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FIX-MAHONIAN CALCULUS III;
A QUADRUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract

A four-variable distribution on permutations is derived, with two dual combi-
natorial interpretations. The first one includes the number of fixed points “fix”,
the second the so-called “pix” statistic. This shows that the duality between de-
rangements and desarrangements can be extended to the case of multivariable
statistics. Several specializations are obtained, including the joint distribution
of (des, exc), where “des” and “exc” stand for the number of descents and ex-
cedances, respectively.

1. Introduction

Let

' (1, if n =0;
(@00 = (1 a)(1—ag)---(1—ag"), ifn>1;

(a3 9o := [ (1 = ag™),

n>0

be the traditional notation for the ¢-ascending factorial. For each r > 0
form the rational fraction

(1 —sq) (u;q)r (usq; q)r
((w; q)r — sq(usq; q)r) (WY q)ri1

(1.1) C(riu,s,q,Y) =

in four variables u, s, ¢, Y and expand it as a formal power series in wu:

(1.2) C(r;u,s,q,Y) = Zu”Cn(r;s,q,Y).

n>0

It can be verified that each coefficient C),(r;s,q,Y) is actually a polyno-
mial in three variables with nonnegative integral coefficients. For r,n > 0
consider the set W,,(r) = [0, 7]™ of all finite words of length n, whose letters
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are taken from the alphabet [0,7] = {0,1,...,7}. The first purpose of this
paper is to show that C,,(r; s, ¢q,Y) is the generating polynomial for W,, ()
by two three-variable statistics (dec, tot, single) and (wlec, tot, wpix), re-
spectively, defined by means of two classical word factorizations, the Lyn-
don factorization and the H-factorization. See Theorems 2.1 and 2.3 there-
after and their corollaries.

The second purpose of this paper is to consider the formal power series

1__ .
(1.3) Ztr sq)(u,q) (1u5q:)r Ztr (r;u,s,q,Y)

= = 5q(usg; @)r) (WY @)1 g
=D "> utCu(ris,q,Y),
r>0 n>0

expand it as a formal power series in u, but normalized by denominators
of the form (¢;¢q),41, that is,

’I’L

4 Ztr 1—sq)(U;Q) (usq; q)r ZA (s,t,q,Y

= = 5q(usg; @)r) (WY @)1 ( Dn+1’

and show that each A, (s,t,q,Y) is actually the generating polynomial for
the symmetric group &,, by two four-variable statistics (exc, des, maj, fix)
and (lec,ides, imaj, pix), respectively. The first (resp. second) statistic
involves the number of fixed points “fix” (resp. the variable “pix”) and is
referred to as the fiz-version (resp. the piz-version). Several specializations
of the polynomials A,,(s,t,q,Y) are then derived with their combinatorial
interpretations. In particular, the joint distribution of the two classical
Eulerian statistics “des” and “exc” is explicitly calculated.

The fiz-version statistic on &,,, denoted by (exc, des, maj, fix), contains
the following classical integral-valued statistics: the number of excedances
“exc,” the number of descents “des,” the major index “maj,” the number
of fized points “fix,” defined for each permutation o = o(1)o(2)---0(n)
from G,, by

exco:=#{i:1<i<n-—1,0(i)>i};
deso:=#{i:1<i<n—-1,0@)>0(i+1)}
maja::Zi (1<i<n-—-1,0()>0c(i+1));
i
fixo:=#{i:1<i<mn,o(i)=1i}.
As was introduced by Désarménien [5], a desarrangement is defined to
be a word w = x12x2---x,, whose letters are distinct positive integers

such that the inequalities x1 > x2 > --- > wg; and w2; < %941 hold
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for some j with 1 < j < n/2 (by convention: x, 11 = +00). There is no
desarrangement of length 1. Each desarrangement w = x5 - - - x,, is called
a hook, if x1 > x5 and either n =2, orn >3 and 1o < 23 < --- < T,. As
proved by Gessel [12], each permutation ¢ = o(1)o(2)---0(n) admits a
unique factorization, called its hook factorization, pry7s - - - T, where p is
an increasing word and each factor 71, 7o, ... , 7% is a hook. To derive the
hook factorization of a permutation, it suffices to start from the right and
at each step determine the right factor which is a hook, or equivalently,
the shortest right factor which is a desarrangement.

The piz-version statistic is denoted by (lec, ides, imaj, pix). The second
and third components are classical: if ¢~! denotes the inverse of the
permutation o, they are simply defined by

ideso := deso;

imaj o := mayj oL

The first and fourth components refer to the hook factorization pry7s - - - 7
of 0. For each ¢ let inv 7; denote the number of inversions of t;. Then, we

define:
leco := Z inv 7;;
1<i<k
pix o := length of the factor p.

For instance, the hook factorization of the following permutation of
order 14 is indicated by vertical bars.

c=13414]12251115[867[139 10

We have p = 1 3 4 14, so that pixoc = 4. Also inv(12 2 5 11 15) = 3,
inv(867) =2,inv(13 9 10) = 2, so that leco = 7. Our main two theorems
are the following.

Theorem 1.1 (The fix-version). Let A,(s,t,q,Y) (n > 0) be the se-
quence of polynomials in four variables, whose factorial generating func-
tion is given by (1.4). Then, the generating polynomial for &, by the
four-variable statistic (exc, des, maj, fix) is equal to A, (s,t,q,Y). In other
words,

(15) Z Sexcatdesaqmajayﬁxa _ An(s,t,q,Y).
ceG,

Theorem 1.2 (The pix-version). Let A,(s,t,q,Y) (n > 0) be the
sequence of polynomials in four variables, whose factorial generating
function is given by (1.4). Then, the generating polynomial for &,, by

3



DOMINIQUE FOATA AND GUO-NIU HAN

the four-variable statistic (lec,ides, imaj, pix) is equal to A, (s,t,q,Y). In
other words,

(16) Z Slecatidesaqimaj oypixo _ An(s,t,q,Y).
ce6G,

The ligne of route, Ligne o, of a permutation o = o(1)c(2) - --o(n) (also
called descent set) is defined to be the set of all i such that 1 <i<n—1
and o(i) > o(i + 1). In particular, deso = # Ligneo and majo is the
sum of all ¢ such that ¢ € Ligneo. Also, let the inverse ligne of route
of o be defined by Iligneo := Ligneo !, so that ideso = # Iligneo and
imajo =i (i € lligne o). Finally, let iexco :=exco ™!,

It follows from Theorem 1.1 and Theorem 1.2 that the two four-variable
statistics (iexc,ides,imaj, fix) and (lec,ides,imaj, pix) are equidistributed
on each symmetric group G,,. The third goal of this paper is to prove the
following stronger result.

