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Symmetry distribution

between hook length and part length for partitions

Christine Bessenrodt and Guo-Niu Han

ABSTRACT. — It is known that the two statistics on integer partitions
“hook length” and “part length” are equidistributed over the set of all
partitions of n. We extend this result by proving that the bivariate joint
generating function by those two statistics is symmetric. Our method is
based on a generating function by a triple statistic much easier to calculate.

1. Introduction

The basic notions needed here can be found in [11, p.287]. A partition λ
is a sequence of positive integers λ = (λ1, λ2, · · · , λℓ) such that λ1 ≥ λ2 ≥
· · · ≥ λℓ > 0. The integers λi, i = 1, 2, . . . , ℓ are called the parts of λ, the
number ℓ of parts being the length of λ denoted by ℓ(λ). The sum of its
parts λ1 + λ2 + · · ·+ λℓ is denoted by |λ|. Let n be an integer; a partition
λ is said to be a partition of n if |λ| = n. We write λ ⊢ n.

Each partition can be represented by its Ferrers diagram (or Young
diagram). For each box v in the Ferrers diagram of a partition λ, or for
each box v in λ, for short, define the arm length (resp. leg length, coarm
length, coleg length) of v, denoted by av or av(λ) (resp. lv, mv, gv), to be
the number of boxes u such that u lies in the same row as v and to the
right of v (resp. in the same column as v and above v, in the same row as
v and to the left of v, in the same column as v and under v). See Fig.1.

We define the hook length (resp. part length) of v in λ to be hv =
av + lv + 1 (resp. pv = mv + av + 1). Bessenrodt [2], Bacher and Manivel
[3] have proved that the two statistics hv and pv are equidistributed over
the set of all partitions of n, i.e.,

(1)
∑

λ⊢n

∑

v∈λ

xhv =
∑

λ⊢n

∑

v∈λ

xpv .

For example, the set of all partitions of 4 with their hook lengths (resp.
part lengths) is reproduced in Fig. 2 (resp. Fig. 3). We see that the two
above generating functions by hv and by pv are identical 7x+6x2 +3x3+
4x4.
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Fig. 1. arm, leg, coarm, coleg lengths

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

Fig. 2. partitions of 4 and the hook lengths hv
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Fig. 3. partitions of 4 and the part lengths pv

Previous studies have been done along those lines by Stanley, Elder,
Schmidt and Simion, Hoare, Kirdar, Skyrme, Han and Ji [10, 8, 12, 9, 13,
14, 5, 6, 7]. In particular, it was shown that the product over all parts of
all partitions of a fixed number n equals the product over the factorials of
all part multiplicities in all partitions of n. The combinatorial proofs of
this identity give in fact that the multisets of the corresponding factors in
the products are equal. This may be interpreted as saying that for all k,
the number of parts k in all partitions of n equals the number of k-hooks
of arm length 0 in all of these partitions.

In the present paper we study the joint distribution of the two statistics
hook length hv and part length pv. Our main result is the following
theorem.

Theorem 1. The bivariate joint generating function for the partitions of
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n by the two statistics hv and pv is symmetric. In other words, let

(2) Pn(x, y) =
∑

λ⊢n

∑

v∈λ

xhvypv .

We have

Pn(x, y) = Pn(y, x).

For example, the joint distribution of hv and pv for the partitions of 4
is reproduced in the following tableau, which is symmetric.

p \ h 1 2 3 4
∑

1 3 2 1 1 7
2 2 2 1 1 6
3 1 1 0 1 3
4 1 1 1 1 4
∑

7 6 3 4 20

2. The proof

First, recall the usual notation of the q-ascending factorial [4, chap. 1]

(a; q)n =

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1.

For 0 ≤ k ≤ n let

[

n

k

]

q

:=
(q; q)n

(q; q)k (q; q)n−k

be the usual q-binomial

coefficient.
We prove the following more precise result which will easily lead to

a proof of Theorem 1. For each given triplet (a, l,m) of integers let
fn(a, l,m) denote the number of the ordered pairs (λ, v) such that λ ⊢ n,
v ∈ λ, av = a, lv = l,mv = m. We obtain the explicit generating function
for fn(a, l,m).

Theorem 2. The generating function of fn(a, l,m) is given by the fol-

lowing formula:

∑

n≥0

fn(a, l,m)qn =
(q; q)a
(q; q)∞

[

l + a

a

]

q

[

m+ a

a

]

q

q(m+1)(l+1)+a.

Proof. For a fixed partition λ ⊢ n it is easy to see that all triplets
(av, lv, mv) (for v ∈ λ) are different. Now, let the triplet (a, l,m) be
fixed and the partition λ be free; the number of pairs (λ, v) such that
v ∈ λ, av = a, lv = l,mv = m is equal to the number of partitions λ, such
that there is a box v ∈ λ with av = a, lv = l,mv = m. The generating
function for those partitions is equal to the product of several “small”
generating functions for the regions of the partitions, as shown in Fig. 4.

