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ABSTRACT. The doubloon polynomials are generating functions for
a class of combinatorial objects called normalized doubloons by the com-
pressed major index. They provide a refinement of the q-tangent numbers
and also involve two major specializations: the Poupard triangle and the
Catalan triangle.

1. Introduction

The doubloon (∗) polynomials dn,j(q) (n ≥ 1, 2 ≤ j ≤ 2n) introduced in
this paper serve to globalize the Poupard triangle [Po89] and the classical
Catalan triangle [Sl07]. They also provide a refinement of the q-tangent
numbers, fully studied in our previous paper [FH08]. Finally, as generating
polynomials for the doubloon model, they constitute a common combina-
torial set-up for the above integer triangles. They may be defined by the
following recurrence:

(D1) d0,j(q) = δ1,j (Kronecker symbol);
(D2) dn,j(q) = 0 for n ≥ 1 and j ≤ 1 or j ≥ 2n+ 1;
(D3) dn,2(q) =

∑

j

qj−1 dn−1,j(q) for n ≥ 1;

(D4) dn,j(q)− 2 dn,j−1(q) + dn,j−2(q)

= −(1− q)
j−3
∑

i=1

qn+i+1−j dn−1,i(q)

− (1 + qn−1) dn−1,j−2(q) + (1− q)
2n−1
∑

i=j−1

qi−j+1 dn−1,i(q)

for n ≥ 2 and 3 ≤ j ≤ 2n.

The polynomials dn,j(q) (n ≥ 1, 2 ≤ j ≤ 2n) are easily evaluated using
(D1)–(D4) and form the doubloon polynomial triangle, as shown in Fig. 1.1
and 1.1′.

d1,2(q)
d2,2(q) d2,3(q) d2,4(q)

d3,2(q) d3,3(q) d3,4(q) d3,5(q) d3,6(q)
d4,2(q) d4,3(q) d4,4(q) d4,5(q) d4,6(q) d4,7(q) d4,8(q)

Fig. 1.1. The doubloon polynomial triangle

Key words and phrases. Doubloon polynomials, doubloon polynomial
triangle, Poupard triangle, Catalan triangle, reduced tangent numbers.

Mathematics Subject Classifications. 05A15, 05A30, 33B10
(∗) Although the word “doubloon” originally refers to a Spanish gold coin,
it is here used to designate a permutation written as a two-row matrix.
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d1,2(q) = 1; d2,2(q) = q; d2,3(q) = q + 1; d2,4(q) = 1;

d3,2(q) = 2q3+2q2; d3,3(q) = 2q3+4q2+2q; d3,4(q) = q3+4q2+4q+1;
d3,5(q) = 2q2 + 4q + 2; d3,6(q) = 2q + 2;

d4,2(q) = 5q6+12q5+12q4+5q3; d4,3(q) = 5q6+17q5+24q4+17q3+5q2;
d4,4(q) = 3q6 + 15q5 + 29q4 + 29q3 + 15q2 + 3q;
d4,5(q) = q6 + 9q5 + 25q4 + 34q3 + 25q2 + 9q + 1;
d4,6(q) = 3q5 + 15q4 + 29q3 + 29q2 + 15q + 3;
d4,7(q) = 5q4 + 17q3 + 24q2 + 17q + 5; d4,8(q) = 5q3 + 12q2 + 12q + 5.

Fig. 1.1′. The first doubloon polynomials

Notice the different symmetries of the coefficients of the polynomials
dn,j(q), which will be fully exploited in Section 4 (Corollaries 4.3, 4.7,
4.8). Various specializations are displayed in Fig. 1.2 below, where Cn =

1
2n+1

(

2n
n

)

stands for the celebrated Catalan number and tn for the reduced
tangent number occurring in the Taylor expansion

√
2 tan(u/

√
2) =

∑

n≥0

u2n+1

(2n+ 1)!
tn

=
u

1!
1 +

u3

3!
1 +

u5

5!
4 +

u7

7!
34 +

u9

9!
496 +

u11

11!
11056 + · · ·(1.1)

The symbol Σ attached to each vertical arrow has the meaning “make the
summation over j” and dn(q) is the polynomial further defined in (1.3).

dn,j(0)
q=0←− dn,j(q)

q=1−→ dn,j(1)




y
Σ





y
Σ





y
Σ

Cn
q=0←− dn(q)

q=1−→ tn

Fig. 1.2. The specializations of dn,j(q)

When q = 1, the (D1)–(D4) recurrence becomes

(P1) d0,j(1) = δ0,j (Kronecker symbol);
(P2) dn,j(1) = 0 for n ≥ 1 and j ≤ 1 or j ≥ 2n+ 1;
(P3) dn,2(1) =

∑

j

dn−1,j(1) for n ≥ 1;

(P4) dn,j(1)− 2 dn,j−1(1) + dn,j−2(1) = −2 dn−1,j−2(1)
for n ≥ 2 and 3 ≤ j ≤ 2n,

which is exactly the recurrence introduced by Christiane Poupard [Po89].

1
1 2 1

4 8 10 8 4
34 68 94 104 94 68 34

Fig. 1.3. The Poupard triangle (dn,j(1))
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The integers dn,j(1) are easily evaluated using (P1)–(P4) and form the
Poupard triangle, as shown in Fig. 1.3.

When q = 0, relation (D4) becomes:

dn,j(0)− 2 dn,j−1(0) + dn,j−2(0) = −dn−1,j−2(0) + dn−1,j−1(0),

which can be rewritten as

dn,j(0)− dn,j−1(0)− dn−1,j−1(0) = dn,j−1(0)− dn,j−2(0)− dn−1,j−2(0),

so that by induction

dn,j(0)− dn,j−1(0)− dn−1,j−1(0) = dn,2(0) =
∑

j

qj−1 dn−1,j |q=0= 0

using (D2) and (D3) when n ≥ 2. Consequently, the integers dn,j(0)
satisfy the recurrence relation

(C1) dn,j(0) = dn,j−1(0) + dn−1,j−1(0)

for n ≥ 2 and 3 ≤ j ≤ 2n with the initial conditions

dn,n+1(0) = 1 (n ≥ 1);

(C2) dn,j(0) = 0 (n ≥ 1 and j ≤ 1 or j ≥ 2n+ 1);

dn,2(0) = dn,3(0) = · · · = dn,n(0) = 0 (n ≥ 2).