Theorem 1.3. The two three-variable statistics
(iexc, fix, Iligne) and (lec, pix, Iligne)
are equidistributed on each symmetric group &,,.

Note that the third component in each of the previous triples is a set-
valued statistic. So far, it was known that the two pairs (fix, Iligne) and
(pix, Iligne) were equidistributed, a result derived by Désarménien and
Wachs [6, 7], so that Theorem 1.3 may be regarded as an extension of
their result. In the following table we reproduce the nine derangements
(resp. desarrangements) o from &4, which are such that fixoc = 0 (resp.
pixo = 0), together with the values of the pairs (iexco,Iligneo) (resp.
(lec o, Iligneo)).

lec | Iligne | Desarrangements | Derangements | Iligne | iexc

1 1 2134 2341 1 1
1,2 3241 3421 1,2
1,3 4231 2413 1,3

3124 3142

2] 2 3142 3412 2|2
1,3 2143 2143 1,3
2,3 4132 4312 2,3
1,2,3 4321 4321 |1,2,3

3 3 4123 4123 3 3

Theorem 1.3 has been recently used by Han and Xin [14] to set up a
relation between the generating polynomial for derangements by number
of excedances and the corresponding polynomial for permutations with
one fixed point.
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In our previous papers [9, 10] we have introduced three statistics
“dez,” “maz” and “maf” on &,. If o is a permutation, let i1,io,...,17p
be the increasing sequence of its fixed points. Let Do (resp. Zo) be
the word derived from o = o(1)o(2)---0(n) by deleting all the fixed
points (resp. by replacing all those fixed points by 0). Then those three
statistics are simply defined by: dezo := des Zo, mazo := maj Zo and
maf o := (i1 — 1) + (i — 2) + - -+ + (i; — h) + maj Do. For instance, with
o =821356497 we have (i1,...,i5) = (2,5,6), Zo = 801300497,
Do = 813497 and dezo = 3, mazo = 1+ 4+ 8 = 13, mafo =
2-1)+(5—-2)+(6—-3)+maj813497) = 13. Theorem 1.4 in [9]
and Theorem 1.1 above provide another combinatorial interpretation for
An(s,t,q,Y), namely

(17) Z Sexcatdezaqmazayﬁxa _ An(S,t,q,Y)~
e,

In the sequel we need the notations for the g-multinomial coefficients

[ n } _ (4:9)n
mi,. il (G Dmy (G Dy
and the first g-exponential

(mi+---+m, =n);

u™ 1
€alu) = nzzo @G D)n (W q)e

Multiply both sides of (1.4) by 1 —t and let t = 1. We obtain the factorial
generating function for a sequence of polynomials (A,(s,1,q,Y)) (n > 0)
in three variables:

u” (1 —sq)eq(Yu)
1.8 An(s,1,q,Y _ ‘
" nz;:) ( ) (G 0)n  eq(squ) — sqeq(u)
It follows from Theorem 1.1 that
1 > e a0y

ceS,

holds for every n > 0, a result stated and proved by Shareshian and Wachs
[19] by means of a symmetric function argument, so that identity (1.8) with
the interpretation (1.9) belongs to those two authors. Identity (1.4) can
be regarded as a graded form of (1.8). The interest of the graded form
also lies in the fact that it provides the joint distribution of (exc, des), as
shown in (1.15) below.
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Of course, Theorem 1.2 yields a second combinatorial interpretation for
the polynomials A, (s,1,q,Y) in the form

(1.10) Z slec"qimaj"YpiXU =A,(s,1,q,Y).
ce6G,

However we have a third combinatorial interpretation, where the statistic

“imaj” is replaced by the number of inversions “inv.” We state it as our

fourth main theorem.

Theorem 1.4. Let A,(s,1,q,Y) (n > 0) be the sequence of polynomials
in three variables, whose factorial generating function is given by (1.8).
Then, the generating polynomial for &, by the three-variable statistic
(lec, inv, pix) is equal to A,(s,1,q,Y). In other words,

(1.11) Z slecgqinVUYpiXU =A,(s,1,¢,Y).

ce6G,

Again, Theorem 1.4 in [9] and Theorem 1.1 provide a fourth combina-
torial interpretation of A, (s,1,q,Y), namely

(1.12) Z sexcgqmaf"YﬁX” =A,(s,1,¢,Y).
ce6G,

Note that the statistic “maf” was introduced and studied in [4].
Let s =1 in identity (1.4). We get:

(113) Y A,(Lt,q,Y Zt( Z )_M

n>0 n+1 UY’q r+1
so that Theorem 1.1 implies

(114) Z tdeSO'qmaj UYﬁXU = An(17 t? q, Y)7

ce6,

an identity derived by Gessel and Reutenauer [13].

Finally, by letting ¢ = Y := 1 we get the generating function for
polynomials in two variables A4, (s,t,1,1) (n > 0) in the form
(1.15)

1-s
An(s,t,1,1) t" .
Z (s, 1—t (1—t)ntt Z (I —u)rtH(1 —us)™" — s(1 —u)
n>0 r>0

It then follows from Theorems 1.1 and 1.2 that

(1.16) Z Sexcatdesaz Z SlecgtideSJ:An(S,t,l,l).

ce6, ceS,
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As is well-known (see, e.g., [11]) “exc” and “des” are equidistributed

over &,,, their common generating polynomial being the Eulerian poly-
nomial A, (t) := A,(¢t,1,1,1) = A,,(1,¢,1,1), which satifies the identity

(1.17) (1_t => t"(r+1

r>0

easily deduced from (1.15).

The polynomials A, (s,t,1,1) do not have any particular symmetries.
This is perhaps the reason why their generating function has never been
calculated before, to the best of the authors’ knowledge. However, with
q=1and Y = 0 we obtain

1—s
1.18 An(s,t,1,0)———— t"
(1.18) Z (s, (1 —t)ntt Z (1 —wus) ™" —s(l—u)""

n>0 r>0

The right-hand side is invariant under the change of variables u <+ wus,
s + s~ ! so that the polynomials A,(s,t,1,0), which are the generat-
ing polynomials for the set of all derangements by the pair (exc,des),
satisfy A, (s,t,1,0) = s™ A,(s71,¢,1,0). This means that (exc,des) and
(iexc, des) are equidistributed on the set of all derangements. There is a
stronger combinatorial result that can be derived as follows. Let ¢ be the
complement of (n 4+ 1) and r the reverse image, which map each permu-
tation 0 = o(1)...0(n) ontoco :=(n+1—0(1))(n+1—-0(2))...(n+
1—o(n)) and ro:=o(n) ... o(2)o(1), respectively. Then

(1.19) (exc, fix, des, ides) o = (iexc, fix, des, ides) cr o.

