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Hook lengths and shifted parts of partitions
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Dedicated to George Andrews,
on the occasion of his seventieth birthday.

ABSTRACT. — Some conjectures on partition hook lengths, recently
stated by the author, have been proved and generalized by Stanley, who
also needed a formula by Andrews, Goulden and Jackson on symmetric
functions to complete his derivation. Another identity on symmetric func-
tions can be used instead. The purpose of this note is to prove it.

1. Introduction

The hook lengths of partitions are widely studied in the Theory of
Partitions, in Algebraic Combinatorics and Group Representation Theory.
The basic notions needed here can be found in [St99, p.287; La0l, p.1]. A
partition A is a sequence of positive integers A = (A1, Ag, - -+, \¢) such that
A1 > Ay > - > X > 0. The integers (\;)i=12,...¢ are called the parts
of A, the number ¢ of parts being the length of A denoted by ¢(\). The
sum of its parts Ay + Ay +- - -+ A\ is denoted by |A|. Let n be an integer, a
partition A is said to be a partition of n if |A\| = n. We write A F n. Each
partition can be represented by its Ferrers diagram. For each box v in the
Ferrers diagram of a partition A, or for each box v in A, for short, define
the hook length of v, denoted by h,(\) or h,, to be the number of boxes u
such that u = v, or u lies in the same column as v and above v, or in the
same row as v and to the right of v. The product of all hook lengths of A
is denoted by H.

The hook length plays an important role in Algebraic Combinatorics
thanks to the famous hook formula due to Frame, Robinson and Thrall
[FRT54]
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where f is the number of standard Young tableaux of shape A.
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For each partition A let A\ 1 be the set of all partitions p obtained from
A by erasing one corner of A\. By the very construction of the standard
Young tableaux and (1.1) we have

(1.2) h=Y 1

HEM1
and then
(1.3)
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In this note we establish the following perturbation of formula (1.3).
Define the g-function of a partition A\ of n to be

n

(1.4) ga(@) = [J(x+ A — ),

i=1
where A\; =0 for i > ¢(\) + 1.

Theorem 1.1. Let x be a formal parameter. For each partition A we
have

(1.5)
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Theorem 1.1 is proved in Section 2. Some equivalent forms of Theorem

1.1 and remarks are given in Section 4. As an application we prove (see
Section 3) the following result due to Stanley [St08].

Theorem 1.2. Let p,e and s be the usual symmetric functions [Ma95,
Chap.I]. Then

1.6 x—l—k—l) Mok = Hlg\(z +n)sy.
1o (7T s = S )

Recently, the author stated some conjectures on partition hook lengths
[Ha0O8a], which were suggested by hook length expansion techniques (see
[Ha08b]). Later, Conjecture 3.1 in [Ha08a] was proved by Stanley [St08].
One step of his proof is formula (1.6), based on a result by Andrews,
Goulden and Jackson [AGJ88|. In this paper we provide a simple and
direct proof of formula (1.6).

Remark. Let D be the difference operator defined by
D(f(z)) = f(z +1) — f().
By iterating formula (1.5) we obtain

gx(x)
prA)
H, s

which is precisely the hook length formula (1.1).
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2. Proof of Theorem 1.1

e(z) = gz tl) o) 9u()

HEM1

We see that €(x) is a polynomial in x whose degree is less than or equal
to n. Moreover

gz +1) —gx(z)
H)

[z"]e(x) = ["] =0.

Furthermore,

n

(2" ga(z +1) = Z(Ai —i+1l)=n+ Z(/\i —i) =n+[z" " gr(z)

i=1
and

_— e (@ 1) —ga(2) I n L
(" ]e(z) = [2" 7] 7N - H, H, H—M_O'

The last equality is guaranteed by (1.3), so that e(x) is a polynomial in
whose degree is less than and equal to n —2. To prove that e(x) is actually
zero, it suffices to find n — 1 distinct values for x such that e(x) = 0. In
the following we prove that e(i — \;) =0 for i — \; fori =1,2,...,n— 1.

If A\; = \;j+1, or if the i-th row has no corner, the factor x + \; —i lies in
gx(x) and also in g, (x) for all p € A\1. The factor (x+1)+ X411 —(i+1) =
x 4+ A\; — i is furthermore in gy(x + 1), so that €(i — \;) = 0.