3



v

l

am

A

B

C

D

Fig. 4. partition and its regions

Let F (a, l,m; q) =
∑

n fn(a, l,m)qn. It is quite routine (see, e.g., [1,
chap. 3]) to prove that

F (a, l,m; q) = A(q)B(q)C(q)D(q),

where

A(q) = 1/(q; q)m;

B(q) =

[

l + a

a

]

q

;

C(q) =
1

(1− qm+a+1)(1− qm+a+2) · · ·
=

(q; q)m+a

(q; q)∞
;

D(q) = q(m+1)(l+1)+a.

Finally, we obtain the generating function F (a, l,m; q) by multiplying all
the four above expressions.

Theorem 3. The triple statistic (av, lv, mv) has the same distribution as

(av, mv, lv). In other words, let the generating function for (av, lv, mv) be

Qn(x, y, z) =
∑

λ⊢n

∑

v∈λ

xavylvzmv .

Then

Qn(x, y, z) = Qn(x, z, y).

Proof. It suffices to prove the symmetry property for all the coefficients
in Qn. For each triple of integers (a, l,m) we have to show that

[xaylzm]Qn(x, y, z) = [xaymzl]Qn(x, y, z)
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or fn(a, l,m) = fn(a,m, l), which is true by Theorem 2.

Proof of Theorem 1. By Theorem 3 we have

Pn(x, y) = xyQn(xy, x, y) = xyQn(xy, y, x) = Pn(y, x).

3. Super-symmetry

Let U(x, y) be a polynomial in x and y. We say that U is super-

symmetric on x and y, if [xαyβ]U(x, y) = [xα′

yβ
′

]U(x, y) when α + β =
α′+β′. In particular, any super-symmetric polynomial is also symmetric.
Bessenrodt [2], Bacher and Manivel [3] have obtained the following hook-
type theorem, which is more general than the equidistribution property
(see (1)). It can also be proved directly using our result.

Theorem 4. The bivariate joint generating function for the partitions

of n by the two joint statistics av and lv is super-symmetric. In other

words, let

Gn(x, y) =
∑

λ⊢n

∑

v∈λ

xavylv .

Then [xαyβ]G(x, y) = [xα′

yβ
′

]G(x, y) when α+ β = α′ + β′.

Proof. Let α + β = α′ + β′. Let λ be a partition, v ∈ λ with
(av, mv, gv) = (α, β, g). Then, there is a unique box u ∈ λ satisfying
(au, mu, gu) = (α′, β′, g). Hence, the bivariate joint generating function
for the partitions of n by the two statistics av and mv

∑

λ⊢n

∑

v∈λ

xavymv .

is super-symmetric. By Theorem 3, Gn(x, y) is also super-symmetric.

5



References

[1] George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading MA,
 (Encyclopedia of Math.and its Appl., 2).

[2] Bessenrodt, Christine, On hooks of Young diagrams, Ann. of Comb., 2 (),
pp. 103–110.

[3] Bacher, Roland; Manivel, Laurent, Hooks and Powers of Parts in Partitions,
Sém. Lothar. Combin., vol. 47, article B47d, , 11 pages.

[4] Gasper,George; Rahman, Mizan, Basic Hypergeometric Series, London, Cam-
bridge Univ. Press,  (Encyclopedia of Math. and Its Appl., 35).

[5] Han, Guo-Niu, An explicit expansion formula for the powers of the Euler Prod-
uct in terms of partition hook lengths, arXiv:0804.1849v2, Math.CO, 35 pages,
.

[6] Han, Guo-Niu, The Nekrasov-Okounkov hook length formula: refinement, ele-
mentary proof, extension and applications, arXiv:0805.1398, Math.CO, 28 pages,
.

[7] Han, Guo-Niu; Ji, Kathy Q., Combining hook length formulas and BG-ranks for
partitions via the Littlewood decomposition, preprint, 27 pages, .

[8] Hoare, A. Howard M., An Involution of Blocks in the Partitions of n, Amer.
Math. Monthly, 93 (), pp. 475–476.

[9] Kirdar, M. S.; Skyrme, Tony H. R., On an Identity Related to Partitions and
Repetitions of Parts, Canad. J. Math., 34 (), pp. 194-195.

[10] Schmidt, F. W.; Simion, R., On a Partition Identity, J. Combin. Theory Ser.
A, 36 (), pp. 249–252.

[11] Stanley, Richard P., Enumerative Combinatorics, vol. 2, Cambridge University
Press, .

[12] Stanley, Richard P., Errata and Addenda to Enumerative Combinatorics Volume
1, Second Printing, Rev. Feb. 13, 2004. http://www-math.mit.edu/~rstan/
ec/newerr.ps.

[13] Weisstein, Eric W., Elder’s Theorem, from MathWorld – A Wolfram Web Re-
source.

[14] Weisstein, Eric W., Stanley’s Theorem, from MathWorld – A Wolfram Web
Resource.

Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1,
D-30167 Hannover, Germany

E-mail address: bessen@math.uni-hannover.de
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