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Abstract. We present some conjectures and open problems on partition hook lengths,
which are all motivated by known results on the subject. The conjectures are suggested
by extensive experimental calculations using a computer algebra system. The first
conjecture unifies two classical results on the number of standard Young tableaux and
the number of pairs of standard Young tableaux of the same shape. The second unifies
the classical hook formula and the marked hook formula. The third includes the long
standing Lehmer conjecture which says that the Ramanujan tau-function never takes
the zero value. The fourth is a more precise version of the third one in the case of
3-cores. We also list some open problems on partition hook lengths.
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1. Introduction

The hook lengths of partitions are widely studied in the Theory of Partitions, in Alge-
braic Combinatorics and Group Representation Theory. In this paper we present some
conjectures and open problems on partition hook lengths, which are all motivated by
known results on the subject. The conjectures are suggested by extensive experimental
calculations using a computer algebra system.

The basic notions needed here can be found in [Macdonald 95, p. 1], [Stanley 99, p.
287], [Lascoux 01, p. 1], [Knuth 98, p. 59] and [Andrews 76, p. 1]. A partition λ is a
sequence of positive integers λ = (λ1, λ2, · · · , λℓ) such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0. The
integers (λi)i=1,2,...,ℓ are called the parts of λ, the number ℓ of parts being the length of
λ denoted by ℓ(λ). The sum of its parts λ1 + λ2 + · · ·+ λℓ is denoted by |λ|. Let n be
an integer, a partition λ is said to be a partition of n if |λ| = n. We write λ ⊢ n. The
set of all partitions of n is denoted by P(n). The set of all partitions is denoted by P,
so that

P =
⋃

n≥0

P(n).

Each partition can be represented by its Ferrers diagram. For example, λ = (6, 3, 3, 2)
is a partition and its Ferrers diagram is reproduced in Figure 1.

For each box v in the Ferrers diagram of a partition λ, or for each box v in λ, for
short, define the hook length of v, denoted by hv(λ) or hv, to be the number of boxes
u such that u = v, or u lies in the same column as v and above v, or in the same
row as v and to the right of v (see Figure 2). The hook length multi-set of λ, denoted
by H(λ), is the multi-set of all hook lengths of λ. In Figure 3 the hook lengths of
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Figure 1. Partition
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Figure 3. Hook lengths

all boxes for the partition λ = (6, 3, 3, 2) have been written in each box. We have
H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}.

Let t be a positive integer. Recall that a partition λ is a t-core if the hook length
multi-set of λ does not contain the integer t. It is known that the hook length multi-set
of each t-core does not contain any multiple of t [Knuth 98, p. 69, p. 612], [Stanley 99,
p. 468] and [James and Kerber 81, p. 75].

The First Conjecture stated in Section 2 unifies two classical results on the number
of standard Young tableaux and the number of pairs of standard Young tableaux of the
same shape. The Second Conjecture unifies the classical hook formula and the marked
hook formula (see Section 3). The Third Conjecture, presented in Section 4, includes
the long standing Lehmer conjecture which says that the Ramanujan tau-function never
takes the zero value. The Fourth Conjecture is a more precise version of the third one
in the case of 3-cores (see Section 5). Finally, we list some open problems on partition
hook lengths in Section 6.

2. First conjecture

The hook length plays an important role in Algebraic Combinatorics thanks to the
famous hook formula due to Frame, Robinson and Thrall [Frame et al. 54]

(2.1) fλ =
n!

∏

h∈H(λ) h
,

where fλ is the number of standard Young tableaux of shape λ (see [Stanley 99, p.
376], [Knuth 98, p. 59], [Greene et al. 79, Gessel and Viennot 85, Zeilberger 84] and
[Novelli et al. 97, Krattenthaler 99]).

Recall that the Robinson-Schensted-Knuth correspondence is a bijection between the
set of ordered pairs of standard Young tableaux of {1, 2, . . . , n} of the same shape and
the set of permutations of order n [Knuth 70] (see also [Knuth 98, p. 49-59], [Stanley 99,
p. 324]). It provides a combinatorial proof of the following identity

(2.2)
∑

λ∈n

f 2
λ = n!

By using (2.1) identity (2.2) can be written in the following generating function form

(2.3)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex.

The Robinson-Schensted-Knuth correspondence also proves the fact that the number of
standard Young tableaux of {1, 2, . . . , n} is equal to the number of involutions of order
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n (see [Knuth 98, p. 47]). In the generating function form this means that

(2.4)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2.

