~ 1(w) and 6 1(w) for each word w. Let w = Ow’ be a word,
whose first letter is 0. Define v~!(w) to be the word derived from w by
deleting the first letter 0 and adding one letter “0” to the right of w.
Clearly, v~ 1y = 4y~ ! is the identity map.

Next, let w be a word, whose first letter is positive. Define §—!(w) to
be the word derived from w by moving each positive letter occurring just
before a 0-factor of w to the end of that O-factor. Again §=1§ = 651 is
the identity map.

We may write

w = cw’'a0"b,

where a > 1, b >0, ¢ > 0 and r» > 0. Three cases are considered:
(I)a<b; (2)a>b,c=0; (3)a>b,c>1.
In case (1) define: Fz'(w):= (F5'(cw'ad"))b.
In case (2) define: Fy'(w):= (y"1(F5*(cw'ald")))b.
In case (3) define: F3'(w):= (6~ 1(F5 ' (cw'al")))b.

We end this section by proving a property of the transformation Fs,
which will be used in our next paper [FoHa07].

Proposition 4.1. Let w, w” be two words with nonnegative letters, of
the same length. If Zerow = Zerow” and DESPosw = DESPosw”, then
Zero F3(w) = ZeroF3(w").

Proof. To derive Fs(w) (resp. F3(w”)) from w (resp. w”) we have to
consider one of the three cases (1), (2) or (3), described above, at each
step. Because of the two conditions Zerow = Zerow” and DESPosw =
DES Posw”, case (i) (i = 1,2,3) is used at the j-th step in the calculation
of F3(w), if and only if the same case is used at that j-th step for the
calculation of F3(w"). Consequently the letters equal to 0 are in the same
places in both words F3(w) and F3(w”). []

-1
By the very definition of @ : o e w B w RS o', given in (1.18)

-1
and of F5 : 0 25" w i3 w” RS o7, given in (1.19) we have ®(0) = o

and F3(0) = o if o is a derangement. In the next two tables we have
calculated ®(0) = o’ and F3(0) = o¢” for the fifteen non-derangement
permutations o of order 4.
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fixo

Der o

g

w

w/

o_l

Der o’

fix o’

1234

0000

0000

1234

21

1243
1324
1432
2134
3214
4231

0021
0210
0201
2100
2010
2001

0021
0201
0210
2010
2001
2100

1243
1432
1324
3214
4231
2134

21

231

1342
2314
2431
3241

0231
2310
2301
2031

0231
2301
2310
2031

1342
2431
2314
3241

231

312

1423
3124
4132
4213

0312
3120
3102
3012

0312
3102
3012
3120

1423
4132
4213
3124

312

Calculation of ¢’ = ®(0)

fixo

Dero

8
o
N
q

g

w

w//

o_//

maf o’/

Der o’

1234

0000

0000

1234

21

1243
1324
1432
2134
3214
4231

0021
0210
0201
2100
2010
2001

2001
2100
0201
0210
2010
0021

4231
2134
1432
1324
3214
1243

21

231

1342
2314
2431
3241

0231
2310
2301
2031

2031
2310
0231
2301

3241
2314
1342
2431

231

312

=W R NER DN UTWR R WN Otwo

1423
3124
4132
4213

0312
3120
3102
3012

3012
3120
3102
0312

4213
3124
4213
3124

=W R N DN UTWF W N Ot

312

Calculation of ¢’ = F3(0)
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