The paper is organized as follows. In order to prove that C(r;u, s, q,Y)
is the generating polynomial for W, (r) by two multivariable statistics,
we show in the next section that it suffices to construct two explicit
bijections ¢* and ¢P™*. The first bijection ¢f*, defined in Section 3, relates
to the algebra of Lyndon words, first introduced by Chen, Fox and Lyndon
[3], popularized in Combinatorics by Schiitzenberger [18] and now set in
common usage in Lothaire [17]. It is based on the techniques introduced by
Kim and Zeng [15]. In particular, we show that the V-cycle decomposition
introduced by those two authors, which is attached to each permutation,
can be extended to the case of words. This is the content of Theorem 3.4,
which may be regarded as our fifth main result.

The second bijection ¢P™*, constructed in Section 4, relates to the less
classical H-factorization, the analog for words of the hook factorization
introduced by Gessel [12].
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In Section 5 we complete the proofs of Theorems 1.1 and 1.2. By
combining the two bijections ¢™* and ¢P™* we obtain a transformation on
words serving to prove that two bivariable statistics are equidistributed
on the same rearrangement class. This is done in Section 6, as well as
the proof of Theorem 1.3. Finally, Theorem 1.4 is proved in Section 7 by
means of a new property of the second fundamental transformation.

2. Two multivariable generating functions for words

As 1/(u;q)r = > [H'Z_l]qu” (see, e.g., [2, chap. 3]), we may rewrite

the fraction C(ru,5,q,Y) = — =50 (G @)r (Wsai@)y
((u;q)r — sq(usq; q)r)(uY'; q)ri1

(2'1) C(T;u,s,q,y)
B (1 - Z [T e 1] q“n((sq) + (sq)* + -+ (Sq>n—1)>_1( 1

n>2 n UY; Q)r-i-l

If ¢ = cico---¢c,, is a word, whose letters are nonnegative integers, let
Ac := n be the length of ¢ and totc := ¢y + ¢c3 + -+ 4+ ¢, the sum of
its letters. Furthermore, NIW,, (resp. NIW,(r)) designates the set of all
monotonic nonincreasing words ¢ = cycs - - - ¢, of length n, whose letters
are nonnegative integers (resp. nonnegative integers at most equal to r):
cp>co>-->c >0 (resp. 7 >c1 >cg > - >cp >0). Also let NIW(r)
be the union of all NIW,,(r) for n > 0. It is g-routine (see, e.g., [2, chap. 3])

to prove
r+n—1 _ tot w
N D Ve

WENIW,, (r—1)

The sum ) [H'Z_l]
n>2

as Y. sttt wyr where the sum is over all pairs (w, i) such that w €
(w,%)

NIW(r — 1), Aw > 2 and i is an integer satisfying 1 < ¢ < Aw —1. Let D(r)

(resp. Dy, (7)) denote the set of all those pairs (w, i) (resp. those pairs such

that Aw = n). Therefore, equation (2.1) can also be expressed as

C(’I“; u, s, q, Y) _ (1_ Z Squ—tot wu)\w)—l Z u” Z qtot wy)\w,

(w,i)eD(r) n>0 WENIW,, (1)
and the coefficient C,,(7;s,q,Y) of u™ defined in (1.3) as

(2.2) Cy(r;8,¢,Y) = Z gitbrbim gm0t wo ot wi - ot wp yrAwo

qu”((sq) +(sq)%+- - -+(sq)" 1) can then be rewritten

the sum being over all sequences (wp, (w1,41),...,(Wm,im)) such that
wo € NIW(r), each of the pairs (wy,i1), ... , (Wpm,im) belongs to D(r),

8
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and \wy + A\wy + - - - + Aw,, = n. Denote the set of those sequences by
D (r). The next step is to construct the two bijections ¢ and ¢P™ of
D (r) onto W, (r) enabling us to calculate certain multivariable statistical
distributions on words.

Let | = 2125 - - - 2, be a nonempty word, whose letters are nonnegative
integers. Then [ is said to be a Lyndon word, if either n = 1, or if n > 2
and, with respect to the lexicographic order, the inequality xix2 - -2, >
TiTiy1 - Tpx1 - - T;—1 holds for every ¢ such that 2 < i < n. When n > 2,
we always have ;1 > x; for all i = 2,...,n and x; > x;41 for at least one
integer i (1 < i < n — 1), so that it makes sense to define the rightmost
manimal letter of [, denoted by rminl, as the unique letter z;, 1 satisfying
the inequalities z; > 11, Tiy1 < Tjgo < -+ <y,

Let w, w’ be two nonempty primitive words (none of them can be
expressed as v®, where v is a word and b an integer greater than or equal
to 2). We write w < w’ if and only if w® < w'®, with respect to the
lexicographic order, when b is large enough. As shown for instance in [17,
Theorem 5.1.5] each nonnempty word w, whose letters are nonnegative
integers, can be written uniquely as a product lyls - - - [, where each [; is
a Lyndon word and l; < Il =X --- =X [. Classically, each Lyndon word
is defined to be the minimum within its class of cyclic rearrangements,
so that the sequence l; =< I3 =X --- is replaced by [y > [l > --- The
modification made here is for convenience.

For instance, the factorization of the following word as a nondecreasing
product of Lyndon words with respect to “<” [in short, Lyndon word
factorization)] is indicated by vertical bars:

w=|2]3211|3|5|6421323|6631662]|6].

Now let w = x125---x, be an arbitrary word. We say that a positive
integer ¢ is a decreaseof wif 1 <i<n—-landx; > xi11 > - > 2; > Tj41
for some j such that ¢ < 7 < n — 1. In particular, ¢ is a decrease
if x; > x;41. The letter z; is said to be a decrease value of w. If
1<i1 <ig < - <1y < n—1Iis the increasing sequence of the decreases
of w, the subword z;, z;, - - - z; , is called the decrease value subword of w.
It will be denoted by decvalw. The number of decreases itself of w is
denoted by dec(w). We have dec(w) = 0 if all letters of w are equal. Also
dec(w) > 1 if w is a Lyndon word having at least two letters. In the
previous example we have decvalw = 32642366366, of length 11, so
that decw = 11.

Let 1l ...l be the Lyndon word factorization of a word w and let
(Liyy ligy -3 0,) (1 < iy <idg < --- < ip < k) be the sequence of all the
one-letter factors in its Lyndon word factorization. Form the nonincreasing
word Singlew defined by Singlew := [;, ---1;,l;, and let singlew = h

9
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be the number of letters of Singlew. In the previous example we have:
Singlew = 6532 and singlew = 4.

