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ABSTRACT. The inversion number and the major index are equidis-
tributed on the symmetric group. This is a classical result, first proved by
MacMahon [Mac15], then by Foata by means of a combinatorial bijection
[Fo68]. Ever since many refinements have been derived, which consist of
adding new statistics, or replacing integral-valued statistics by set-valued
ones. See the works by Foata-Schützenberger [FS78], Skandera [Sk01],
Foata-Han [FH04] and more recently by Hivert-Novelli-Thibon [HNT06].
In the present paper we derive a general equidistribution property on
Euler-Mahonian set-valued statistics on permutations, which unifies the
above four refinements. We also state and prove the so-called “complement
property” of the Majcode.

1. Introduction

Let w = y1y2 · · · yn be a word whose letters y1, y2, . . . , yn are integers.
The descent number “des”, major index “maj” and inversion number “inv”
are defined by (see, for example, [Lo83, §10.6]):

desw = #{i | 1 ≤ i ≤ n− 1, yi > yi+1},

majw =
∑

{i | 1 ≤ i ≤ n− 1, yi > yi+1},

invw = #{(i, j) | 1 ≤ i < j ≤ n, yi > yj}.

In this paper we only deal with permutations σ = x1x2 · · ·xn of 12 · · ·n
(n ≥ 1). A statistic is said to be Mahonian, if it has the same distribution
as “maj” on the symmetric group Sn, and a bi-statistic is said to be
Euler-Mahonian if it has the same distribution as (des, maj). MacMahon’s
fundamental result says that “inv” is Mahonian [Mac15], i.e., “maj” and
“inv” have the same distribution on Sn. This equidistribution property
will be written

(M1) maj ≃ inv,
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which also means that we have:
∑

σ∈Sn

qmajσ =
∑

σ∈Sn

qinv σ.

Foata [Fo68] obtained a combinatorial proof of MacMahon’s result by con-
structing an explicit transformation Φ such that majσ = invΦ(σ). Let
the ligne of route of a permutation σ = x1x2 · · ·xn be the set of all descent
places:

Ligneσ = {i | 1 ≤ i ≤ n− 1, xi > xi+1}.

The inverse ligne of route of σ is defined by Iligneσ = Ligneσ−1. Foata
and Schützenberger [FS78] showed that the transformation Φ preserved
the inverse ligne of route and then derived the first refinement of MacMa-
hon’s result:

(M2) (Iligne,maj) ≃ (Iligne, inv).

A word w = d1d2 · · ·dn is said to be subexcedent if 0 ≤ di ≤ i − 1 for all
i = 1, 2, . . . , n. The set of all subexcedent words of length n is denoted
by SEn. The Lehmer code [Le60] is a bijection Invcode : Sn → SEn

which maps each permutation σ = x1x2 · · ·xn onto a subexcedent word
Invcode σ = d1d2 · · ·dn, where di is given by

di = #{j | 1 ≤ j ≤ i− 1, xj > xi}.

The major index code, denoted by Majcode, is a bijection of Sn onto SEn,
which maps each permutation σ = x1x2 · · ·xn onto a subexcedent word
Majcode σ = d1d2 · · ·dn, where di is given by

di = maj(σ|i)−maj(σ|i−1).

In the above expression σ|i ∈ Si is the permutation derived from σ by
erasing the letters i+1, i+2, . . . , n. For example, Majcode(175389642) =
002135573 and Invcode(784269135) = 002320654.

Furthermore, “eul” is an integral-valued statistic (see [Ha90, FH04])
defined on SEn as follows. Let w = d1d2 · · ·dn be a subexcedent word. If
n = 1, then eulw = 0; if n ≥ 2 let w′ = d1d2 · · ·dn−1 so that w = w′dn,
then define

eul(w) =

{

eulw′, if dn ≤ eulw′,
1 + eulw′, if dn ≥ 1 + eulw′.