In view of (C1) and (C2) the integers dn,j(0) (n ≥ 1, n + 1 ≤ j ≤ 2n)
obey the rules of the classical Catalan triangle that has been studied by
many authors (see the sequence A00976 in Sloane [Sl07] and its abundant
bibliography). They form the Catalan triangle displayed in Fig. 1.4.

1
0 1 1

0 0 1 2 2
0 0 0 1 3 5 5

0 0 0 0 1 4 9 14 14
0 0 0 0 0 1 5 14 28 42 42

Fig. 1.4. The Catalan triangle (dn,j(0))

For each n ≥ 0 let An(t, q) be the Carlitz [Ca54, Ca75] q-analog of the
Eulerian polynomial defined by the identity

(1.2)
An(t, q)

(t; q)n+1
=

∑

j≥0

tj([j + 1]q)
n ,

where (t; q)n+1 = (1−t)(1−tq) · · · (1−tqn) and [j+1]q = 1+q+q2+· · ·+qn

are the traditional q-ascending factorials and q-analogs of the positive
integers.

3



The polynomial dn(q) under study was introduced in [FH08]. It is
defined by

(1.3) dn(q) =
(−1)nq(n2)A2n+1(−q−n, q)

(1 + q)(1 + q2) · · · (1 + qn)
.

It was shown to be a polynomial of degree
(

n−1
2

)

, with positive integral

coefficients, having the following two properties:

dn(1) = tn;(1.4)

dn(0) = Cn (n ≥ 0);(1.5)

(see the bottom row in the diagram of Fig. 1.2.)
The first values of the polynomials dn(q) are: d0(q) = d1(q) = 1;

d2(q) = 2 + 2q; d3(q) = 5 + 12q + 12q2 + 5q3; d4(q) = 14 + 56q + 110q2 +
136q3 + 110q4 + 56q5 + 14q6.

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. Let (dn,j(q)) be the set of polynomials defined by (D1)–
(D4) and dn(q) be defined by (1.3). Then, the following identity holds

(1.6)
∑

j

dn,j(q) = dn(q).

In other words, the diagram in Fig. 1.2 is commutative.

Even for q = 1 identity (1.6), which then reads
∑

j dn,j(1) = tn, is
not at all straightforward. It was elegantly proved by Christiane Poupard
[Po89] by means of the bivariable generating function

(1.7) Z(u, v) = 1 +
∑

n≥1

∑

1≤l≤2n−1

u2n−l

(2n− l)!

vl

l!
dn,l+1(1).

She even obtained the following stronger result

Z(u, v) =
cos((u− v)/

√
2)

cos((u+ v)/
√
2)

,(1.8)

so that
∂

∂u
Z(u, v)

∣

∣

∣

{v=0}
=

∑

n≥1

u2n−1

(2n− 1)!
dn,2(1) =

√
2 tan(u/

√
2),(1.9)

which proves
∑

j dn,j(1) = tn by appealing to (P3).
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Finally, she obtains a combinatorial interpretation for the polynomial

(1.10) dn(s, 1) =
∑

j

dn,j(1) s
j

in terms of strictly ordered binary trees, or in an equivalent manner, of
André permutations which are also alternating (see, e.g. [FS71], [FS71a],
[FS73]).

For q = 0 identity (1.6) reads
∑

j dn,j(0) = Cn = 1
n+1

(

2n
n

)

. This is a
consequence of the identities

dn,2n(0) =
∑

j

dn−1,j(0);(1.11)

dn,j(0) =

(

j − 2

n− 1

)

−
(

j − 2

n

)

=
2n− j + 1

n

(

j − 2

n− 1

)

;(1.12)

so that, in particular,

dn,2n(0) =
1

n

(

2n− 2

n− 1

)

= Cn−1;(1.13)

easily obtained from (C1) and (C2) by induction and iteration, as well as
an expression for the generating function

(1.14)
∑

n≥1

un
∑

j

dn,j(0)v
j =

1

1− v − uv

(

uv2 − v

2

(

1−
√

1− 4uv2
))

.

Again, the reader is referred to the excellent commented bibliography
about the sequence A009766 in Sloane’s On-Line Encyclopedia of Integer
Sequences [Sl07], in particular the contributions made by David Callan
[Cal05] and Emeric Deutsch [De04], where identities (1.11)–(1.14) are ac-
tually derived with other initial conditions.

The proof of Theorem 1.1 will be of combinatorial nature. In our previ-
ous paper [FH08] we proved that each polynomial dn(q) was a polynomial
with positive integral coefficients by showing that it was the generating
function for the class N 0

2n+1 of permutations called normalized doubloons,
by an integral-valued statistic “cmaj” called the compressed major index:

(1.15) dn(q) =
∑

δ∈N0
2n+1

qcmaj δ.

In particular, dn(1) = #N 0
2n+1 = tn by (1.4). Normalized doubloon

and “cmaj” will be fully described in Section 2. Here we just recall
that each normalized doubloon δ ∈ N 0

2n+1 is a two-row matrix δ =
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(

a0 a1 ···an

b0 b1 ··· bn

)

, where the word ρ(δ) = a0a1 · · ·anbnbn−1 · · · b0 is a permuta-
tion of 012 · · · (2n+1) having further properties that will be given shortly.
The set of all normalized doubloons δ =

(

a0 a1 ··· an

b0 b1 ··· bn

)

such that b0 = j is

denoted by N 0
2n+1,j. It will be shown that N 0

2n+1,j is an empty set for

j = 0, 1 and 2n+ 1, so that the subsets N 0
2n+1,j (j = 2, 3, . . . , 2n) form a

partition of N 0
2n+1. Consequently, the following identity holds:

(1.16) dn(q) =
2n
∑

j=2

∑

δ∈N0
2n+1,j

qcmaj δ.