Our first conjecture may be regarded as a hook length formula that interpolates for-
mulas (2.3) and (2.4) holding for permutations and involutions, respectively. It was
suggested by the hook length expansion technique developed in [Han 08a].

Conjecture 2.1 (First conjecture). We have

(2.5)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) = ex+zx2/2,

where the weight function ρ(z;n) is defined by

(2.6) ρ(z;n) =

⌊n/2⌋
∑

k=0

(

n

2k

)

zk

n

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

zk

.

The first values of the weight function ρ(z, n) are listed below.

ρ(z; 1) = 1;

ρ(z; 2) =
1 + z

4
;

ρ(z; 3) =
3z + 1

9 + 3z
;

ρ(z; 4) =
z2 + 6z + 1

16 + 16z
;

ρ(z; 5) =
5z2 + 10z + 1

5z2 + 50z + 25
;

ρ(z; 6) =
z3 + 15z2 + 15z + 1

120z + 36z2 + 36
,

ρ(z; 7) =
7z3 + 35z2 + 21z + 1

7z3 + 147z2 + 245z + 49
.

In fact, formula (2.6) has been verified up to n ≤ 20.
Using the real part ℜ and imaginary part ℑ operators of complex numbers, Conjecture

2.1 can be rewritten in the following equivalent form.

Conjecture 2.2. We have

(2.7)
∑

λ∈P

x|λ|
∏

h∈H(λ)

zℜ(1 + iz)h

hℑ(1 + iz)h
= ex−z2x2/2.
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In the rest of this section we discuss some specializations of Conjecture 2.1. When
z = 1, then ρ(1;n) = 1/n; we recover identity (2.4). When z = 0, then ρ(0;n) = 1/n2;
we recover identity (2.3). However we cannot prove any other special cases of Conjecture
2.1, except the above two values. Now select the coefficients of [zxn] on both sides of
(2.5). Since

(2.8) ρ(z;n) =
1 +

(

n
2

)

z +O(z2)

n2 + n
(

n
3

)

z +O(z2)
=

1

n2

(

1 +
n2 − 1

3
z
)

+O(z2),

the coefficient of [zxn] on the left-hand side of (2.5) is

[z]
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

(

1 +
h2 − 1

3
z
)

=
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

(h2 − 1

3

)

=
1

3

∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2 −
n

3

∑

λ∈P(n)

∏

h∈H(λ)

1

h2

=
1

3

∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2 −
n

3n!
.

(2.9)

The coefficient of [zxn] on the right-hand side of (2.5) is

[zxn]ex+zx2/2 = [zxn]
∑

k≥1

(x+ zx2/2)k

k!

= [zxn]
∑

k≥1

kxk−1(zx2/2)

k!

= [xn]
∑

k≥1

xk−1(x2)

2(k − 1)!

=
1

2(n− 2)!
.

(2.10)

By comparing (2.9) and (2.10) we obtain the next marked hook formula, which has been
proved in [Han 08b, Han 08c].

Theorem 2.3 (marked hook formula). We have

(2.11)
∑

λ⊢n

f 2
λ

∑

h∈H(λ)

h2 =
n(3n− 1)

2
n!
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We can also select the coefficients of [z2xn] on both sides of (2.5). Since

ρ(z;n) =
1 +

(

n
2

)

z + · · ·

n2 + n
(

n
3

)

z + · · ·

=
1

n2

(

1 +
n2 − 1

3
z −

(n2 − 1)(n2 − 4)

45
z2
)

+O(z3),

the coefficient of [zxn] on the left-hand side of (2.5) is

[z2]
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

(

1 +
h2 − 1

3
z −

(h2 − 1)(h2 − 4)

45
z2
)

= A+B,

with

A =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

v∈λ

−(h2
v − 1)(h2

v − 4)

45

and

B =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

{u,v},u 6=v

(h2
u − 1

3

h2
v − 1

3

)

,

where the second sum in B ranges over all unordered pairs {u, v} such that u, v ∈ λ and
u 6= v. Let us evaluate the two quantities A and B. We have

A = −
1

45

∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

(h4 − 5h2 + 4) = −
1

45
(A1 + A2 + A3),

with

(2.12) A1 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h4,

A2 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

(−5h2) = −
5n(3n− 1)

2n!
[by (2.11)]

and

A3 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

4 =
4n

n!
.