Skandera [Sk01] proved the following refinement

(M3) (des,maj) ≃ (eul ◦ Invcode, inv).
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He also conjectured the following multi-variable equidistribution:

(M4) (des,maj, ides, imaj) ≃ (des,maj, eul ◦ Invcode, inv),

where idesσ = des σ−1 = #Iligneσ and imajσ = majσ−1 =
∑

Iligneσ.
This conjecture was proved by Foata and Han [FH04]. In fact, we have
obtained the following stronger refinement

(M5) (Iligne,Eul ◦Majcode) ≃ (Ligne,Eul ◦ Invcode),

where “Eul” is a set-valued statistic defined for each subexcedent word,
having the property: #Eul = eul. The explicit definition of “Eul” can be
found in [FH04]. We also have the alternate definition:

Ligneσ = Eul ◦Majcodeσ.

Note that there is no “perfect” vector-based refinement of MacMahon’s
result because

(Iligne,Majcode) 6≃ (Ligne, Invcode).

We only have the set-based equidistribution displayed in (M5).

Recently, another set-based refinement of MacMahon’s result was dis-
covered by Hivert, Novelli and Thibon [HNT06]. Their notations are
slightly different: they use subdiagonal instead of subexcedent words. A
word w = d1d2 · · ·dn is said to be subdiagonal, if 0 ≤ di ≤ n− i for all i =
1, 2, . . . , n. Instead of “Invcode” they introduce the “Lc-code”, denoted
by “Lc”, which is a bijection that maps each permutation σ = x1x2 · · ·xn

onto a subdiagonal word Lc σ = d1d2 · · ·dn, where di is given by

di = #{j | i+ 1 ≤ j ≤ n, xi > xj}.

Let Icσ = Lc(σ−1). Their variation of “Majcode”, called “Mc-code”, de-
noted by “Mc”, is a bijection that maps each permutation σ = x1x2 · · ·xn

onto a subdiagonal word Mc σ = d1d2 · · ·dn, where di is given by

di = maj(σ|i)−maj(σ|i+1).

In the above expression σ|i is the subword of σ obtained by erasing the
letters smaller than i. The relations between “Invcode” and “Ic” (resp.
between “Majcode” and “Mc”) are given in Section 3.

For each word w let “sortw” be the nondecreasing rearrangement of w.
Then the result obtained by Hivert et al. [HNT06] is a set-based equidis-
tribution property, which can be rephrased as

(M6) (Iligne, sort ◦Mc) ≃ (Iligne, sort ◦ Ic).
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The variation of “Eul” is denoted by “El”. In this paper we simply
define “El” by

Ligneσ = El ◦Mcσ.

Some relations between the statistics “El” and “Eul” are given in Section 3.
The main result of the present paper is the following set-based equidis-

tribution property, which includes all previous equidistribution properties
(M1)− (M6) as special cases.

Theorem 1. The following two triplets of set-valued statistics are equidis-

tributed on the symmetric group Sn:

(M7) (Iligne, sort ◦Mc,El ◦Mc) ≃ (Iligne, sort ◦ Ic,El ◦ Ic).

Remark. Theorem 1 is not an automatic consequence of (M6). For
example, as shown in [HNT06], there is another statistic called “Sc”, which
also satisfies

(Iligne, sort ◦Mc) ≃ (Iligne, sort ◦ Sc),

but

(Iligne, sort ◦Mc,El ◦Mc) 6≃ (Iligne, sort ◦ Sc,El ◦ Sc).

Theorem 1 is proved in Section 2. To illustrate the above equidistri-
butions we have listed the twenty-four permutations of order 4 and their
corresponding statistics in Section 4.

We also use the transformations i , c and r of the dihedral group. Recall
that iσ = σ−1 is the inverse of the permutation σ; then, c is the comple-

ment to (n + 1) and r the reverse image which map each permutation σ,
written as a linear word σ = x1 . . . xn, onto

c σ := (n+ 1− x1)(n+ 1− x2) . . . (n+ 1− xn),

r σ := xn . . . x2x1,

respectively. For each subexcedent word w = d1d2 · · ·dn ∈ SEn let

δw = (0− d1)(1− d2)(2− d3) · · · (n− 1− dn).