Accorgingly, Theorem 1.1 is a simple corollary of the next theorem.

Theorem 1.2. Let (dn,j(q)) be the set of polynomials in one variable q
defined by (D1)–(D4). Then dn,j(q) is the generating polynomial for

N 0
2n+1,j by the compressed major index. In other words,

(1.17) dn,j(q) =
∑

δ∈N 0
2n+1,j

qcmaj δ.

To prove that the polynomial dn,j(q), as expressed in (1.17), satisfies
(D4), symmetry properties must be derived (see Corollaries 4.3, 4.7 and
4.8). This requires a careful geometric study of those doubloons and how
the statistic “cmaj” evolves. All this is developed in Sections 3 and 4. The
proof of the recurrence is completed in Section 5 and in the final Section
concluding remarks are made.

2. Doubloons

A doubloon of order 2n+ 1 is a 2× (n+ 1)-matrix δ =
(

a0 a1 ···an

b0 b1 ··· bn

)

such
that the word ρ(δ) = a0a1 · · ·anbnbn−1 · · · b0, called the reading of δ, is a
permutation of 012 · · · (2n + 1). Let D2n+1 (resp. D0

2n+1) denote the set
of all doubloons δ =

(

a0 a1 ··· an

b0 b1 ··· bn

)

of order (2n + 1) (resp. the subset of all
doubloons such that a0 = 0).

Let 1 ≤ k ≤ n; each doubloon δ=
(

a0 a1 ···an

b0 b1 ··· bn

)

is said to be normalized

at k, if the following two conditions are satisfied:
(N1) exactly one of the two integers ak, bk lies between ak−1 and bk−1

(we also say that δ is interlaced at k);
(N2) either ak−1 > ak and bk−1 > bk, or ak−1 < bk and bk−1 < ak.

In an equivalent manner, δ is normalized at k, if one of the four following
orderings holds:

(2.1)

ak−1 < bk < bk−1 < ak;

bk < bk−1 < ak < ak−1;

bk−1 < ak < ak−1 < bk;

ak < ak−1 < bk < bk−1.
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For each pair of distinct integers (i, j) the symbol N i
2n+1,j will de-

note the set of all doubloons δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

, normalized at every k =
1, 2, . . . , n, such that a0 = i and b0 = j. The doubloons belonging to

N 0
2n+1,j for some j are simply called normalized. Also N 0

2n+1 designates

the union of the sets N 0
2n+1,j ’s. For further results on permutations stud-

ied as two-row matrices see [Ha92, Ha94, FH00].
Let δ=

(

a0 a1 ··· an

b0 b1 ··· bn

)

be a doubloon of order (2n+1) and h an integer. For
each k = 0, 1, . . . , n let a′k = ak + h, b′k = bk + h be expressed as residues

mod(2n+ 2). The two-row matrix
(

a′

0 a′

1 ···a′

n

b′
0
b′
1
··· b′n

)

, denoted by δ + h, is still a

doubloon. Let Th : δ 7→ δ + h.

Proposition 2.1. The map Th, restricted to N i
2n+1,j, is a bijection onto

N i+h
2n+1,j+h (superscript and subscript being taken mod(2n+ 2)).

Proof. The four orderings in (2.1) are cyclic rearrangements of each
other, so that if δ is normalized at each i, the doubloon Thδ = δ + h has
the same property.

The number of descents, des δ, (resp. the major index, maj δ) of a
doubloon δ=

(

a0 a1 ···an

b0 b1 ··· bn

)

is defined to be the number of descents (resp. the
major index) of the permutation ρ(δ) = a0a1 · · ·anbnbn−1 · · · b0, so that if
the descents (ai > ai+1, or an > bn, or still bi−1 > bi) occur at positions
l1, l2, . . . , lr in ρ(δ), then des δ = r and maj δ = l1 + l2 + · · · + lr. The
compressed major index, cmaj δ, of δ is defined by

(2.2) cmaj δ = maj δ − (n+ 1) des δ +
(

n
2

)

.

For example, there is one normalized doubloon of order 3 (n = 1):
δ =

(

0 3
2 1

)

and cmaj δ = maj(0 3 1 2)− (1 + 1) des(0 3 1 2) +
(

1
2

)

= 0, so that
d1,2(q) = 1. There are four normalized doubloons of order 5 (n = 2) and
the partition of N 0

5 reads:

N 0
5,2 =

{

(

0 4 3
2 1 5

)

}

, N 0
5,3 =

{

(

0 5 4
3 2 1

)

,

(

0 4 2
3 1 5

)

}

, N 0
5,4 =

{

(

0 5 3
4 2 1

)

}

.

We have cmaj(043512) = maj(043512)− 3 des(043512) +
(

2
2

)

= (2 + 4) −
3 × 2 + 1 = 1, so that d2,2(q) = q. Furthermore, d2,3(q) = 1 + q and
d2,4(q) = 1, as expected (see Fig. 1.2).

3. Operations on doubloons

In this section we study the actions of several operators on the statistic
“cmaj.” First, we recall the action of the dihedral group on the tradi-
tional statistics “des” and “maj,” in particular characterize the images of
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each permutation σ=σ(1)σ(2) · · ·σ(n) under the reversal r (resp. comple-

ment c) that maps σ onto its mirror image rσ = σ(n) · · ·σ(2)σ(1) (resp.
onto its complement c σ = (n+1−σ(1))(n+1−σ(2)) · · ·(n+1−σ(n)) ).
The next properties are well-known (see, e.g., [FS78]): if σ belongs to Sn,
then

des rσ = n− 1− desσ; maj rσ = majσ − n desσ +
(

n
2

)

;(3.1)

des c σ = n− 1− desσ; maj c σ =
(

n
2

)

−majσ;(3.2)

des r c σ = des σ; maj r c σ = n desσ −majσ.(3.3)

Now let i, j be the two integers defined by σ(1) = n − j, σ(n) = n − i
and σ′ be the permutation mapping k onto

σ′(k) =

{

σ(k) + i, if σ(k) + i ≤ n;
σ(k) + i− n, if σ(k) + i > n.

