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NEW PERMUTATION CODING AND

EQUIDISTRIBUTION OF SET-VALUED STATISTICS

Dominique Foata and Guo-Niu Han

ABSTRACT. A new coding for permutations is explicitly constructed and its
association with the classical Lehmer coding provides a bijection of the symmetric
group onto itself serving to show that six bivariable set-valued statistics are
equidistributed on that group. This extends a recent result due to Cori valid for
integer-valued statistics.

1. Introduction

In a recent paper Cori [Cor08] updates a classical algorithm constructed
by Ossona de Mendez and Rosenstiehl [OR04] that provides a one-
to-one correspondence between rooted hypermaps and indecomposable
permutations. He further constructs a bijection of the symmetric groupSn

onto itself that maps each permutation having p cycles and q left-to-right
maxima onto another one having q cycles and p left-to-right maxima.
Moreover, by using an encoding of permutations by Dyck paths due to
Roblet and Viennot [RV96] he also shows that three bivariable integer-

valued statistics, introduced in the next paragraph, are equidistributed
on Sn. The purpose of this paper is to show that all those results can
be extended to set-valued statistics and that the construction of the
underlying bijection is very simple; it involves two permutation codings
called the A-code and the B-code.

The first one, classically referred to as the Lehmer code [Le60] or
the inversion table, goes back, in fact, to more ancient authors (Rothe,
Rodrigues, Netto), as knowledgeably stated by Knuth ([Kn98], Ex. 5.1.1-7,
p. 14). The second one is a new coding that takes the cycle decomposition
of permutations into account. Although the motivation of the paper was
to prove the equidistribution of several set-valued statistics, its novelty is
to fully describe that B-code and exploit its basic properties.

The set-valued statistics in question are introduced as follows. Let
w = x1x2 · · ·xn be a word of length n, whose letters are positive integers.
The Left to right maximum place set, Lmapw, of w is defined to be the
set of all places i such that xj < xi for all j < i, while the Right to
left minimum letter set, Rmilw, of w is the set of all letters xi such that
xj > xi for all j > i.

When the word w is a permutation of 12 · · ·n that we shall preferably
denote by σ = σ(1)σ(2) · · ·σ(n) and the bijection i 7→ σ(i) (1 ≤ i ≤ n) has
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r disjoint cylces, whose minimum elements are c1, c2, . . . , cr, respectively,
define Cycσ to be the set

Cycσ := {c1, c2, . . . , cr}.

When σ is a permutation, the cardinalities of Lmapσ, Rmilσ and Cycσ
are denoted by lmapσ, rmilσ and cycσ, respectively, and classically
referred to as the number of left-to-right maxima, number of right-to-left

minima, number of cycles.
In Fig. 1 the graphs of the permutation σ = 5, 7, 1, 4, 9, 2, 6, 3, 8 and

its inverse σ−1 = 3, 6, 8, 4, 1, 7, 2, 9, 5 have been drawn. The set Lmapσ
(resp. Lmapσ−1) is the set of the abscissas of the “bullets,” while Rmilσ
(resp. Rmilσ−1) is the set of the ordinates of the “crosses.” The set-valued
statistics “Leh,” “Rmil Leh” and “MaxLeh” will be further introduced.
Notice that lmapσ = rmilσ−1 = 3, rmilσ = lmapσ−1 = 4. As σ is
the product of the disjoint cycles (1 5 9 8 3)(4)(2 7 6), we have Cycσ =
Cycσ−1 = {1, 2, 4} and cycσ = cycσ−1 = 3.
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Fig. 1. Graphs of σ and of its inverse σ−1

First, recall Cori’s result [Cor08].

The three pairs of integer-valued statistics (rmil, cyc), (cyc, rmil) and
(lmap, rmil) are equidistributed on Sn.

The equidistribution of the first two pairs (resp. of the last two ones) is
proved by updating the Ossona-de-Mendez-Rosenstiehl algorithm [OR04]
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on hypermaps (resp. by using the Roblet-Viennot Dyck path encoding
[RV96]). Second, the set-valued statistics “Cyc” and “Rmil” (or “Lmap”)
are known to be equidistributed on Sn. This is one of the properties of
the first fundamental transformation [Lo83, chap. 10]. Our main result is
the following theorem.

Theorem 1. The six bivariable set-valued statistics (Cyc,Rmil),
(Cyc,Lmap), (Rmil,Lmap), (Rmil,Cyc), (Lmap,Rmil), (Lmap,Cyc) are
all equidistributed on Sn.

Based on two permutation codings, the A-code and B-code, introduced
in Sections 2 and 3, respectively, we construct a bijection φ of Sn onto
itself (see (4.1)) having the following property:

(1.1) (Lmap,Rmil) σ = (Lmap,Cyc)φ(σ) (σ ∈ Sn).