Clearly δw also belongs to SEn. The map δ is called the complement map.
The second result of this paper is the “complement” property of the

Majcode. As well-known, the generating polynomial for the major index
over the symmetric group Sn is equal to

F (q) = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1),
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a polynomial having symmetric coefficients: F (q) = qn(n−1)/2F (1/q).
This fact can be checked by constructing a bijection σ 7→ τ satisfying
the relation

(R1) majσ =
n(n− 1)

2
−maj τ.

This value-based relation has two array-based refinements. As the major
index is equal to the sum of all descent positions, the following relation
implies (R1) :

(R2) Ligneσ = {1, 2, . . . , n− 1} \ Ligne τ.

The major index is also the sum of all elements in the Majcode. Therefore
the following relation also implies (R1) :

(R3) Majcodeσ = δ ◦Majcode τ.

Classically, there is a trivial way of defining a bijection satisfying (R2):
just take τ = cσ. But this way provides no simple relation between
Majcode σ and Majcode cσ. The following result shows that the comple-
ment of Majcode (R3) is stronger that the complement of Ligne (R2).

Theorem 2. Let σ and τ be two permutations satisfying relation (R3).
Then relation (R2) holds.

In Section 3 we first give an example serving to illustrate the comple-
ment property of Majcode. Then we prove Theorem 2. Finally, we show
how to derive (M5) from Theorems 1 and 2.

2. Proof of Theorem 1

The basic idea of the proof is to use the inclusion-exclusion principle,
as in [HNT06] or in [DW93]. We begin with some technical lemmas about
the Mc-code.

Lemma 3. Let σ = x1x2 · · ·xn be a permutation and let Mc(σ) =
d1d2 · · ·dn be its Mc-code. If d1d2 · · ·dk is nondecreasing for some in-

teger k such that 1 ≤ k ≤ n, then all factors of σ, whose letters are less

than or equal to k, are increasing.

Example. Take σ = 12 5 9 6 13 3 4 8 1 2 7 10 11 and k = 7, we have
Mc(σ) = 0011344020200. The word d1d2 · · ·dk = 0011344 is nondecreas-
ing. There are four maximal factors whose letters are in {1, 2, . . . , 7}: “5”,
“6”, “3 4” and “1 2 7”. They are all increasing.

Proof. Call bad pair of σ each pair (y, z) of letters such that 1 ≤ y < z ≤
k and such that zwy is a factor of σ having all its letters in {1, 2, . . . , k}.
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It suffices to prove that there is no bad pair in the permutation σ. If σ
contains some bad pairs, let (y, z) be the maximal bad pair, which means
that (y′, z′) is not a bad pair for every y′ > y or y′ = y and z′ > z. Consider
the permutation σ′ obtained from σ by deleting all letters smaller than y.
Then Mc(σ′) = dydy+1 · · ·dz · · ·dn. This means that (y, z) is also a bad
pair of σ′. In fact, all bad pairs of σ′ are of form (y, ·) because (y, z) is
the maximal bad pair of σ.

Let σ′ = azyb with a, b two factors of σ′ (we can check that z is just on
the left of y because (y, z) is the maximal bad pair of σ). When making
the computation of Mc(σ′), consider the insertion of the letter z. Let a′

(resp. b′) the subword obtained from a (resp. b) by deleting all letters
smaller than z. Then

dz = maj(a′zb′)−maj(a′b′)

=

{

des(b′) if last(a′) > first(b′) or |a′| = 0;
|a′|+ des(b′) if last(a′) < first(b′) or |b′| = 0.

In the above equation first(w) (resp. last(w)) denotes the first (or leftmost)
(resp. last (or rightmost)) letter of w. In the same manner, we have

dy = maj(azyb)−maj(azb)

=

{

des(b) if z > first(b) ;
|az|+ des(b) if z < first(b) or |b| = 0.

However z > first(b) is not possible, because (y, z) is the maximal bad pair
of σ. Hence, dy = |az|+des(b) ≥ |a′|+1+des(b′) > dz, a contradiction.