The operation σ 7→ σ′ and Property (3.5) below already appear in [Ha92b]
for the study of the Z-statistic.

Lemma 3.1. We have:

desσ − desσ′ =

{

0, if i < j;
1, if i > j;

(3.4)

majσ −majσ′ = i.(3.5)

Proof. As σ(n) = n−i, we can factorize the word σ = σ(1)σ(2) · · ·σ(n)
as a product p0q1p1 · · · qrpr (r ≥ 1), where the letters of all pk’s (resp. all
qk’s) are smaller than or equal to (resp. greater than) n − i. Also, let
p′0q

′
1p

′
1 · · · q′rp′r be the corresponding factorization of σ′ such that λp′0 =

λp0, λq
′
1 = λq1, . . . (λ being the word length). In particular, pr (and p′r)

is never empty since σ(n) = n− i (and σ′(n) = n), but p0 (resp. and p′0)
is non empty if and only if σ(1) + i = n− j + i ≤ n, that is, if i < j.

As the rightmost letter of each factor qk is larger than the leftmost
letter of pk, we have

desσ = des p0 + des q1 + 1 + des p1 + · · ·+ des qr + 1 + des pr.

In σ′ the rightmost letter of each p′k is greater than the leftmost letter
of q′k+1, so that, if i < j,

des σ′ = des p′0 + 1 + des q′1 + · · ·+ des p′r−1 + 1 + des q′r + des p′r

= des p0 + des q1 + 1 + · · ·+ des pr−1 + des qr + 1 + des pr

= desσ,

while, if i > j, the factor p′0 is empty and

des σ′ = des q′1 + · · ·+ des p′r−1 + 1 + des q′r + des p′r
= desσ − 1.
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However, in both cases we have:

majσ −majσ′ = λ(p0q1) + λ(p0q1p1q2) + · · ·+ λ(p0q1 · · · pr−1qr)

− (λ(p′0) + λ(p′0q
′
1p

′
1) + · · ·+ λ(p′0q

′
1 · · · p′r−1)

= λ(q1) + λ(q2) + · · ·+ λ(qr)

= #{k : σ(k) > n− i} = i.

Lemma 3.2. Let δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

be a doubloon such that a0 = i and

b0 = j. Also, let δ′ = T−i(δ) = δ − i =
(

0 a1−i ··· an−i
j−i b1−i ··· bn−i

)

. Then

(3.6) cmaj δ − cmaj δ′ =

{

−i, if i < j;
n+ 1− i, if i > j.

Proof. Add 1 to each letter of the reading ρ(δ) = a0a1 · · ·anbnbn−1 · · · b0
of δ and do the same for the reading ρ(δ′) of δ′. We obtain two permuta-
tions σ, σ′ of 12 · · · (2n+ 2) of the form:

σ = (i+ 1) σ(2) · · · σ(2n+ 1) (j + 1);

σ′ = 1 σ′(2) · · · σ′(2n+ 1) (j − i+ 1).

When the transformation r c is applied to each of them, we get

r c σ = (2n+ 2− j) · · · (2n+ 2− i);

r c σ′ = (2n+ 2− j + i) · · · (2n+ 2).

It follows from Lemma 3.1 (with (2n + 2) replacing n, r c σ instead of σ
and r c σ′ instead of σ′) that

des r c σ − des r c σ′ =

{

0, if i < j;
1, if i > j;

maj r c σ −maj r c σ′ = i,

so that by (3.3)

desσ − desσ′ =

{

0, if i < j;
1, if i > j;

majσ −majσ′ = (2n+ 2)(desσ − desσ′)− (maj r c σ −maj r c σ′)

= (2n+ 2)(desσ − desσ′)− i.

As cmaj δ = majσ − (n+ 1) desσ +
(

n
2

)

, we get

cmaj δ − cmaj δ′ = (majσ −majσ′)− (n+ 1)(desσ − desσ′)

= (n+ 1)(desσ − desσ′)− i

=

{

−i, if i < j;
n+ 1− i, if i > j.
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Lemma 3.3. Let δ =
(

0 a1 ··· an

b0 b1 ··· bn

)

7→ δ′ =
(

a′

0 a′

1 ··· a′

n

b′
0
b′
1
··· b′n

)

be the transforma-

tion mapping δ ∈ D0
2n+1 onto the doubloon δ′ obtained from δ by replacing

each entry ak (resp. bk) by a′k = (2n+ 1)− ak (resp. b′k = (2n+ 1)− bk).
Then cmaj δ = n(n− 1)− cmaj δ′.

Proof. Again, add 1 to each element of ρ(δ) and of ρ(δ′) to obtain two
permutations σ and σ′ of 12 · · · (2n + 2). We have: σ′ = c σ. By (3.2)
des σ + des σ′ = 2n + 1 and majσ + majσ′ =

(

2n+2
2

)

= (n + 1)(2n + 1).
Hence, cmaj δ+cmaj δ′ = majσ+majσ′−(n+1)(des σ+des σ′)+n(n−1) =
(n+ 1)(2n+ 1)− (n+ 1)(2n+ 1) + n(n− 1) = n(n− 1).

Let Γ :
(

0 a1 ···an

b0 b1 ··· bn

)

7→
(

0 2n+2−a1 ··· 2n+2−an

2n+2−b0 2n+2−b1 ··· 2n+2−bn

)

[Γ : δ 7→ δ′′ in short]

be the transformation mapping each doubloon δ =
(

0 a1 ··· an

b0 b1 ··· bn

)

∈ D0
2n+1

onto the doubloon δ′′ =
( 0 a′′

1 ···a′′

n

b′′
0
b′′
1
··· b′′n

)

obtained from δ by replacing each

entry ak (resp. bk) by the residue a′′k = (2n + 2) − ak (resp. b′′k = (2n +
2)− bk).

Remark. If δ is interlaced at each k (condition (N1) holds at each k),
the same property holds for Γ(δ). However, if δ is normalized at each k,
the property is not preserved under the transformation Γ.