We also have

B =
1

9

∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

{u,v}

(

h2
uh

2
v − (h2

v + h2
u) + 1

)

=
1

9
(B1 +B2 +B3),
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with

B1 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

{u,v}

h2
uh

2
v

=
n(n− 1)(27n2 − 67n+ 74)

24n!
, [by Prop. 6.11 in [Han 08b]]

B2 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

{u,v}

(

−(h2
v + h2

u)
)

,

= (n− 1)
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

v

(

−h2
v

)

,

= −(n− 1)
n(3n− 1)

2n!
,

B3 =
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

{u,v}

1 =
1

n!

(

n

2

)

.

On the other hand, the coefficient of [z2xn] on the right-hand side of (2.5) is

[z2xn]ex+zx2/2 = [z2xn]
∑

k≥1

(x+ zx2/2)k

k!

= [z2xn]
∑

k≥2

k(k − 1)/2× xk−2(zx2/2)2

k!

= [xn]
∑

k≥2

k(k − 1)/2× xk−2(x2/2)2

k!

= [xn]
∑

k≥2

xk+2

8(k − 2)!

=
1

8(n− 4)!
.

(2.13)

By Conjecture 2.1 and (2.13) we have

1

8(n− 4)!
= −

1

45
(A1 + A2 + A3) +

1

9
(B1 +B2 +B3).

The values of A2, A3, B1, B2, B3 being explicitly calculated, the expression of A1 shown
in (2.12) leads to the following Conjecture.

Conjecture 2.4. We have

(2.14)
∑

λ∈P(n)

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h4 =
n(40n2 − 75n+ 41)

6n!
.
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3. Second conjecture

The next conjecture is suggested by the fact that formulas (2.2), (2.11) and (2.14)
have the same form.

Conjecture 3.1 (Second conjecture). Let k be a positive integer. Then

Pk(n) = (k + 1)!(n− 1)!
∑

λ⊢n

(

∏

v∈λ

1

h2
v

)(

∑

u∈λ

h2k
u

)

is a polynomial in n of degree k with integral coefficients.

Notice that the classical hook formula (2.2), the marked hook formula (2.11) and
Conjecture 2.4 are all consequences of Conjecture 3.1 (the cases k = 0, 1, 2), because if
we know that Pk(n) is a polynomial in n of degree k, we can determinate the polyno-
mial Pk(n) by taking (k + 1) numerial values of Pk(n) using the Lagrange interpolation
formula. Let us go one more step by looking at case k = 3.

Conjecture 3.2. We have

∑

λ⊢n

f 2
λ

∑

v∈λ

h6
v =

n

24
(1050n3 − 4060n2 + 5586n− 2552) n!

The first values of the polynomials Pk(n) (0 ≤ k ≤ 9), suggested by extensive experi-
mental calculations using a computer algebra system, are shown in the next table.

P0(n) = 1,

P1(n) = 3n− 1,

P2(n) = 40n2 − 75n+ 41,

P3(n) = 1050n3 − 4060n2 + 5586n− 2552,

P4(n) = 42336n4 − 265860n3 + 654360n2 − 721800n+ 291084,

P5(n) = 2328480n5 − 20956320n4 + 77962500n3 − 146671800n2 + 136808100n

− 49470240,

P6(n) = 163088640n6 − 1941619680n5 + 9851665824n4 − 26869883040n3

+ 41020980000n2 − 32822800920n+ 10598574216,

P7(n) = 13913499600n7 − 206918712000n6 + 1332526235040n5 − 4753759570560n4

+ 10023914300400n3 − 12352918032000n2 + 8158628953440n− 2215386633600,

P8(n) = 1401656256000n8 − 24914439950400n7 + 192568162026240n6

− 830326365348480n5 + 2134506603220992n4 − 3232434128152320n3

+ 2628227513681280n2 − 860196155051520n− 8832846318912.

From Conjecture 2.4, we derive the following formula.
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Conjecture 3.3. Let n be an positive integer. We have

∑

λ⊢n

(

∏

v∈λ

1

h2
v

)(

∑

u∈λ

h2
u

)2
=

1

12(n− 1)!
(27n3 − 14n2 − 9n+ 8).

4. Third conjecture

Let us state our third conjecture, followed by some specializations and remarks.

Conjecture 4.1 (Third conjecture). Let n, s, t be positive integers such that t 6= 4, 10
and s | t. Then the coefficient of xn in

∏

k≥1

(1− xsk)t
2/s

1− xk

is equal to zero, if and only if the coefficient of xn in

∏

k≥1

(1− xtk)t

1− xk

is also equal to zero.