Lemma 4. Let σ be a permutation and Mc(σ) = d1d2 · · ·dn. Let k ∈
{1, 2, . . . , n} be an integer satisfying the following conditions:

(C1) d1 ≤ d2 ≤ · · · ≤ dk−1 ;

(C2) dk−1 > dk ;

(C3) dk ≤ d1 ;

(C4) k is on the right of all i < k in σ.

Then

Ligneσ = Ligne τ,

where τ = Mc−1(dkd1d2 · · ·dk−1dk+1dk+2 · · ·dn).

Proof. In fact, τ can be constructed by means of an explicit algorithm.
First, define τ ′ by the following steps:

(T1) τ ′(i) = σ(i), if σ(i) ≥ k + 1;
(T2) τ ′(i) = σ(i) + 1, if σ(i) ≤ k − 1;
(T3) τ ′(i) = 1, if σ(i) = k;

6



Then the permutation τ is obtained from τ ′ by making the following
modifications:

(T4) rearrange the maximal factor of τ ′ containing “1” and having all
its letters in {1, 2, . . . , k} in increasing order.

Example. Take σ = 5 6 12 4 10 2 3 9 11 1 7 8 and k = 7, we
have Mc(σ) = 011233042010. The following calculation shows that τ =
6 7 12 5 10 3 4 9 11 1 2 8. We have Mc(τ) = 001123342010.

σ = 5 6 12 4 10 2 3 9 11 1 7 8

(T1) 12 10 9 11 8
(T2) 6 7 12 5 10 3 4 9 11 2 8
(T3) 6 7 12 5 10 3 4 9 11 2 1 8
(T4) 6 7 12 5 10 3 4 9 11 1 2 8 = τ

All factors of σ and τ having their letters in {1, 2, . . . , k} are increasing,
thanks to Lemma 3 and condition (C4). Therefore, Ligneσ = Ligne τ
by (T1).

Let Mc(τ) = f1f2 · · · fkdk+1dk+2 · · ·dn. We need prove (N1) f1 = dk
and (N2) fi+1 = di for i = 1, 2, . . . , k − 1. We first prove the following
property related to the insertion of k in σ.

(P1). Let σ′ be the word obtained from σ by deleting all letters smaller

than k. Then σ′ = · · ·xky · · · or σ′ = ky · · · with x > y > k.

Proof of (P1). If k is not the last letter of σ′, i.e., σ′ = · · ·ky · · ·, then
y > k by (C4). We need prove that σ′ = · · ·xky · · · (with x < y) and
σ′ = · · ·xk are not possible. If those cases occur, consider the insertion
of k − 1 into σ′: (k − 1) is on the left of k by (C4), so that dk−1 ≤ dk; a
contradiction with (C2).

Proof of (N1). By Property (P1) and Lemma 3 the permutation σ must
have the form σ = azx1x2 · · ·xrkyb with z > y > k > xr > · · ·x2 > x1

(az and b being possibly empty) and the factor b has all its letters greater
than k because of condition (C4). Then τ = uz1(x1 + 1)(x2 + 1) · · · (xr +
1)yb by definition of τ . Let a′ be the word obtained from a by deleting all
letters smaller than k. Then

dk = maj(a′zkyb)−maj(a′zyb) = des(yb).

On the other hand,

f1 = maj(τ)−maj(uz(x1 + 1)(x2 + 1) · · · (xr + 1)yb)

= des((x1 + 1)(x2 + 1) · · · (xr + 1)yb)

= des(yb) = dk.
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Proof of (N2). For i = 1, 2, . . . , k − 1 let τ = a(i+ 1)b. Let a (resp. b)
be the word obtained from a (resp. b) by deleting all letters smaller than

i+1. Let â (resp. b̂) be the word obtained from a (resp. b) by replacing j

by j − 1 for j ≤ k. Note that 1 6∈ a(i+ 1)b and k 6∈ âib̂. Then

fi+1 = maj(a(i+ 1)b)−maj(ab)

= maj(âib̂)−maj(âb̂)

=

{

des(b̂) if last(â) > first(b̂) or |â| = 0;

|â|+ des(b̂) if last(â) < first(b̂) or |b̂| = 0.