Lemma 3.4. For each δ ∈ D0
2n+1 we have: cmaj δ + cmaj Γ(δ) = n2.

Proof. First, transform δ into the doubloon δ′ defined in Lemma 3.3,

so that δ′ =
( 2n+1 a′

1 ···a′

n

2n+1−j b′
1
··· b′n

)

and cmaj δ = n(n−1)− cmaj δ′. Next, apply

Lemma 3.2 to δ′ with i = 2n+1, so that the new doubloon is of the form

δ′′ =
( 0 a′′

1 ··· a′′

n

2n+2−j b′′
1
··· b′′n

)

. Hence, cmaj δ′− cmaj δ′′ = (n+1)− (2n+1) = −n
and cmaj δ = n(n− 1)− cmaj δ′′ + n = n2 − cmaj δ′′.

4. Further operations on doubloons

In our previous paper [FoHa08] we also introduced a class of transfor-
mations φi (0 ≤ i ≤ n) on D2n+1, called micro flips, which permute the
entries in a given column. By definition,

φi :

(

a0 · · ·ai−1 ai ai+1 · · ·an
b0 · · · bi−1 bi bi+1 · · · bn

)

7→
(

a0 · · ·ai−1 bi ai+1 · · ·an
b0 · · · bi−1 ai bi+1 · · · bn

)

(0 ≤ i ≤ n).

Next, the macro flips Φi are defined by Φi = φiφi+1 · · ·φn (1 ≤ i ≤ n).
Note that both φi and Φi are involutions of D2n+1. In particular,

(4.1) Φ1Φ2 · · ·Φi =
∏

j odd,
j≤i

φj .

By means of the transformation Γ (see Lemma 3.4 above) and the invo-
lutions Φi’s we now construct a bijection of N 0

2n+1,j onto N 0
2n+1,2n+2−j .
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Lemma 4.1. Let δ =
(

0 a1 ··· an

b0 b1 ··· bn

)

be a normalized doubloon and let

Γ(δ) = δ′′ =
( 0 a′′

1 ··· a′′

n

b′′
0
b′′
1
··· b′′n

)

. Then, for each i = 1, 2, . . . , n the doubloon

Φ1Φ2 · · ·Φi(δ
′′) is normalized at each integer 1, 2, . . . , i. In particular,

Φ1Φ2 · · ·Φn(δ
′′) is normalized.

Proof. Using (4.1) we have:

δ∗ = Φ1Φ2 · · ·Φi(δ
′′) =







( 0 b′′1 a′′

2 ··· a
′′

i−1 b′′i
b′′
0
a′′

1
b′′
2
···b′′

i−1
a′′

i

)

, if i odd;
( 0 b′′1 a′′

2 ··· b
′′

i−1 a′′

i

b′′
0
a′′

1
b′′
2
···a′′

i−1
b′′
i

)

, if i even.

The doubloon δ′′ is not normalized (see the Remark before Lemma 3.4),
but is interlaced at each i, so that the relations a′′j−1 < a′′j , b

′′
j−1 < b′′j or

a′′j−1 > a′′j , b
′′
j−1 > b′′j hold for all j. This shows that δ∗ is normalized

whenever j is odd or even.

For the next Proposition we need the following property proved in our
previous paper [FoHa08, Theorem 3.5]:

(4.2) Let δ =
(

0 a1 ···an

b0 b1 ··· bn

)

be an interlaced doubloon, normalized at i.
Then cmajΦi(δ)− cmaj δ = n− i+ 1 (1 ≤ i ≤ n).

Proposition 4.2. The transformation Φ1Φ2 · · ·ΦnΓ : δ 7→ δ∗ is a bijec-
tion of N 0

2n+1,j onto N 0
2n+1,2n+2−j having the property

(4.3) cmaj δ + cmaj δ∗ =

(

n

2

)

.

Proof. Let δ′′ = Γ(δ). As Φ1Φ2 · · ·Φi(δ
′′) is normalized at i, we have

cmajΦi Φ1Φ2 · · ·Φi(δ
′′)− cmajΦ1Φ2 · · ·Φi(δ

′′) = n− i+ 1

by (4.2). Summing over all i = 1, 2, . . . , n we get
n
∑

i=1

(cmajΦ1Φ2 · · ·Φi−1(δ
′′)− cmajΦ1Φ2 · · ·Φi(δ

′′)) =

n
∑

i=1

(n− i+ 1)

cmaj δ′′ − cmajΦ1Φ2 · · ·Φn(δ
′′) = n2 −

(

n
2

)

.

Using Lemma 3.4 we conclude that (n2 − cmaj δ) − cmaj δ∗ = n2 −
(

n
2

)

and then cmaj δ + cmaj δ∗ =
(

n
2

)

.

Example. For n = 2 we have Φ1Φ2 = φ1. The four normalized dou-
bloons of order 5 (n = 2) displayed at the end of Section 2 are mapped
under Φ1Φ2Γ = φ1Γ as shown in Fig. 4.1. Next to each doubloon appears
the value of its “cmaj”.
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(

0 4 3
2 1 5

)

, 1
(

0 5 4
3 2 1

)

, 0
(

0 4 2
3 1 5

)

, 1
(

0 5 3
4 2 1

)

, 0


yΓ


yΓ


yΓ


yΓ
(

0 2 3
4 5 1

)

, 3
(

0 1 2
3 4 5

)

, 4
(

0 2 4
3 5 1

)

, 3
(

0 1 3
2 4 5

)

, 4


yφ1



yφ1



yφ1



yφ1

(

0 5 3
4 2 1

)

, 0
(

0 4 2
3 1 5

)

, 1
(

0 5 4
3 2 1

)

, 0
(

0 4 3
2 1 5

)

, 1

Fig. 4.1. The transformation Φ1Φ2 · · ·ΦnΓ

Let dn,j(q) =
∑

δ∈N0
2n+1,j

qcmaj δ. The final purpose is to show that dn,j(q)

satisfies relations (D1)− (D4). This will be done in Section 5. In the rest
of this section we state some symmetry properties of the dn,j(q)’s.