Next, if \; > A\j4+1+1, or if the ¢-th row has a corner, the factor z+\; —¢
lies in gx(z) and g, (x) for all 4 € A\ 1, except for = N, which is the
partition obtained from \ by erasing the corner from the i-th row. In this
case equality (2.1) becomes

g)\(i -\ + 1) _ g>\/(i — >\z>

e(i—N;) = T, N

For proving Theorem 1.1, it remains to prove €(i — \;) = 0 or

Hy g(i—Xi+1)
H)\/ g)\/(i—/\i> '
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Consider the following product

(2.3) gx(z+1) _ H?:1(x+)\j—j+1)
' g (@) M@+ X —g)

The set of all 1 < j <n — 1 such that A\; > A;; is denoted by 7. For
1<j<n-—1andj¢T (which implies that j # i and X} = \; = \j1),
the numerator contains « + A\j41 — (j+ 1) +1 = 4+ A\; — j and the
denominator also contains x + \; — j = z + A; — j. After cancellation of
those common factors, (2.3) becomes

p(e+1)  TLegleth =i+
24) @ e @+ X —))

where B={1}U{i+1|ie T}. Letting x =i — \; in (2.4) yields

p—N+1)  TLegli—Ai+ A —j+1)

(25) o G—2)  ILerG—dt XN —7)

We distinguish the factors in the right-hand side of (2.5) as follows.

(Cl)ForjeBandj>i,i—N+X—j+1l=—(N—Nj+j—i—1)=
—hy(A), where v is the box (i, A\; + 1) in .

(C2) For je Band j <i,i— A +\j —j+ 1= hy(\), where v is the
box (7, A;) in .

(C3)ForjeTandj >4, i—N+A—j=—(Ni—Xj+j—i)=—h,(\),
where u is the box (i, A;) in .

(C4) For j € T and j <i,i— X+ Aj —j = hy(N), where u is the box
(j, )\1) in )\/.

(C5) ForjeTandj=i,i— N+ A, —j=i—XN+A\ —i=—1 See
Fig. 2.3 and 2.4 for an example.

Since each 7 € B such that 7 > ¢ is associated with j — 1 € 7 and
j — 1 >4, the right-hand side of (2.5) is positive and can be re-written

gpi—Xi+1) Tl )
g (i —A;) [T, hu(N)’

where v, u range over the boxes described in (C1)-(C4). Finally Hy/H
is equal to the right-hand side of (2.6), since the hook lengths of all other
boxes cancel. We have completed the proof of (2.2). []

(2.6)
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For example, consider the partition A = 55331 and ¢ = 4. We have
A = 55321 and

Hy 4-2:1-2:5-6 4-2-2-6

Hy  3-1-1-4:5° 3-4
4121 3|1
2 1
5 4
6 5
Fig. 2.1. Hook lengths of A Fig. 2.2. Hook lengths of X’

On the other hand, 7 = {2,4,5}, B=1{1,3,5,6} and
galz+1)  (z+5)(x+1)(x—3)(z—5)
g (x) (z+3)(z —2)(z —4)
Letting x =17 — \; =4 — 3 =1 yields
0@ _ (OE)(2(4) _6-22.4

gv(l) @13 43
viv|l u|l
v 1
X U
v X
Fig. 2.3. The boxes v in A Fig. 2.4. The boxes u in \

3. Proof of Theorem 1.2
Let R, (x) be the right-hand side of (1.6). By Theorem 1.1

Ry (z) = Z(—gx(m };f S S ACE 1))8>\

H),
AFn pnEMN1

:Rn($—1)+z Z gu(%:_l)&\

AFn pe\1

R+ Y Y ulrtn—1)

H,
pFEn—1 X:peX\1l

gu(z+n—1)
=R,(x—1)+ Z MH—MPIS“’
pFn—1
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where the next to last equality is
Z S\ = P1Su
A p€EA\1

by using Pieri’s rule [Ma95, p.73]. We obtain the following recurrence for
R, (z).
(3.1) R, (x) = Rp(x — 1)+ p1Rp—1(x).

Let L, (x) be the left-hand side of (1.6). Using elementary properties
of binomial coefficients

" fr+k—1
L,(z) = Z ( L )p’fen_k

k=0
" (r+k—2 T+ k—2
k=1

"+ k-2 _
:Ln(x—1)+]912< k1 )p’f Yen_k
(3.2) =Ly(x—=1)+pi1Lp_1(x).