Let σ = uiv. Let u′ (resp. v′) be the word obtained from u (resp. v) by
deleting all letters smaller than i. Note that k ∈ u′v′. Then

di = maj(u′iv′)−maj(u′v′)

=

{

des(v′) if last(u′) > first(v′) or |u′| = 0;
|u′|+ des(v′) if last(u′) < first(v′) or |v′| = 0.

In fact, by definition of τ , we have â = u′. We verify that b̂ is the
word obtained from v′ by removing the letter k. By Property (P1) and
condition (C4), we have only the following cases: v′ = · · ·xky · · · (with
x > y > k), v′ = · · ·xky · · · (with x < k < y), v′ = ky · · · (with k < y)
and v′ = · · ·xk (with x < k). In all those cases,

{

|â| = |u′|;

des(b̂) = des(v′).

If |â| = |u′| = 0, then fi+1 = di. If first(v′) 6= k, then first(v′) = first(b̂)
and fi+1 = di. If â = u′ = · · ·x and v′ = ky · · ·, then (x > k) ⇔ (x > y)
by Property (P1). Hence, fi+1 = di.

This ends the proof of Lemma 4.

Lemma 5. Let β be a permutation of {k + 1, k + 2, . . . , n} and let σ be

a shuffle of 12 · · ·k and β whose Mc-code reads

Mc(σ) = d1d2 · · ·dkdk+1dk+2 · · ·dn.

Then

Ligneσ = Ligne τ,

where τ = Mc−1(sort(d1d2 · · ·dk)dk+1dk+2 · · ·dn).

Proof. By induction. Define

τi = Mc−1(sort(d1d2 · · ·di)di+1 · · ·dkdk+1dk+2 · · ·dn),
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so that τ1 = σ and τk = τ . By definition of Mc, we have

di ≥ max{d1, d2, . . . , di−1} or di ≤ min{d1, d2, . . . , di−1}

for every i ≤ k, because k is on the right of all letters smaller than k
(see also the proof of Lemma 6.5 in [HNT06]). In both cases Ligne τi−1 =
Ligne τi for 2 ≤ i ≤ k by Lemma 4.

Example. Take n = 12, k = 7, β = 12 10 9 11 8. Let σ be the following
shuffle of 1234567 and β:

σ = 12 1 2 3 10 4 9 5 6 11 7 8.

Then Mc(σ) = 333214042010. The following calculation shows that τ =
τ7 = 12 4 5 6 10 3 9 2 7 11 1 8.

τ1 = τ2 = τ3 = Mc−1(333214042010) = 12 1 2 3 10 4 9 5 6 11 7 8
τ4 = Mc−1(233314042010) = 12 2 3 4 10 1 9 5 6 11 7 8

τ5 = τ6 = Mc−1(123334042010) = 12 3 4 5 10 2 9 1 6 11 7 8
τ7 = Mc−1(012333442010) = 12 4 5 6 10 3 9 2 7 11 1 8

We check that Ligne(σ) = Ligne(τ) = {1, 5, 7, 10}.

Lemma 6. Let a, b, c be words such that a, b, ca, cb are subdiagonal. If

El(a) = El(b), then

El(ca) = El(cb).

Proof. By induction we need only prove the lemma when c = x is a one-
letter word. Let σ (resp. τ) be the permutation such that Mc(σ) = xa
(resp. Mc(τ) = xb). Also let σ|2 (resp. τ |2) be the subword obtained
from σ (resp. from τ) by erasing the letter 1. Then El(a) = El(b) implies
Ligne(σ|2) = Ligne(τ |2). Now x = maj(σ)−maj(σ|2) = maj(τ)−maj(τ |2),
so that the letter 1 is inserted into σ|2 and τ |2 at the same position. Hence,
Ligneσ = Ligne τ .

Let α ∈ Sk and β = y1y2 · · · yℓ ∈ Sℓ be two permutations. A permu-
tation σ ∈ Sk+ℓ is said to be a shifted shuffle of α and β, if the subword
of σ, whose letters are 1, 2, . . . , k (resp. k+1, k+2, . . . , k+ℓ) is equal to α
(resp. to (y1 + k)(y2 + k) · · · (yℓ + k)). The set of all shifted shuffles of α
and β is denoted by α ⋒ β. The identical permutation 12 · · ·k is denoted
by idk.