Corollary 4.3. For 2 ≤ j ≤ 2n we have:

(4.4) dn,j(q) = q(
n

2) dn,2n+2−j(q
−1).

Proof. This follows from the previous proposition:

dn,j(q) =
∑

δ∈N0
2n+1,j

qcmaj δ =
∑

δ∗∈N 0
2n+1,2n+1−j

q(
n

2)−cmaj δ∗ = q(
n

2) dn,2n+2−j(q
−1).

In the next lemma we study the action of the sole transposition φ0 that
permutes the leftmost entries of each doubloon.

Lemma 4.4. For each normalized doubloon δ

(4.5) cmaj δ − cmajφ0(δ) = −n.

Proof. Let ρ(δ) = 0a1 · · ·anbn · · · b1b0 be the reading of δ, so that
ρ(φ0(δ)) = b0a1 · · ·anbn · · · b10. As δ is normalized (and, in particular,
interlaced), we have: 0 < b1 < b0 < a1. Thus, ρ(δ) starts and ends with
a rise (0 < a1 and b1 < a0), while ρ(φ0(δ)) starts with a rise b0 < a1
and ends with a descent b1 > 0. Hence, des ρ(δ) = des ρ(φ0(δ)) − 1 and
maj ρ(δ) = maj ρ(φ0(δ))− (2n+ 1) and cmaj δ − cmaj ρ(φ0(δ)) = −(2n+
1)− (n+ 1)− 1 = −n

The involution φ0Φ1 = Φ1φ0 = φ0φ1 · · ·φn transposes the two rows of
each doubloon δ ∈ D2n+1.

Lemma 4.5. For each normalized doubloon δ

(4.5) cmaj δ = cmajφ0Φ1(δ).
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Proof. First, cmaj δ = cmajφ0(δ) − n by the previous lemma. Fur-
thermore, as φ0Φ1(δ) remains normalized at 1, relation (4.2) implies that
cmajΦ1(φ0Φ1(δ))− cmajφ0Φ1(δ) = n− 1 + 1. Thus,

cmajφ0Φ1(δ) = cmajφ0(δ)− n

= cmaj δ + n− n = cmaj δ.

We next study the joint action of the operators T−j (introduced in
Lemma. 3.2) φ0 and Φ1.

Proposition 4.6. The transformation T−jφ0Φ1 : δ 7→ δ′ is a bijection of

N 0
2n+1,j onto N 0

2n+1,2n+2−j having the property that

(4.6) cmaj δ − cmaj δ′ = n+ 1− j.

Proof. Let δ ∈ N 0
2n+1,j. Then, φ0Φ1(δ) is normalized at each i =

1, 2, . . . , n and also T−jφ0Φ1(δ) by the remark made before Lemma 3.2.
Thus, δ′ ∈ N 0

2n+1,2n+2−j and the map δ 7→ δ′ is bijective. Furthermore,
cmaj δ = cmajφ0Φ1(δ) by Lemma 4.5 and cmajφ0Φ1(δ) = cmaj δ′ + n +
1− j by Lemma 3.2.

Example. Again consider the four normalized doubloons of order 5.
We get the display of Fig. 4.2. with the value of “cmaj” next to each
doubloon.

(

0 4 3
2 1 5

)

, 1
(

0 5 4
3 2 1

)

, 0
(

0 4 2
3 1 5

)

, 1
(

0 5 3
4 2 1

)

, 0


yφ0Φ1



yφ0Φ1



yφ0Φ1



yφ0Φ1

(

2 1 5
0 4 3

)

, 1
(

3 2 1
0 5 4

)

, 0
(

3 1 5
0 4 2

)

, 1
(

4 2 1
0 5 3

)

, 0


yT−2



yT−3



yT−3



yT−4

(

0 5 3
4 2 1

)

, 0
(

0 5 4
3 2 1

)

, 0
(

0 4 2
3 1 5

)

, 1
(

0 4 3
2 1 5

)

, 1

Fig. 4.2. The transformation T−jφ0Φ1

Corollary 4.7. For 2 ≤ j ≤ 2n we have:

(4.7) dn,j(q) = qn+1−j dn,2n+2−j(q).

The corollary immediately follows from Proposition 4.6. In its turn the
next corollary is a consequence of both Corollaries 4.3 and 4.7.

Corollary 4.8. For 2 ≤ j ≤ 2n we have:

(4.8) dn,j(q) = q(
n+1

2 )+1−j dn,j(q
−1).

As could be seen in Fig. 1.2 for the first values, the polynomial dn,j(q)
is a multiple of dn,2n+2−j(q) (Corollary 4.7) and Corollary 4.8 indicates a
symmetry between its coefficients.
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5. The recurrence itself

In this section we prove Theorem 1.2, that is, we show that relations
(D1) − (D4) hold for dn,j(q) =

∑

δ∈N0
2n+1,j

qcmaj δ. The first two relations

(D1) − (D2) are evidently true. For proving that relations (D3) − (D4)
hold for such a dn,j(q) we start with a doubloon δ ∈ N 0

2n+1, drop its
leftmost column and compare the compressed major indices of δ and of
the doubloon obtained after deletion. In so doing we get the following
result.

Lemma 5.1. To each doubloon δ ∈ N 0
2n+1,j there corresponds a unique

triplet (k, l, δ′) such that k ≥ j − 1, l ≤ j − 2 and δ′ ∈ N k
2n−1,l having the

property that

(5.1) cmaj δ = cmaj δ′ + (n− 1).

Proof. Let δ =
(

0 a1 ··· an

j b1 ··· bn

)

∈ N 0
2n+1,j and define

a′i =

{

ai − 1, if ai < j;
ai − 2, if j < ai ≤ 2n+ 1;

with an analogous definition for the b′i, the b’s replacing the a’s. Then,

δ′ =
(

a′

1 ... a′

n

b′
1
... b′n

)

is a normalized doubloon of order (2n + 1), but its left-top

corner a′1 is not necessarily 0. Call it the reduction of δ. As a1 > j > b1,
we see that b′1 = b1 − 1 < j − 1 and a′1 = a1 − 2 > j − 2, that is,
b′1 ≤ j − 2 < j − 1 ≤ a′1. Thus δ

′ ∈ N k
2n−1,l with k ≥ j − 1 and l ≤ j − 2.