Conjecture 4.1 has been verified by the author for all pairs (t, n) such that t ≤ 13 and
n ≤ 4000.

Remark 4.2. Even if the conjecture is stated with the exceptions t 6= 4, 10, it is almost
true in the latter cases. For example, up to n = 4000, there are only four exceptions
n = 53, 482, 1340, 2627 for s = 1, t = 4; five exceptions n = 35, 320, 890, 1745, 2885 for
s = 2, t = 4 and two exceptions n = 24, 49 for s = 5, t = 10. Ken Ono [Ono 08] has
pointed out that there are infinitely many exceptions for s = 1, t = 4.

Let P(n; t) denote the set of all t-cores of n. The generating function for t-cores is
given by the following formula

(4.1)
∑

λ

x|λ| =
∏

k≥1

(1− xtk)t

1− xk
,

where the sum ranges over all t-cores [Knuth 98, p. 69, p. 612], [Stanley 99, p. 468],
[Garvan et al. 90].

In [Han 08c, Corollary 5.3] we proved the following result.

Theorem 4.3. We have

(4.2)
∑

λ∈P

x|λ|
∏

v∈λ,s|hv

(

1−
sz

h2
v

)

=
∏

k≥1

(1− xsk)z

1− xk
.

Hence, Conjecture 4.1 can be re-written by using (4.1) and (4.2) as follows.



SOME CONJECTURES AND OPEN PROBLEMS ON PARTITION HOOK LENGTHS 9

Conjecture 4.4. Let n, s, t be positive integers such that t 6= 4, 10 and s | t. The
expression

(4.3)
∑

λ∈P(n;t)

∏

v∈λ,s|hv

(

1−
t2

h2
v

)

is equal to zero if and only if P(n; t) = ∅.

Conjecture 4.1 is true for s = 1 and t = 2, thanks to the following two well-known for-
mulas due to Jacobi (see [Andrews 76, p. 21], [Knuth 98, p. 20]) and Gauss [Stanley 99,
p. 518], [Andrews 76, p. 23], respectively.

Theorem 4.5 (Jacobi). We have

(4.4)
∏

m≥1

(1− xm)3 =
∑

m≥0

(−1)m(2m+ 1)xm(m+1)/2.

Theorem 4.6 (Gauss). We have

(4.5)
∏

m≥1

(1− x2m)2

1− xm
=

∑

m≥0

xm(m+1)/2.

Consider the specialization s = 1 and t = 3. Let (a(n)) be the coefficients in the
expansion of the product

∏

m≥1

(1− xm)8 =
∑

n≥0

a(n)xn

= 1− 8x+ 20x2 − 70x4 + 64x5 + 56x6 − 125x8+

· · · − 20482x220 + 24050x224 − 21624x225 + · · ·

(4.6)

and (b(n)) the coefficients in the expansion of the product

∏

m≥1

(1− x3m)3

1− xm
=

∑

b≥0

b(n)xn

= 1 + x+ 2x2 + 2x4 + x5 + 2x6 + x8+

· · ·+ 2x220 + 2x224 + 3x225 + · · ·

(4.7)

Notice that the coefficients b(n) are rather small and a(n) are rather large. Conjecture
4.1 may be restated as follows.

Conjecture 4.7. Let n be a positive integer. Then a(n) = 0 if and only if b(n) = 0.

Recall the following theorem due to Granville and Ono [Granville and Ono 96].

Theorem 4.8. Let n, t be two positive integers such that t ≥ 4. Then P(n; t) 6= ∅.

Hence, Conjectures 4.1 can be re-written in the follwing way.
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Conjecture 4.9. Let t ≥ 5, n, s be positive integers such that s | t and t 6= 10. Then
the coefficient of xn in

∏

k≥1

(1− xsk)t
2/s

1− xk

is not equal to 0.

In particular, when s = 1 and t = 5 in Conjecture 4.9, we recover the following long
standing Lehmer conjecture (see [Serre 70]). Recall that the Ramanujan τ -function is
defined by (see [Serre 70, p. 156])

x
∏

m≥1

(1− xm)24 =
∑

n≥1

τ(n)xn

= x− 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 + · · ·

Conjecture 4.10 (Lehmer). For each n we have τ(n) 6= 0.

5. Fourth conjecture

Recall that a(n) and b(n) are defined by (4.6) and (4.7), respectively. The following
conjectures characterize the integers n for which a(n) = 0 or b(n) = 0. They are
suggested by Theorem 5.3 stated later in this section.