Lemma 7. On the set idk1
⋒ idk2

⋒ · · · ⋒ idkr
we have

(sort ◦Mc,El ◦Mc) ≃ (sort ◦ Ic,El ◦ Ic).
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Proof. We construct a bijection φ : σ 7→ φ(σ) on idk1
⋒ idk2

⋒ · · · ⋒
idkr

satisfying sort ◦Mcσ = sort ◦ Icφ(σ) and El ◦Mcσ = El ◦ Icφ(σ).
By induction, let σ ∈ idk ⋒β and Mc(σ) = d1d2 · · ·dk Mc(β) with β ∈
idk2

⋒ · · · ⋒ idkr
and k = k1. As proved in Lemma 6.5 in [HNT06], the

mapping (d1d2 · · ·dk, β) 7→ (sort(d1d2 · · ·dk), β) is bijective. We then de-
fine φ(σ) = Ic−1

(

sort(d1d2 · · ·dk) Ic(φ(β))
)

. We have

sort ◦Mc(σ) = sort
(

d1d2 · · ·dk Mc(β)
)

= sort
(

d1d2 · · ·kk sort(Mc(β))
)

= sort
(

d1d2 · · ·kk sort(Ic(φ(β)))
)

[by induction]

= sort
(

sort(d1d2 · · ·kk) Ic(φ(β))
)

= sort ◦ Icφ(σ).

El ◦Mc(σ) = El
(

d1d2 · · ·dk Mc(β)
)

= El
(

sort(d1d2 · · ·dk)Mc(β)
)

[by Lemma 5]

= El
(

sort(d1d2 · · ·dk) Ic(φ(β))
)

[by Lemma 6]

= El ◦ Icφ(β).

Proof of Theorem 1. As used on several occasions (see, e.g., [HNT06,
Eq. (10)] or [DW93, §3]), we have

idk1
⋒ idk2

⋒ · · · ⋒ idkr

= {σ | Iligne(σ) ⊆ {k1, k1 + k2, . . . , k1 + k2 + · · ·+ kr−1}}.

By Lemma 7
(sort ◦Mc,El ◦Mc) ≃ (sort ◦ Ic,El ◦ Ic)

on the set {σ | Iligne(σ) ⊆ {k1, k1 + k2, . . . , k1 + k2 + · · ·+ kr−1}}. It is
also true on the set {σ | Iligne(σ) = {k1, k1+k2, . . . , k1+k2+ · · ·+kr−1}}
by the inclusion-exclusion principle.

3. The “Complement” property of the Majcode

We rephrase the statement of Theorem 2 as follows.

Theorem 2’. For each permutation σ of 12 · · ·n let

(R3′) τ = Majcode−1 ◦δ ◦Majcode(σ).

Then

(R2) Ligne τ = {1, 2, . . . , n− 1} \ Ligneσ.

For example, take n = 9 and σ = 935721468. Then Ligneσ = {1, 4, 5},
Majcode σ = 012020203 and δMajcodeσ = 000325475. We have τ =
Majcode−1(000325475) = 795128643. We verify that

Ligne τ = {2, 3, 6, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8} \ Ligneσ.
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Proof of Theorem 2’. Proceed by induction on the order of the permu-
tation. Let σ = x1x2 · · ·xn ∈ Sn be a permutation and σ′ ∈ Sn−1 be
the permutaion obtained from σ by erasing the letter n. Let Majcodeσ =
c1c2 . . . cn−1cn. Then Majcode σ′ = c1c2 . . . cn−1. Let τ = y1y2 · · · yn ∈
Sn be the permutation defined by relation (R3′), i.e., Majcode τ =
d1d2 . . . dn−1dn with di = i − 1− ci for 1 ≤ i ≤ n. Let τ ′ ∈ Sn−1 be the
permutation obtained from τ by erasing the letter n. Then Majcode τ ′ =
d1d2 . . . dn−1. It is easy to see the σ′ and τ ′ also satisfy relation (R3′). By
induction we have

(R2′) Ligneσ′ = {1, 2, . . . , n− 2} \ Ligne τ ′.