Theorem 2.1. The map ¢ : (wo, (w1,41), - .-, (W, im)) — w of D% (r)
onto W, (r), defined in Section 3, is a bijection having the properties:

i1+ -+ 1y = decw;
(2.3) i1+ -+ + tot wg + tot wy + - - - + tot wy, = tot w;
Awy = single w.

The next Corollary is then a consequence of (2.2) and the above
theorem.

Corollary 2.2. The sum C,,(r;s,q,Y) defined in (2.2) is also equal to
(24) Cn(T; s,q, Y) — Z Sdec wqtot wysinglew,

where the sum is over all words w € W, ().

To define the second bijection ¢P™* : D (r) — W, (r) another class of
words is in use. We call them H-words. They are defined as follows: let
h = x1x9 -+ - x, be a word of length Ah > 2, whose letters are nonnegative
integers. Say that h is a H-word, if 1 < x9, and either n = 2, or n > 3
and x9 > 23> -+ > x,,.

Each nonnempty word w, whose letters are nonnegative integers, can be
written uniquely as a product uwhqhs - - - hi, where u is a monotonic nonin-
creasing word (possibly empty) and each h; a H-word. This factorization
is called the H -factorization of w. Unless w is monotonic nonincreasing,
it ends with a H-word, so that its H-factorization is obtained by remov-
ing that H-word and determining the next rightmost H-word. Note the
discrepancy between the hook factorization for permutations mentioned in
the introduction and the present H-factorization used for words.

For instance, the H-factorization of the following word is indicated by
vertical bars:

w=|6532]1321]364[12|23]1663|266].

Three statistics are now defined that relate to the H-factorization
uhihg - - - hy of each arbitrary word w. First, let wpix(w) be the length
Au of u. Then, if r denotes the reverse image, which maps each word
T1To ... Ty ONLO T, ... T2x1, define the statistic wlec(w) by

wlec(w E rinv(

=1
where rinv(w) = inv(r(w)). In the previous example, wpix w = A\(6532) =
4 and wlecw = inv(1231) + inv(463) + inv(21) + inv(32) + inv(3661) +
inv(662) =2+2+1+1+3+2=11.

10



A QUADRUPLE DISTRIBUTION

Theorem 2.3. The map ¢P™* : (wo, (w1,41), - -, (Wm,im)) — w of D (r)
onto W, (r), defined in Section 4, is a bijection having the properties:

i1+ -+ iy = wlecw;
(2.5) i1+ -+ iy + tot wy + tot wy + - - - + tot w,, = tot w;

Awy = wWpix w.
Corollary 2.4. The sum C,,(r;s,q,Y) defined in (2.2) is also equal to

Cn(T; s, q, Y) _ Z Swlecwqtotwywpixw,
w

where the sum is over all words w € W, ().

3. The bijection ¢*

The construction of the bijection ¢ of D (r) onto W, (r) proceeds in
four steps and involves three subclasses of Lyndon words: the V-words, U-
words and L-words. We can say that V- and U-words are the word analogs
of the V- and U-cycles introduced by Kim and Zeng [15] for permutations.
The present construction is directly inspired by their work.

Each word w = z1xs - - - x,, is said to be a V-word (resp. a U-word), if
it is of length n > 2 and its letters satisfy the following inequalities

(31) z1 > x> >x; >xiq1 and gy < Tigo <o <y < 2y,

(resp.
(32) x1>x0> >z >xiqr and iy < xiq0 < - <z <27 )

for some i such that 1 < ¢ < n — 1. Note that if (3.1) or (3.2) holds,
then dec(w) = 4. Also maxw (the maximum letter of w) = z1 > x,. For
example, v =554112isa V-word and u =87577 is a U-word, but not
a V-word. Their rightmost minimal letters have been underlined.

Now w is said to be a L-word, if it is a Lyndon word of length at least
equal to 2 and whenever 1 = x; for some ¢ such that 2 < ¢ < n, then
r1 = X9 = --- = x;. For instance, 6631662 is a Lyndon word, but not a
L-word, but 663121 is a L-word.

Let V,,(r) (resp. Uy (r), resp. L, (r), Lyndon,, (r)) be the set of V-words
(resp. U-words, resp. L-words, resp. Lyndon words), of length n, whose
letters are at most equal to r. Also, let V(r) (resp. U(r), resp. L(r), resp.
Lyndon(r)) be the union of the V,,(r)’s (resp. the U, (r)’s, resp. the L, (r)’s,
resp. the Lyndon,, (r)’s) for n > 2. Clearly, V,,(r) C U,(r) C Ly(r) C

11
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Lyndon,,(r). Parallel to D (r), whose definition was given in (2.2), we
introduce three sets V,*(r), Uy (r), L} (r) of sequences (wg,ws, ..., wy) of
words from W (r) such that wy € NIW(r), Awg + Aw;y + - - - + Awy, = n and

(i) for V*(r) the components w; (1 < i < k) belong to V(r);

(ii) for U;(r) the components w; (1 < i < k) belong to U(r) and
are such that: rminw; < maxws, rminw, < maxws, ... , rminwg_1 <
max wy;

(iii) for L’ (r) the components w; (1 < i < k) belong to L(r) and are
such that: maxw; < maxws < --- < maxwy.

The first step consists of mapping the set D, (r) onto V,(r). This
is made by means of a very simple bijection, defined as follows: let
w = T1x2 - - Ty be a nonincreasing word and let (w, i) belong to D, (r),
sothat n>2and 1 <7 <n—1. Let

Y1 2:$1+1, Y2 Z:.’B2+1, ey Y Z:.’,EZ'—Fl,
Yi+1l = Tny Yit2 = Tn—1, -y Yn = Tit1;
vi=UlY2- - Yn-

The following proposition is evident.

Proposition 3.1. The mapping (w,i) — v is a bijection of D, (r) onto
Vi (r) satisfying dec(v) =i and totv = tot w + .

For instance, the image of (w = 443211,¢ = 3) is the V-word
v =554112 under the above bijection and dec(v) = 3.

Let (wo, (w1,11), (we,42), ..., (wk,ix)) belong to D} (r) and, using the
bijection of Proposition 3.1, let (wi,i1) +— vy, (wa,iz) — va, ... ,
(wk,ik) > vg. Then

(3.3) (wo, (w1,11), (W2,172), - - -, (Wk, i) = (wo,v1,v2, ..., VL)
is a bijection of D} (1) onto V,*(r) having the property that
i1+ d2 + - - - + i = dec(vy) + dec(vs) + - - - + dec(vg);

(34) 11+ 129+ -+ 1 + totwy + totwy + tot wg + - - - + tot wy,
= tot wg + tot v1 + tot vy + - - - 4 tot vg.