Conjecture 5.1 (Fourth conjecture). Let N be a positive integer.
(i) If there are integers n ≥ 0, m ≥ 1 such that

N = 4mn + (10 · 4m−1 − 1)/3,

then a(N) = 0;
(ii) If there are integers n ≥ 0, m ≥ 1, k ≥ 1 with m 6≡ 2k − 1 mod (6k − 1), such that

N = (6k − 1)2n + (6k − 1)m+ 4k − 1,

then a(N) = 0;
(iii) For all positive integers N we have a(N) 6= 0, except those in cases (i) and (ii).

If the Third Conjecture is true, then Conjecture 5.1 is equivalent to the following
conjecture for b(n). It is known (see, e.g., [Garvan et al. 90]) that b(n) is equal to the
number of the integer solutions of the Diophantine equation

3(x2 + xy + y2) + x+ 2y = n.

Conjecture 5.2. Let N be a positive integer.
(i) If there are integers n ≥ 0, m ≥ 1 such that

N = 4mn + (10 · 4m−1 − 1)/3,

then b(N) = 0;
(ii) If there are integers n ≥ 0, m ≥ 1, k ≥ 1 with m 6≡ 2k − 1 mod (6k − 1), such that

N = (6k − 1)2n + (6k − 1)m+ 4k − 1,

then b(N) = 0;
(iii) For all positive integers N we have b(N) 6= 0, except those in cases (i) and (ii).
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Taking special values for m and k in Conjecture 5.1 yields the following relations.

Theorem 5.3. We have

a(4n+ 3) = 0;

a(16n + 13) = 0;

a(25n+ 3) = 0, a(25n+ 13) = 0, a(25n+ 18) = 0, a(25n+ 23) = 0;

a(64n + 53) = 0.

Proof. In fact, the relations in Theorem 5.3 were discovered and automatically proved
by using a computer algebra program thanks to the next theorem, which asserts that a
simple variation of the classical Macdonald identity [Macdonald 72] holds. For example,
each term in identity (5.1) has two parameters k and m (or only one parameter k). To
prove a(4n + 3) = 0, we need only check a(4n + 3) = 0 for k,m = 0, 1, 2, 3, since the
coefficient and the exponent in each term are both polynomials in k and m with integral
coefficients. There are finitely many cases to verify. �

Theorem 5.4. We have
∏

k≥1

(1− qk)8 =
∑

k≥0

(

(3k + 1)3q3k
2+2k − (3k + 2)3q3k

2+4k+1
)

+
∑

k>m≥0

(

(3k + 1)(3m+ 1)(3k + 3m+ 2)qk
2+k+m2+m+km

− (3k + 2)(3m+ 2)(3k + 3m+ 4)qk
2+k+m2+m+(k+1)(m+1)

)

.

(5.1)

In principle, any specialization of Conjecture 5.1 can be proved in the same way (if
the computer is fast enough!). However, the general case requires a true mathematical
investigation.

In the same manner, the following congruence properties were also discovered and
automatically proved by using a computer algebra program. However, we are not able
to imagine a global formula similar to Conjecture 5.1.

Theorem 5.5. We have

a(2n + 1) ≡ 0 mod 2;

a(4n+ 1) ≡ a(4n + 2) ≡ 0 mod 4;

a(5n+ 2) ≡ a(5n+ 3) ≡ a(5n + 4) ≡ 0 mod 5;

a(7n+ 3) ≡ a(7n+ 4) ≡ a(7n + 6) ≡ 0 mod 7;

a(8n+ 1) ≡ a(8n+ 5) ≡ a(8n + 6) ≡ 0 mod 8;

a(10n+ 2) ≡ a(10n+ 4) ≡ 0 mod 10;

a(11n+ 7) ≡ 0 mod 11;

a(14n+ 4) ≡ a(14n+ 6) ≡ a(14n+ 10) ≡ 0 mod 14.

(5.2)
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6. Open Problems

Is there a combinatorial proof of the marked hook formula (2.11), analogous to the
Robinson-Schensted-Knuth correspondence for proving (2.2)? Let T be a standard
Young tableau of shape λ (see [Knuth 98, p. 47]), u be a box in λ and m an inte-
ger such that 1 ≤ m ≤ hu(λ). The triplet (T, u,m) is called a marked Young tableau of
shape (λ, u). The number of marked Young tableaux of shape (λ, u) is then fλhu. On
the other hand, call marked permutation each triplet (σ, j, k) where σ ∈ Sn, 1 ≤ j ≤ n
and 1 ≤ k ≤ n+ j − 1. We say that the letter j within the permutation σ is marked k.
The total number of marked permutations of order n is

n
∑

j=1

(n+ j − 1)n! =
n(3n− 1)

2
n!