Recall the classical construction of the Majcode consisting of labelling
the slots (see, for example, [Ra81]). Let σ′ = x′

1x
′

2 . . . x
′

n−1. Let x′

0 =
x′

n = 0 so that the word x′

0x
′

1x
′

2 . . . x
′

n−1x
′

n has n slots (i − 1, i) with
1 ≤ i ≤ n. A slot (i − 1, i) is called a descent (resp. rise) if x′

i−1 > x′

i

(resp. x′

i−1 < x′

i). We label the k descent slots 0, 1, 2, . . . , k − 1 from
right to left and the remaining n − k rise slots k, k + 1, . . . , n − 1 from
left to right. For 1 ≤ i ≤ n let cn(i) be the label of the slot (i − 1, i)
and σ<i> ∈ Sn be the permutation obtained from σ′ by inserting n into
the slot (i − 1, i). The basic property is that cn(i) = majσ<i> −majσ′.
In the same manner, let dn(i) (for 1 ≤ i ≤ n) be the label of the slots
in τ ′. Thanks to relation (R2′) the above construction of labels implies
the following simple relation between cn(i) and dn(i) :

(R4) cn(n) = dn(n) = 0 and cn(i) + dn(i) = n (for 1 ≤ i ≤ n− 1).

For example, take σ′ = 35721468 and τ ′ = 75128643 as in the above
example, we have :

slot of σ′ : 0 ր 3 ր 5 ր 7 ց 2 ց 1 ր 4 ր 6 ր 8 ց 0

label cn(i) : 3 4 5 2 1 6 7 8 0

slot of τ ′ : 0 ր 7 ց 5 ց 1 ր 2 ր 8 ց 6 ց 4 ց 3 ց 0

label dn(i) : 6 5 4 7 8 3 2 1 0

If xs = n and yt = n, that means that the permutation σ (resp. τ)
can be constructed by inserting n into the slot (s − 1, s) in σ′ (resp. slot
(t− 1, t) in τ ′). By relation (R3′) we have

(R5) dn(t) = n− 1− cn(s).

From (R4) and (R5) we obtain a relation between cn(s) and cn(t) :

(R6) cn(s) =

{

n− 1, if cn(t) = 0;
cn(t)− 1, if cn(t) ≥ 1.

11



In fact, relation (R6) gives an algorithm for computing t from s.
(st1) if the slot s (that means the slot (s − 1, s)) is a rise, but not the

rightmost rise, then t is the next rise on the right of s.
(st2) if the slot s is the rightmost rise, then t is the rightmost slot.
(st3) if the slot s is a descent, but not the leftmost descent, then t is

first descent preceding s on the left.
(st4) if the slot s is the leftmost descent, then t is the leftmost slot.
We summarize those cases in the following tableau.

σ′ τ ′

(st1) · · · sրցցցց tր · · · · · · ցs րրրրցt · · ·

(st2) · · · sրցցցցցt · · · ցs րրրրցt

(st3) · · · ցt րրրրցs · · · · · · tրցցցց sր · · ·

(st4) tրրրրրցs · · · tրցցցց sր · · ·

In each case inserting the letter n into the slot s of σ′ and inserting the
letter n into the slot t of τ ′ produce two permutations σ and τ . From the
above tableau it easy to see that σ and τ satisfy relation (R2).

By definitions of “Invcode”, “Ic”, “Majcode” and “Mc” we obtain the
following simple relations between them.

Lemma 8.
Mc = r ◦δ ◦Majcode ◦ c,

Ic = r ◦δ ◦ Invcode ◦ r i .

For Example, we have Mc(935721468) = 501012010, Ic(362715984) =
420520010, also obtained by the following calculations.

σ = 935721468
cσ = 175389642

Majcode ◦ cσ = 002135573
δ ◦Majcode ◦ cσ = 010210105

r ◦δ ◦Majcode ◦ cσ = 501012010

σ = 362715984
i σ = 531962487
r iσ = 784269135

Invcode ◦ r iσ = 002320654
δ ◦ Invcode ◦ r iσ = 010025024

r ◦δ ◦ Invcode ◦ r iσ = 420520010
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The relation between the statistics “El” and “Eul” is given in the fol-
lowing Lemma.