We verify that Li(z) = Ri(z) and L,,(0) = R, (0), so that L, (x) = R, (x)
by (3.1) and (3.2). []

4. Equivalent forms and further remarks
Let A = A Xo--- Ay be a partition of n. The set of all 1 < 57 < n
such that A; > A;y; is denoted by 7 and let B={1}U{i+1|ie T}
Those two sets can be viewed as the in-corner and out-corner index sets,
respectively. Notice that # B = # 7 +1. For each i € T we define \*~ to
be the partition of n — 1 obtained form A by erasing the right-most box
from the i-th row. Hence

(4.1) M1={\"|ieT)
We verify that

_p@)E+r—i-1)
(42) ) = N =)

From Theorem 1.1

p@+) —g(@) g p@Etri-i-1) 1
Hy (z+ X —i)(z—n) HC
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or

H) v =n-—=x @ = mga@+1)
(4.3) ZEZTHM x (1 I+ —i) * gx(x) .

Let us re-write (1.3)

(4.4) LI
peEXN1 T H

By subtracting (4.3) from (4.4) we obtain the following equivalent form of
Theorem 1.1.

Theorem 4.1. We have
H 1 — 1

X =
Hyi- x4+ X —1 gx(z)

€T
By the definitions of 7 and B we have
(x—n)ga(z+1)  [lLegl@+Ai—i+1)
w@  Iler@tr—i
so that Theorem 1.1 is also equivalent to the following result.
Theorem 4.2. We have
Z Hy y 1 CJLieglz+Ai—i+1)

(4.6)

(4.7)

. x -
= Hyi- x4+ XN —i [Licr(x+ A —d)

For example, take A\ = 55331. Then 7 = 2,4,5 and B = 1,3,5,6 =
{1,24+ 1,44+ 1,5+ 1}.

A b

9

d

Fig. 4.1. in-corner Fig. 4.2. out-corner
Hence A\~ = 54331, M~ = 55321 and A\~ = 55330. Equality (4.7)

becomes
H, 1 H, 1 H, 1
He o—4 Ha “r—1 Hs “z+3
(r=5)(z—3)(x+ 1)(x+5)
(x —4)(x—1)(z+ 3)
1722 — 38z — 75
(x —4)(z —1)(z+3)
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Theorems 4.1 and 4.2 can be proved directly using the method used in
the proof of Theorem 1.1. First, we must verify that the numerator in the
right-hand side of (4.5) is a polynomial in z whose degree is less than (<)
# T —1. By the partial fraction expansion technique it suffices to verify
that (4.7) is true for all z = ¢ — \; (¢ € 7). This direct proof contains the
main part of the proof of Theorem 1.1. However it does not make use of
the fundamental relation (1.3) or (4.4). Thus, the following corollary of
Theorem 4.2 makes sense.

Corollary 4.4. We have

(4.8) Z 2 _ n.

H,
HEM1
Proof. Let # T = k. The right-hand side of (4.7) has the following

form
ka_l + PP

xk + . e
We now evaluate the coefficient C. By (4.6) we can write C = A — B with

n

A:[x”_l]xH(x-l-)\i—i): Z (Ai = )N — )

i=1 1<i<j<n
and
B = [z""Y(z —n) H(x +A—i+1)
i=1
= ) -+ DN—j+)—n Y (N—i+1).
1<i<j<n 1<i<n
:Bl—n Z ()\1—2+1),
1<i<n
where
Bi= ) (MN—i+D\—j+1)
1<i<j<n

B Z (O‘z‘—i)()\j—j)+()‘i_i)+()‘j_j)+1>

— A+ _Z A=)+ ) W—jH(Z)

— 4+ Zm T Zm ~oy -0+ (3)
— A+ 1<;n(n SO — i) + <;’)



Finally

C

[AGJ88]
[FRT54]
[Ha08a]
[Ha08b]
[La01]
[Ma95]
[St99]

[Sto08]

=A-B
. n .

— Z (n—1)(\; —i) — (2)+n Z (N —i+1)

1<i<n 1<i<n
—_— ‘_. ¢_' — n :_' 2
—— T -+ ¥ - (5) 40 X i

1<i<n 1<i<n 1<i<n
-y (Ai—i)—(g)—i—nQ

1<i<n
o n+1 [ 2
=n < ) ) <2)+n =n. []
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