Conversely, given the triplet (δ′, k, l) with the above properties, we can
uniquely reconstruct the normalized doubloon δ.

As δ is normalized at 1, the inequalities 0 < b1 < j < a1 hold, so
that ρ(δ) starts and ends with a rise: 0 < a1, b1 < j. In particular,
des ρ(δ) = des ρ(δ′). However, maj ρ(δ) = maj ρ(δ′) + des δ, as the first
letter 0 is dropped when going from ρ(δ) to ρ(δ′). Hence, cmaj δ−cmaj δ′ =
des δ − ((n+ 1)− n) des δ +

(

n
2

)

−
(

n−1
2

)

= n− 1.

The previous Lemma yields the first passage from the generating poly-
nomial dn,j(q) for the normalized doubloons δ ∈ N 0

2n+1,j by “cmaj” to
the generating polynomial for doubloons of order (2n − 1), as expressed
in the next Corollary.

Corollary 5.2. For 2 ≤ j ≤ 2n we have:

(5.2) dn,j(q) = qn−1
∑

k≥j−1, l≤j−2

qn−k dn−1,2n+l−k(q).
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Proof. By the previous Lemma we can write:

dn,j(q) =
∑

δ∈N 0
2n+1,j

qcmaj δ = qn−1
∑

k≥j−1, l≤j−2

∑

δ′∈Nk
2n−1,l

qcmaj δ′ .

With each δ′ ∈ N k
2n−1,l associate δ′′ = T−kδ

′ = δ′ − k. By Lemma 3.2

we get δ′′ ∈ N 0
2n−1,2n+l−k (note that the residue mod(2n + 2) must be

considered in the subscript for l < k) and cmaj δ′ − cmaj δ′′ = n − k.
Hence,

∑

δ′∈Nk
2n−1,l

qcmaj δ′ = qn−k
∑

δ′′∈N0
2n−1,2n+l−k

qcmaj δ′′ = qn−kdn−1,2n+l−k(q).

When j = 2 in (5.2), we get:

dn,2(q) =
∑

k≥2

q2n−k−1dn−1,2n−k(q)

=
∑

k≥2

qi−1dn−1,i(q) [by the change of variables i = 2n− k]

and also

dn,2(q) = qn−1
∑

i≥2

dn−1,i(q) [by using (4.7).]

Consequently, relation (D3) holds for the polynomial dn,j(q) =
∑

δ∈N 0
2n+1,j

qcmaj δ.
Using (5.2) it is also easy to derive the identity:

q dn,3(q) = (q + 1) dn,2(q).

Proposition 5.2. For 2 ≤ j ≤ 2n we have:

(5.3) dn,j(q) =
∑

i

qmax(0,i+1−j) − qmin(i,2n+1−j)

1− q
dn−1,i(q).

Proof. Let i = 2n+ l − k with 0 ≤ l ≤ j − 2 and j − 1 ≤ k ≤ 2n − 1.
This implies 0 ≤ i + k − 2n ≤ j − 2, or still 2n − i ≤ k ≤ 2n + j − i − 2.
Taking the two relations keeping k within bounds into account we get the
double inequality:

(5.4) max(2n− i, j − 1) ≤ k ≤ min(2n+ j − i− 2, 2n− 1).

Identity (5.2) may then be rewritten as

(5.5) dn,j(q) = q2n−1
∑

i

d2n−1,i(q)
∑

k

q−k,
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with k ranging over the interval defined in (5.4). The geometric sum over
k is equal to

q−max(2n−i,j−1) − q−min(2n+j−i−2,2n−1)−1

1− q−1
.

Now, 2n−max(2n−i, j−1) = 2n+min(−2n+i,−j+1) = min(i, 2n−j+1)
and 2n−1−min(2n+ j− i−2, 2n−1) = max(0,−j+ i+1). Accordingly,

q2n−1
∑

k subject to (5.4)

q−k =
qmax(0,i+1−j) − qmin(i,2n+1−j)

1− q
.

This proves (5.3) when reporting the latter expression into (5.5).

For getting rid of “max” and “min” from identity (5.3) we decompose
the sum into four subsums, assuming j ≥ 3 (when j = 2 identity (5.3)
gives back (D3)). We obtain:

(5.6) (1− q)dn,j(q) =

j−1
∑

i=0

dn−1,i(q) +

2n+1
∑

i=j

qi+1−jdn−1,i(q)

−
2n−j
∑

i=0

qidn−1,i(q)−
2n+1
∑

i=2n−j+1

q2n+1−jdn−1,i(q).

By means of (5.6) we calculate dn,j(q)− dn,j−1(q) and then −dn,j−1(q) +
dn,j−2(q), whose sum is the left-hand side of (D4). In the computation
of (1− q)(dn,j(q)− dn,j−1(q)) the contribution of the first subsum is sim-
ply dn−1,j−1(q). Next, q2n−j+1dn−1,2n−j+1(q) is the contribution of the
second subsum. For the third subsum we get

−q dn−1,j−1(q) +
2n+1
∑

i=j

qi−j+1(1− q)dn−1,i(q)

and for the fourth one

−q2n+1−jdn−1,2n+1−j(q) +

2n+1
∑

i=2n−j+2

q2n+1−j(q − 1)dn−1,i(q).