Example. The sequence 6 4 9 5k 7 1 2 8 3 with 1 ≤ k ≤ 13 is a marked permutation,
whose letter 5 is marked k. The two diagrams in Figure 4 are marked Young tableaux
of the same shape, where 1 ≤ i, j ≤ 3.

1 3 4 6 7
2 8
5 9
i j

1 2 3 6 7
4 5
8 9

Figure 4. Marked Young tableaux

Problem 6.1. Find a marked Robinson-Schensted-Knuth correspondence between pairs
of marked Young tableaux and marked permutations that yields a direct proof of the
marked hook formula (Theorem 2.3).

Keeping in mind that the number of all standard Young tableaux on {1, 2, . . . , n} is
equal to the number of involutions of order n (see (2.4)), we are led to make the following
statement.

Problem 6.2. Find a formula for the number of all marked standard Young tableaux
(that could be called marked involutions):

∑

λ⊢n

fλ
∑

v∈λ

hv =?

More generally, is there a simple formula for
∑

λ∈P

∏

v∈λ

(

1 +
1

hv

)

x =?

Let t = 2t′+1 be an odd positive integer. In [Han 08c] we have constructed a bijection
φV : λ 7→ (v0, v1, . . . , vt−1), which maps each t-core onto a V -coding such that

(6.1) |λ| =
1

2t
(v20 + v21 + · · ·+ v2t−1)−

t2 − 1

24



SOME CONJECTURES AND OPEN PROBLEMS ON PARTITION HOOK LENGTHS 13

and

(6.2)
∏

v∈λ

(

1−
t2

h2
v

)

=
(−1)t

′

1! · 2! · 3! · · · (t− 1)!

∏

0≤i<j≤t−1

(vi − vj).

The right-hand side of (6.2) appears in the Macdonald identities for type A
(a)
ℓ (see

[Macdonald 72]). Notice that the parameter t on the right-hand side of (6.2) can only
take positive integer values, because t is a vector length, whereas on the left-hand side
t can be any complex number. For that reason we call formula (6.2) an indiscretization

analogue of the Macdonald identities for A
(a)
ℓ . This indiscretization principle led us to

the following Nekrasov-Okounkov formula [Nekrasov and Okounkov 06, Han 08a]

(6.3)
∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1−
z

h2

)

=
∏

k≥1

(1− xk)z−1.

Problem 6.3. Find the indiscretization analogue of the Macdonald identities for the
other affine root systems (see [Macdonald 72]) and deduce other expansion formulas for
the powers of the Euler Product.

The answer to Problem 6.2 will produce a lot of identities for powers of the Euler
Product. For example,

∏

m≥1

(1− xm) =
∞
∑

k=−∞

(−1)kxk(3k+1)/2 (by Euler);

=
∑

λ∈P

∏

v∈λ

(

1−
2

h2
v

)

x (by type A
(a)
l );

=? (by type Bl);

· · ·

In general, it is not easy to convert one identity to another directly.
Taking z = 4 in (6.3) yields the following identity due to Jacobi

(6.4)
∏

m≥1

(1− xm)3 =
∑

m≥0

(−1)m(2m+ 1)xm(m+1)/2.

In fact, the general form of the Jacobi triple product identity reads:

(6.5)
∏

n≥0

(1 + axn+1)(1 + xn/a)(1− xn+1) =
+∞
∑

n=−∞

anxn(n+1)/2.

Problem 6.4. Find an a-analogue of (6.3) that can be transformed to the Jacobi triple
product identity (6.5) by specialization.

Last news and comments

Mihai Cipu has proved Conjecture 5.2 [Cipu 08]. Richard Stanley and Greta Panova
have proved Conjecture 3.1 [Stanley 08, Panova 08]. Ken Ono and the author have
proved Conjecture 4.7 [Han and Ono 08]. Kevin Carde et al. have proved Conjecture
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2.1 [Carde et al. 08]. Another conjecture referred to as Conjecture 1.7 in [Han 08b] has
the same nature as the conjectures presented in the paper. It is no longer reproduced,
since it has just been proved by the author [Han 08c].
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