For instance, the sequence

(6532, (2111, 2),(533, 2),(11, 1),(22, 1),(5521, 3),(552, 2))
from D3,(6) is mapped under (3.3) onto the sequence
(6532, 3211, 643, 21, 32, 6631, 662) € V5, (6).

Also dec(3211)+dec(643)+dec(21)+dec(32)+dec(6631)+dec(662) =
2424+1+1+3+2=11.
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The second step is to map V,*(r) onto U} (7). Let u = y1y2 - - -y € U(r)
and v = 2125 -+ - 21 € V(7). Suppose that rmin u is the (i41)-st leftmost let-
ter of u and rminwv is the (j + 1)-st letter of v. Also assume that rminwu >
maxv. Then, the word [u,v] := y1---Yiz1 - 2jZj41 " 2Yit1 - - Yk De-
longs to U(r). Furthermore, rmin[u, v] is the (i + j 4+ 1)-st leftmost letter
of [u,v] and its value is z; 1. We also have the inequalities: y; > y;41 (by
definition of rminwu), y;41 > 21 (since minw > maxv) and z; > z (since
v is a V-word). These properties allow us to get back the pair (u,v) from
[u,v] by successively determining the critical letters z;11, 2;, 21, Yit1, 21
The mapping (u,v) — [u, v] is perfectly reversible.

For example, with v = 87577 and v = 522 we have [u,v] =
87522577.

Now let (wg,v1,v2,...,v) € VE(r). If k=1, let (wo,u1) := (wo,v1) €
Ur(r). If k > 2, let (1,2,...,a) be the longest sequence of integers such

that rminv; > maxwvy > rminve > maxwvy > - -+ > maxv, > rminv, and,
either a = k, or a < k — 1 and rminv, < maxv,+1. Let
V1, if a =1;
3.5 Uy 1= )
(3.5) {[-~-[[vl,vg],v3],-~-,va], if g > 2.

We have u; € U(r) and (wg,u1) € Uj(r) if a = k. Otherwise, rminu; <
maxvg+1. We can then apply the procedure described in (3.5) to the
sequence (Vg41,Vaqt2,---,Vk). When reaching vy we obtain a sequence
(wo,u1,...,up) € UX(r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.2. The mapping
(36) (w07U17U27"'7Uk) = (w07u17u27"'7uh)

described in (3.5) is a bijection of V,*(r) onto U} (r) having the following
properties:

(i) ugug - - -uy, Iis a rearrangement of vivg - - - vk, So that totu; + totug +
<-4 totuy = tot vy + totve 4 - - - 4 tot vi;

(ii) dec(uq) + dec(ugz) + - - - + dec(up) = dec(vy) 4 dec(ve) + - - - + dec(v).

For example, the above sequence

(6532, 3211, 643, 21, 32, 6631, 662) € V55(6)
is mapped onto the sequence
(6532, 3211, 64213, 32, 6631, 662) € Uy,(6).

where (643, 21] =64213. Also dec(3211) 4 dec(64213) + dec(32) +
dec(6631) 4 dec(662) = 11.

13



DOMINIQUE FOATA AND GUO-NIU HAN

The third step is to map Ui (r) onto L} (r). Let | = zyz2---x; € L(r)
and u = y1y2---y;» € U(r). Suppose that rmin/ is the (7 + 1)-st leftmost
letter of [ and rmin w is the (i’ +1)-st leftmost letter of u. Also assume that
rmin! < maxu and max! > maxwu. If z; < yq, let (I, u) :=lu. If x; >y,

there is a unique integer a > ¢ + 1 such that z, < y; = maxu < x 7.
Then, let

<l,u> = ajl...xixi+1...xay1...yi,yi,+1...yj,xa+1...xj‘

The word (I, u) belongs to L(r) and rmin(l, u) is the (a4’ +1)-st leftmost
letter of (I, u), its value being y;/ 1. Now y; is the rightmost letter of (I, u)
to the left of rmin(l,u) = y; 41 such that the letter preceding it, that
is z,, satisfies x, < y1 and the letter following it, that is ys, is such that
Y1 > y2. On the other hand, y;/ is the unique letter in the nondecreasing
factor Yy 41 - - YjrTas1 - - - x; that satisfies y;» < y1 = maxu < x441. Hence
the mapping (I, u) — ([, u) is completely reversible.

For example, with | = 82533577 and u = 7612 we have (l,u) =
825335761277 (the leftmost minimal letters have been underlined).
The letter 7 is the rightmost letter in ([, u) greater than its predecessor 5
and greater than or equal to its successor 6. Also 2 is the unique letter in
the factor 1277 that satisfies 2 < maxu =7 < 7.

Let (wo,u1,us,...,up) € UX(r). If h = 1, let (wo,l1) = (wo,u1) €
L (r). If h > 2, let (1,2,...,a) be the longest sequence of integers such

that maxw; > maxwu; for all j = 2,...,a and, and either a = h, or
a < h—1and maxu; < maxugy;. Let

] g, if a = 1;
(3.7) h '—{<---<<u1,u2>,u3>, ug), ifa>2.

We have l; € L(r) and (wo,l1) € L} (r) if a = h. Otherwise, maxl; <
max u,11. We then apply the procedure described in (3.7) to the se-
quence (Ug41,Uq42,---,Up). When reaching uj, we obtain a sequence
(wo,ly,...,lm) € LY (r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.3. The mapping

(38) (wo,ul,uQ,...,uh)»—) (’wo,ll,lg,...,lm)

described in (3.7) is a bijection of U} (r) onto L} (r) having the following
properties:

(i) lyly - - - 1, is a rearrangement of ujus - - - up, so that totly +tot lo+-- -+
totl,, = totu; + totus + - - - + tot up;

(ii) dec(l1) + dec(l) + - - - + dec(ly,) = dec(uq) + dec(uz) + - - - + dec(up).
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For example the above sequence

(6532, 3211, 64213, 32,6631, 662)) € Usy5(6).
is mapped onto the sequence

(6532, 3211, 6421323, 6631, 662) € L%, (6),

where (64213, 32) = 6421323. Also dec(3211) + dec(6421323) +
dec(6631) 4 dec(662) = 11.