Altogether

(5.7) dn,j(q)− dn,j−1(q)

= dn−1,j−1(q) +
2n+1
∑

i=j

qi−j+1dn−1,i(q)−
2n+1
∑

i=2n−j+2

q2n+1−jdn−1,i(q);

(5.8) − dn,j−1(q) + dn,j−2(q)

= −dn−1,j−2(q)−
2n+1
∑

i=j−1

qi−j+2dn−1,i(q) +

2n+1
∑

i=2n−j+3

q2n+2−jdn−1,i(q).
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Summing (5.7) and (5.8) we get:

dn,j(q)− 2dn,j−1(q) + dn−1,j−2(q)

= dn−1,j−1(q)− dn−1,j−2(q)

− q dn−1,j−1(q) + (1− q)
2n+1
∑

i=j

qi−j+1dn−1,i(q)

− q2n+1−j dn−1,2n−j+2(q)− (1− q)

2n+1
∑

i=2n−j+3

q2n+1−jdn−1,i(q).

Now, −q2n+1−j dn−1,2n−j+2(q)=−qn−1dn−1,j−2(q) by Corollary 4.7. Also

2n+1
∑

i=2n−j+3

q2n+1−jdn−1,i(q) =
2n−1
∑

i=2n−j+3

q2n+1−jdn−1,i(q)

=

j−3
∑

k=1

q2n+1−jdn−1,2n−k(q) [k = 2n− i]

=

j−3
∑

i=1

qn+i+1−jdn−1,i(q). [by Corollary 4.7]

Hence, dn,j(q)− 2 dn,j−1(q) + dn,j−2(q)

= −(1− q)
j−3
∑

i=1

qn+i+1−j dn−1,i(q)

− (1 + qn−1) dn−1,j−2(q) + (1− q)
2n−1
∑

i=j−1

qi−j+1 dn−1,i(q)

for n ≥ 2 and 3 ≤ j ≤ 2n, which is precisely relation (D4).

6. Concluding remarks

As mentioned in the Introduction, there has been a great number of
papers dealing with the Catalan Triangle (the numbers dn,j(0)). The re-
currence for the numbers dn,j(1), namely the set of conditions (P1)–(P4),
is definitely due to Christiane Poupard [Po89] and was recently rediscov-
ered by Graham and Zang [GZ08]. More exactly, the latter authors intro-
duced the notion of split-pair arrangement. To show that the number of
such arrangements of order n was equal to the reduced tangent number tn
they set up an algebra for the coefficients dn,j(1) and again produced the
recurrence (P1)–(P4), but their proof of the identity

∑

j dn,j(1) = tn was
more elaborate than the original one made by Christiane Poupard [Po89],
shortly sketched in the Introduction.

Referring to Section 4 we say that two doubloons δ, δ′ ∈ D2n+1 are
equivalent if there is a sequence φi1 , φi2 , . . . , φik of micro flips such that
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δ′ = φi1φi2 · · ·φik(δ). A doubloon δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

is said to be minimal,
if ak < bk holds for every k. Clearly, every equivalence class of doubloons
contains one and only one minimal doubloon. Also, as proved in [FH08],
each doubloon δ ∈ D0

2n+1 is equivalent to one and only one normalized
doubloon.

The link between split-pair arrangements and equivalence classes of
interlaced doubloons is the following: start with a interlaced and minimal

doubloon δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

and define the word w = x1x2 · · ·x2n by xl+1 = l
if and only if ak or bk is equal to l. For instance,

δ =

(

0 6 3 1 9
4 2 8 7 5

)

7→ w = 1 4 2 3 1 5 2 4 3 5.

As δ is interlaced (condition (N1)), exactly one of the integers ak, bk lies
between ak−1 and bk−1. If ak = l < l′ = bk, then xl+1 = xl′+1 = k. If
ak−1 = m < ak = l < bk−1 = m′ < bk = l′, then xm+1 = xm′+1 = k − 1
and there is exactly one letter equal to k, namely xl+1 between the two
occurrences of (k−1), namely xm+1 and xm′+1. Same conclusion if ak−1 <
ak < bk−1 < bk. Those words w of length 2n having the property that
exactly one letter equal to k lies between two occurrences of (k−1) for each
k = 2, 3, . . . , n was called split-pair arrangements by Graham and Zang
[GZ08]. The mapping δ 7→ w provides a bijection between equivalence
classes of interlaced doubloons and those arrangements.

A permutation σ = σ(1)σ(2) · · ·σ(2n+1) of 12 · · · (2n+1) is said to be
alternating if σ(2i) < σ(2i−1), σ(2i+1) for each i = 1, 2, . . . , n. For each
even integer 2i (1 ≤ i ≤ n) let w′

i (resp. w
′′
i ) be the longest right factor of

σ(1) · · ·σ(2i − 1) (resp. longest left factor of σ(2i + 1) · · ·σ(2n + 1)), all
letters of which are greater than σ(2i). Let minw′

i (resp. minw′′
i ) denote

the minimum letter of w′
i (resp. of w′′

i ). Then σ is called an alternating

André permutation if it is alternating and satifies minw′
i > minw′′

i for
every i = 1, 2, . . . , n. The number of alternating André permutations of
order (2n + 1) is equal to tn (see, e.g., [FS71], Property 2.6 and (5.4),
or [Po89], p. 370, also [FS74]). The alternating André permutations of
order 5 are the following: 53412, 51423, 41523, 31524. Let A2n+1,j

denote the set of alternating André permutations of order (2n+1) ending
with j.

Thanks to the identity

(6.1) dn,j(1) =
∑

i≥0

(

2n+ 1− j

2i+ 1

)

ti

j−1
∑

k=0

dn−i−1,k(1),

valid for n ≥ 1, 2 ≤ j ≤ 2n−1 (d0,j(1) = δ0,j) derived from the bivariable
generating function (1.8), Christiane Poupard proved that

(6.2) #A2n+1,j = dn,j(1).
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Three questions arise:
(1) Construct a natural (?) bijection of N 0

2n+1,j onto A2n+1,j.
(2) Find an adequate statistic “stat” on the alternating André permu-

tation such that holds the identity

dn,j(q) =
∑

σ∈A2n+1,j

qstatσ.

(3) As mentioned in the Introduction, we have an expression for the
generating function for dn,j(1) (formula (1.8)) and for dn,j(0) (formula
(1.14)). Find the exponential (or factorial) generating function for dn,j(q).
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