Lemma 9. Let d be a subdiagonal word of length n. Then

El(d) = {1, 2, . . . , n− 1} \ Eul(δ r(d)).

Proof. We have

El(d) = Ligne ◦Mc−1(d)

= Ligne ◦(r ◦δ ◦Majcode ◦ c)−1(d)

= Ligne ◦(c ◦Majcode−1 ◦δ ◦ r)(d)

= Ligne(c ◦Majcode−1(δ ◦ r(d)))

= {1, 2, . . . , n− 1} \ Ligne(Majcode−1(δ ◦ r(d)))

= {1, 2, . . . , n− 1} \ Eul(δ ◦ r(d)).

In fact, there is another simple, but not trivial, relation between the
above two statistics.

Lemma 10. Let d be a subdiagonal word of length n, Then

El(d) = Eul(r(d)).

Proof. By Lemma 9 we need verify the following relation

Eul(r(d)) = {1, 2, . . . , n− 1} \ Eul(δ(r(d))).

This is true by Theorem 2.

For every permutation σ it is easy to see that

(R7) Invcode rσ = δ Invcodeσ.

We end this paper by showing why the equidistribution (M5) obtained
in [FH04] is a special case of Theorem 1. We have

El ◦ Ic ◦i = Eul ◦ r ◦ Ic ◦i [by Lemma 10]

= Eul ◦ r r δ ◦ Invcode ◦ r i i [by Lemma 8]

= Eul ◦δ ◦ Invcode ◦ r

= Eul ◦δ ◦ δ ◦ Invcode [by (R7)]

= Eul ◦ Invcode,

so that

(Iligne,Eul ◦Majcode) ≃ (Iligne,Ligne)

≃ (Iligne,El ◦Mc)

≃ (Iligne,El ◦ Ic)

≃ (Ligne,El ◦ Ic ◦i )

≃ (Ligne,Eul ◦ Invcode).
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4. Table

We give the list of the twenty-four permutations of order 4 and their
corresponding statistics. The permutations are sorted according to the
statistic “Iligne”.

σ Ic El ◦ Ic Mc El ◦Mc Sc El ◦ Sc
1234 0000 ǫ 0000 ǫ 0000 ǫ
2134 1000 1 1000 1 3000 3
2314 2000 2 2000 2 2000 2
2341 3000 3 3000 3 1000 1
1324 0100 1 1100 2 0200 2
1342 0200 2 1200 3 0100 1
3124 1100 2 0100 1 2200 13
3142 1200 3 2200 13 2100 12
3412 2200 13 0200 2 1100 2
1243 0010 1 1110 3 0010 1
1423 0110 2 1010 2 0110 2
4123 1110 3 0010 1 1110 3
3214 2100 12 2100 12 3200 23
3241 3100 13 3100 13 1200 3
3421 3200 23 3200 23 3100 13
2143 1010 2 2110 13 3010 13
2413 2010 12 0110 2 1010 2
2431 3010 13 3110 23 2010 12
4213 2110 13 2010 12 3110 23
4231 3110 23 3010 13 2110 13
1432 0210 12 2210 23 0210 12
4132 1210 13 1210 13 1210 13
4312 2210 23 0210 12 2210 23
4321 3210 123 3210 123 3210 123

From this table we can check the following equidistributions:

(Iligne, sort ◦Mc,El ◦Mc) ≃ (Iligne, sort ◦ Ic,El ◦ Ic),

(Iligne, sort ◦Mc) ≃ (Iligne, sort ◦ Sc).

The fifth row contains three permutations 3214, 3241, 3421. The corre-
sponding values for the statistic El ◦Mc (resp. El ◦ Sc) are 12, 13, 23 (resp.
23, 3, 13). It means that

(Iligne, sort ◦Mc,El ◦Mc) 6≃ (Iligne, sort ◦ Sc,El ◦ Sc).
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