The fourth step is to map L% (r) onto W, (r). Let (wo,l1,l2,...,1lm) €
L (r). If wy is nonempty, of length b, denote by f1, fo, ... , fp its b
letters from left to right, so that »r > f1 > fo > --- > f, > 0. It m = 1,
let o1 := 1. If m > 2, let a be the greatest integer such that [; > [s,
Iily =13, ... ;11 lg—1 = lg. lf a < h—1, let a’ > a be the greatest
integer such that l,+1 > lot2, latv1la+2 > lavs, - 5 lav1 - la—1 > Lo,y
etc. Form o1 :=lyla -1y, 09 := 441 -+ ly, etc. The sequence (01, 09,...)
is a nonincreasing sequence of Lyndon words. Let (71, 72,...,7,) be the
nonincreasing rearrangement of the sequence (o1,09,..., f1, fo, .., fb)
if wy is nonempty, and of (01,09, ...) otherwise. Then, (71, 72,...,7,) is
the Lyndon word factorization of a unique word w € W,,(r). The mapping

(39) (U)O,Zl,lg,...,lm) = w

is perfectly reversible. Also the verification of dec(w) = dec(ly) +dec(l2) +
-+ 4 dec(l,,) is immediate.

For example, the above sequence
(6532, 3211, 6421323, 6631, 662) € L3,(6)

is mapped onto the Lyndon word factorization
(3.10) w=|2]3211|3]5]|6421323|6631662|6].

The map ¢* is then defined as being the composition product of

(wo, (w1,11), (wa,i2), ..., (Wk,ik)) — (wo,v1,v2,...,v5)  in (3.3)
(wo,v1, V2, ..., vk) — (Wo, Ut U2, ..., up)  in (3.6)

(wo, U1, Uy .« .., Up) —> (wo,ll,lg,...,lm> in (3.8)

(wo,ly, 1o,y ..y ly) — in (3.9)

Therefore, ¢ is a bijection of D (r) onto W, (r) having the properties
stated in Theorem 2.1. The latter theorem is then proved.

From the property of the bijection w — (wq,v1,ve,...,v;) of Wy, (7)
onto V,*(r) we deduce the following theorem, which may be regarded as a
word analog of Theorem 2.4 in Kim-Zeng’s paper [15].

15
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Theorem 3.4 (V-word decomposition). To each word w = x1x5- -2y,
whose letters are nonnegative integers there corresponds a unique sequence
(wo,v1,v2,...,v;), where wg Is a nondecreasing word and vy, va, ... , U
are V-words with the further property that wovive - -- vy is a rearrange-
ment of w and decval w is the juxtaposition product of the decval v;’s:

decval w = (decval vy)(decval vy) - - - (decval vy,).
In particular,

decw = decwvy + decvy + - - - + dec vg.

For instance, the decrease values of the word w below and of the V-
factors of its V-decomposition are reproduced in boldface:
w=2321135642132366316626;
(6532, 3211, 643, 21, 32, 6631, 662).

4. The bijection ¢P*

The bijection ¢P™* : D (r) — W, (r) whose properties were stated in
Theorem 3.2 is easy to construct. Let H,(r) be the set of all H-words
of length n, whose letters are at most equal to r and H(r) be the union
of all H,(r)’s for n > 2. We first map D,,(r) onto H,(r) as follows. Let
w = T1x2 - - Ty be a nonincreasing word and let (w,i) belong to D, (r),
so that n > 2 and 1 < i <n — 1. Define:

h:= CL’H_l(CL’l + 1)($2 + 1) . (.IZ + 1)CL’¢+QCL’¢+3 ... Ip.

The following proposition is evident.

Proposition 4.1. The mapping (w,i) — h is a bijection of D,,(r) onto
H, (r) satisfying rinv(h) =i and tot h = tot w + .

For instance, the image of (w = 443221,i = 3) is the H-word
h =255421 under the above bijection and rinv(h) = 3.

Let (wo, (w1,11), (we,i2),..., (wk,ix)) belong to D} (r) and, using the
bijection of Proposition 4.1, let (wi,i1) — hy, (wa,i2) — ho, ... ,
(wg,ix) — hg. Then wohihg---hy is the H-factorization of a word
w € Wy (r). Accordingly,

P ¢ (wo, (wr, 1), (wa,da), . .., (Wi, ix)) = w := wohihy - - - hy,

is a bijection of D(r) onto W, (r) having the properties listed in (2.5).
This completes the proof of Theorem 2.3.
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For instance, the sequence

(6532, (2111, 2),(533, 2),(11, 1),(22, 1),(5521, 3),(552, 2))
from D3,(6) is mapped under ¢P™* onto the word
6532]1321[364|12|23|1663|266 € Waa(6).

Also (wlec, tot, wpix) w = (11,74, 4).

5. From words to permutations

We are now in a position to prove Theorems 1.1 and 1.2. Suppose that
identity (1.5) holds. As

th Z qtotw7

Qn+1 >0 weNIW,(j)

the right-hand side of (1.4) can then be written as

ZtTZBﬁX rys,q,Y)u",

r>0 n>0

(5.1) BEX(T;S,Q,Y> = Z Sexcaqmaj O’—|—t0tCYﬁXU7
(o,¢)

the sum being over all pairs (o,c¢) such that ¢ € &, deso < r and
¢ € NIW,,(r — des o). Denote the set of all those pairs by &,,(r, des).

In the same manner, let &,,(r,ides) denote the set of all pairs (o, ¢)
such that 0 € G,,, ideso < r and ¢ € NIW,,(r —ides o) and let

(5.2) BPX(r;s5,q,Y) 1= Z gleca gimajottote ypixo,
(o,c)

where the sum is over all (o, ¢) € G,,(r,ides). If (1.6) holds, the right-hand
side of (1.4) is equal to Y. " >° BPX(r:s,q,Y)u"
r>0 n>0
Accordingly, for proving identity (1.5) (resp. (1.6)) it suffices to show
that C,,(7;s,q,Y) = B™(r;5,¢,Y) (resp. Cp(r;5,q,Y) = BP¥(r;5,q,Y))
holds for all pairs (r,n). Referring to Corollaries 2.2 and 2.4 it suffices to
construct a bijection

Y w (0, c)

17
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of W, (r) onto &,,(r, des) having the following properties

decw = exco;
(5.3) totw = majo + tot ¢;
singlew = fix o;
and a bijection .
PP w (o, ¢)
of W, (r) onto &,,(r,ides) having the following properties

wlecw = leco;
(5.4) tot w = imaj o + tot ¢;
WpIX w = piX 0.

The construction of ¥ is achieved by adapting a classical bijection
used by Gessel-Reutenauer [13] and Désarménien-Wachs [6, 7]. Start with

the Lyndon word factorization (7y,72,...,7,) of a word w € W, (r).
If x is a letter of the factor 7, = y1---yj—12Y;j41 - - yn, form the cyclic
rearrangement cyc(z) := TYjr1 - YnY1 - -Yj—1. If x, y are two letters

of w, we say that x precedes y, if cycx > cycy, or if cycx = cycy and the
letter x is to the right of the letter y in the word w. Accordingly, to each
letter  of w there corresponds a unique integer p(z), which is the number
of letters preceding x plus one.

When replacing each letter x in the Lyndon word factorization of w
by p(x), we obtain a cycle decomposition of a permutation o. Furthermore,
the cycles start with their minima and when reading the word from left
to right the cycle minima are in decreasing order.

When this replacement is applied to the Lyndon word factorization
displayed in (3.10), we obtain:

w=2]3211]3|5/642 1323|663 166°2]6
c=16]12182221|10|7|48172011159 2513193614 |1

Let ¢; := p~1(i) for i = 1,2,...,n. As the permutation o is expressed
as the product of its disjoint cycles, we can form the three-row matrix

d= 1 2 -+ n
o =0(l1)c(2) - a(n)
C = €1 C2 Cn,

The essential feature is that the word ¢ just defined is the monotonic
nonincreasing rearrangement of w and it has the property that

(5.5) o(i)>o(i+1)=7¢ > G-

18
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See [13, 7] for a detailed proof. The rest of the proof is routine. Let
2z = 2122 -+ 2z, be the word defined by

zi=#{jri<j<n—10()>0(j+ 1)}

In other words, z; is the number of descents of ¢ within the right factor
o(i)o(i+1)---o(n). In particular, z; = deso. Because of (5.5) the word
¢ = c1c---¢c, defined by ¢; := ¢ — z; for i« = 1,2,...,n belongs to
NIW(r — deso) and deso < 7.

Finally, the verification of the three properties (5.3) is straightforward.
Thus, we have constructed the desired bijection ¥ : w — (0,¢), as the
reverse construction requires no further development.

With the above example we have:

[d=12345 6 7 8 9101112131415 16 17 18 19 20 21 22
c=15681314717410151819 2 9 162022 3 111221
c=66666 65433 3332222211171
z=44444 43322 222111110000
c=2222222111111111111111

The excedances of o have been underlined (exco = 11). As tot z = majo,
we have 74 = tot w = maj o +tot ¢ = 454 29. The fixed points are written
in boldface (fixo = 4).

The bijection P : w — (o, ¢) of W,,(r) onto &,,(r,ides) is constructed
by means of the classical standardisation of words. Read w from left to
right and label 1, 2, ... all the maximal letters. If there are m such letters,
restart the reading from left to right and label m+1, m+2, ... the second
greatest letters. Pursue this reading method until reaching the minimal
letters. Call 0 = o(1)0(2)---0(n) the permutation derived by reading
those labels from left to right.

The permutation o and the word w have the same hook-factorization
type. This means that if ahihs...hs (resp. bpips...px) is the hook-
factorization of o (resp. H-factorization of w), then k = s and Aa = Ab.
For each 1 < i < k we have Ah; = Ap; and inv(h;) = rinv(p;). Hence
wlecw = lec o and wpixw = pixo.

Now define the word z = z129...2, as follows. If o(j) = n is the
maximal letter, then z; := 0; if 0(j) = o(k) — 1 and j < k, then z; := z;
if 0(j) = o(k) — 1 and j > k, then z; := 2, + 1. We can verify that
imajo = totz. With w = xy29---x, define the word d = didy---d,
by di ==z —2z (1 <i<n)Asz; =2,+1 = x; >z + 1, the
letters of d are all nonnegative. The final word c is just defined to be the
monotonic nonincreasing rearrangement of d. Finally, properties (5.4) are
easily verified.
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For defining the reverse of 1P* we just have to remember that the
following inequality holds: o(j) < o(k) = d; > dj. This achieves the
proofs of Theorems 1.1 and 1.2. For example,

Id=1234 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22

w=65321321364122316°%6 3 266
c=179141910152011 2 8 2116171222 3 4 1318 5 6
2=43210210243011204421414
d=22111111121111112211722
c=22222221111111111111171

6. A bijection on words and the proof of Theorem 1.3

Consider the two bijections ¢f* and ¢P* that have been constructed
in Sections 3 and 4 and consider the bijection F' defined by the following
diagram:

¢ﬁx Wn (T)

D; (r) F

QSPX\ W, (r)

Fig. 1. Definition of F'

On the other hand, go back to the definition of the bijection (w,i) — v
(resp. (w,i) — h) given in Proposition 3.1 (resp. in Proposition 4.1).
If w= zy25---x,, then both v and h are rearrangements of the word
(r1 4+ 1)(z2 +1)---(x; + 1)ziy1 - - - . Now consider the two bijections

¢ﬁX : <w07 ('U)l, il)? ceey (wm7 Zm)) = w;

AP 1 (wo, (W1,71), - -y (Wi, Im)) = w'.
It then follows from Proposition 3.2, Proposition 3.3 and (3.9), on the one
hand, and from the very definition of ¢P*, on the other hand, that the

words w and w’ are rearrangements of each other. Finally, Theorems 2.1
and 2.3 imply the following result.

Theorem 6.1. The transformation F defined by the diagram of Fig. 1
maps each word whose letters are nonnegative integers on another
word F'(w) and has the following properties:

(i) F(w) is a rearrangement of w and the restriction of F' to each rear-
rangement class is a bijection of that class onto itself;

(ii) (dec, single) w = (wlec, wpix) F'(w).

Let ¢ be the complement to (n + 1) that maps each permutation o =
o(l)o(2)---o(n)ontoco :=(n+1—0c(l))(n+1—-0(2)) - (n+1—0(n)).
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When restricted to the symmetric group &,, the mapping F' o c maps &,,
onto itself and has the property

(des, single) o = (lec, pix) (F o ¢)(o).

Note that “dec” was replaced by “des”, as all the decreases in a permuta-
tion are descents. Finally, the so-called first fundamental transformation
(see [11]) o +— 6 maps &,, onto itself and is such that

(exc, fix) o = (des, single) &.
Hence
(exc, fix) 0 = (lec, pix) (F' o ¢)(5).

As announced in the introduction we have a stronger result stated in
Theorem 1.3. Its proof is as follows.

Proof of Theorem 1.3. For each composition J = j1j3- - Jm (word
with positive letters) define the set L(.J) and the monotonic nonincreasing
word ¢(J) by

L(J) = {jrmjm +jm_1,...,jm—|—jm_1 _|_..._|_j2 +j1};
c(J) := mIm(m — 1)Im-1...202151,

For example, with J = 455116 we have L(J) = {6,7,8,13,18,22} and
c(J) = 6666665433333222221111.

Fix a composition J of n (i.e., tot J = n) and let &7 be the set of all
permutations o of order n such that Ilignec C L(J). Using the bijection
YP* given in Section 5, define a bijection w; +— o1 between the set R; of
all rearrangements of ¢(.J) and &7 by

(o1, %) = PP (wy).

For defining the reverse o7 — w; we only have to take the multiplicity of
wy € Ry into account. This is well-defined because Iligneo; C L(J). For
example, take the same example used in Section 5 for ¥P™*:

Id=1234 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22
wp=6532 132136 4122316263266
00 =179141910152011 2 8 2116171222 3 4 1318 5 6

Then Iligneo; = {6,8,13,18} C L(J) and the basic properties of this
bijection are
wlecw; =lecoy, wpixw; = pixoy.
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On the other hand the bijection ¥ given in Section 5 defines a bijection
wq — 09 between Ry and &7 by

(03" %) = Y™ (ws).

Again, for the reverse o9 — ws the multiplicity of ws € R is to be taken
into account. This is also well-defined, since Iligneos C L(J). With the
example used in Section 5 for 1% we have:

Id =12 345 678 9 101112131415 16 17 18 19 20 21 22
wy =23 2113564 2132366 3166 26
02_1:156813147174101518192 9162022 3 111221
op =114199 2 37 415102021 5 6 1116 8 1213 17 22 18

Also Tligne oy = Ligne o, ' = {6,8,13,18} C L(J).
The basic properties of this bijection are

decwy = iexcogy, singlews = fixos.

We can use those two bijections and the bijection F' defined in Fig. 1 to
form the chain .
O+ W1 — Wg +— 02,

and therefore obtain a bijection o, +— oo of &7 onto itself having the
following properties

iexcog = lecoy, fixoy = pixoy.

In other words, the pairs (iexc, fix) and (lec, pix) are equidistributed on
{0 € 6&,,llignec C J} for all compositions J of n. By the inclusion-
exclusion principle those pairs are also equidistributed on each set {o €
S, lligneo = J}. Hence the triples (iexc, fix, Iligne) and (lec, pix, Iligne)
are equidistributed on &,,. []

7. Proof of Theorem 1.4

If m = (my,ma,...,my) is a sequence of n nonnegative integers, the
rearrangement class of the nondecreasing word 17122 ... r™n  that is,
the class of all the words than can be derived from 1™12™2 .. .r™» by
permutation of the letters, is denoted by Ry,. The definitions of “des,”
“maj” and “inv” used so far for permutations are also valid for words.
The second fundamental transformation, as it was called later on (see [§],
[17], §10.6 or [16], ex. 5.1.1.19) denoted by ®, maps each word w on another
word ®(w) and has the following properties:

(a) majw = inv ®(w);
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(b) ®(w) is a rearrangement of w, and the restriction of ® to each
rearrangement class Ry, is a bijection of Ry, onto itself.

Further properties were further proved by Foata, Schiitzenberger [11]
and Bjorner, Wachs [1], in particular, when the transformation is restricted
to act on rearrangement classes Ry, such that m; = --- =m, = 1, that
is, on symmetric groups G,,.

Ligne and inverse ligne of route have been defined in the Introduction.
As was proved in [11], the transformation ® preserves the inverse ligne of
route, so that the pairs (Iligne, maj) and (Iligne, inv) are equidistributed
on G, a result that we express as

(7.1) (Tligne, maj) ~ (Iligne, inv);
or as
(7.2) (Ligne, imaj) ~ (Ligne, inv).

The refinement of (7.2) we now derive (see Proposition 7.1 and Theorem
7.2 below) is based on the properties of a new statistic called LAC.

For each permutation 0 = o(1)0(2)---0(n) and each integer i such
that 1 <1i <ndefine ¢; :=0if o(i) < o(i+1) and ¢; := k if (i) is greater
than all the letters o(i+1), 0(i+2), ..., o(i+ k), but 0(i) < o(i+k+1).
[By convention, o(n + 1) = +00.]

Definition. The statistic LACo attached to each permutation o =
o(1)o(2)---o(n) is defined to be the word LACo = l105...4,.

Ezxample. We have

id =12 3 4 5 6 7 8 9 10 11 12
o =3 4 8 1 9 2 5 10 12 7 6 11
LACo = 0 0 1 0 2 0 0 O 3 1 0 0
In the above table /5 = 2 because 0 =...92 5 10--- and /9 = 3 because
c=...1276 11.

Proposition 7.1. Let 0 = o(1)o(2)---0(n) be a permutation and let
LACo = {14y ... 4,. Then i € Ligneo if and only if {; > 1.

Theorem 7.2. We have
(7.3) (LAC, imaj) ~ (LAC, inv).

”

Proof. Define ILACo := LACo~!. Since ® maps “maj” to “inv,
property (7.3) will be proved if we show that ® preserves “ILAC”, that is,

(7.4) ILAC ®(0) = ILAC 0.
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A direct description of ILACo can be given as follows. Let ILACo =
fife... fn. Then f; = jif and only if within the word o = ¢(1)o(2) - - -o(n)
the integer j is such that the letters of o equal toi+ 1,7+ 2, ... , i+
are on the left of the letter equal to ¢ and either (i 4+ j + 1) is on the right
of i, or i+ j =n.

As can be seen in ([17], chap. 10), the second fundamental trans-
formation ® is defined by induction: ®(z) = x for each letter x and
O(wz) = 7,(P(w))z for each word w and each letter x, where v, is a
well-defined bijection. See the above reference for an explicit description
of 7v,. Identity (7.4) is then a simple consequence of the following property
of 7, (we omit its proof): Let w be a word and z a letter. If u is a subword
of w such that all letters of u are smaller (resp. greater) than x, then u is
also a subword of ~y,(w). []

Proposition 7.3. Let ¢ and 7 be two permutations of order n. If
LACo = LACT, then

(i) Ligne o = Ligne 7;

(ii) (des, maj)o = (des, maj)7;

(iii) pix o = pix 7;

(iv) leco = lecT.

Proof. (i) follows from Proposition 7.1. (ii) follows from (i). By (i) we
see that o and 7 have the same hook-factorization type. That means that
if ahihy...hs (resp. bpips...pg) is the hook-factorization of o (resp. of
7), then k = s and Aa = Ab, Ah; = Ap; for 1 < i < k. Hence (iii) holds.
For proving (iv) it suffices to prove that inv(h;) = inv(p;) for 1 < i < k.
This is true since LAC o = LAC 7 by hypothesis. []

It follows from Proposition 7.3 that
(7.5) (lec, imaj, pix) ~ (lec, inv, pix)

and this is all we need to prove Theorem 1.4.
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