Let i : σ 7→ σ−1. As

Cyc i σ = Cycσ;(1.2)

Rmil i σ = Lmapσ;(1.3)

(see Fig. 1 for the second relation), it follows from (1.1) that the chain

(1.4)
Sn

i
−→ Sn

φ−1

−→ Sn
i

−→ Sn
φ

−→ Sn
i

−→ Sn

(

Cyc
Rmil

) (

Cyc
Lmap

) (

Rmil
Lmap

) (

Lmap
Rmil

) (

Lmap
Cyc

) (

Rmil
Cyc

)

provides all the bijections needed to prove Theorem 1. Note that (1.1), on
the one hand, and (1.2)–(1.3), on the other hand, are reproduced as

Sn
φ

−→ Sn and Sn
i

−→ Sn

(

Lmap
Rmil

) (

Lmap
Cyc

) (

Cyc
Rmil

) (

Cyc
Lmap

)

Let A = (I1, I2, . . . , Ih) be an ordered partition of the set [n] :=
{1, 2, . . . , n} into disjoint non-empty intervals, such that max Ij + 1 =
min Ij+1 for j = 1, 2, . . . , h − 1. A permutation σ from Sn is said to be
A-decomposable, if each Ij is the smallest interval such that σ(Ij) = Ij
(see [Com74], p. 261, exercise 14). For instance, σ =

(

1 2 3 4 5
2 1 5 4 3

)

is A-
decomposable, with A = ({1, 2}, {3, 4, 5}). It is convenient to write
Decompσ = A, if σ is A-decomposable. A permutation is said to be
indecomposable, if it is A-decomposable, with A = ([n]). The bijection φ

defined in (4.1) has the further property

Decompφ(σ) = Decompσ (σ ∈ Sn).(1.5)

As we evidently have

Decomp i σ = Decompσ,(1.6)

the following result holds.
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Theorem 2. Let A be an ordered partition of the set [n] into dis-
joint consecutive non-empty intervals. Then, (Cyc,Rmil), (Cyc,Lmap),
(Rmil,Lmap), (Rmil,Cyc), (Lmap,Rmil), (Lmap,Cyc) are equidistri-
buted on the set of all A-decomposable permutations from Sn.

The next corollary is relevant to the study of hypermaps, as the set of
rooted hypermaps with darts 1, 2, . . . , n is in one-to-one correspondence
with the subset of indecomposable permutations from Sn+1 (see [Cor08,
CM92]).

Corollary 3. The statistics (Cyc,Rmil), (Cyc,Lmap), (Rmil,Lmap),
(Rmil,Cyc), (Lmap,Rmil), (Lmap,Cyc) are equidistributed on the set of
all indecomposable permutations from Sn.

The construction of the bijection φ together with the proofs of Theo-
rem 2, and Corollary 3 are given in Section 4. It is followed by the algo-
rithmic definitions of both A-code and B-code in Section 5. Tables and
concluding remarks are reproduced in Section 6.

2. The A-code

The Lehmer code [Le60] of a permutation σ = σ(1)σ(2) · · ·σ(n) of
12 · · ·n is defined to be the sequence Lehw = (a1, a2, . . . , an), where for
each i = 1, 2, . . . , n

ai := #{j : 1 ≤ j ≤ i, σ(j) ≤ σ(i)}.

The sequence Lehw belongs to SEn of all sequences a = (a1, a2, . . . , an),
called subexcedant, such that 1 ≤ ai ≤ i for each i = 1, 2, . . . , n. For such a
sequence it makes sense to define the set, denoted by Max a, of all letters
(or places!) ai such that ai = i.

Under the graphs drawn in Fig. 1 the Lehmer codes Leh σ and Lehσ−1

have been calculated, as well as the four sets Rmil Leh σ, Rmil Lehσ−1,
MaxLehσ and MaxLeh σ−1. The next Proposition is geometrically ev-
ident and given without proof. It shows that the set-valued statistics
“Lmap” and “Rmip” can be directly read from the Lehmer code.

Proposition 4. For each permutation σ we have:

Rmil Lehσ = Rmil σ;(2.1)

MaxLehσ = Lmapσ.(2.2)

We then define the A-code of a permutation σ to be

(2.3) A-codeσ := Leh i σ.

Hence, MaxA-codeσ = MaxLeh i σ = Lmap i σ = Rmilσ. Furthermore,
RmilA-codeσ = Rmil Leh iσ = Rmil i σ = Lmapσ. As Leh is a bijection
of the symmetric group Sn onto SEn, we obtain the following result.
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Theorem 5. The A-code is a bijection of Sn onto SEn having the
property:

(2.4) (Rmil,Lmap) σ = (Max,Rmil) A-codeσ (σ ∈ Sn).

An algorithmic definition of the A-code will be given in Section 5.

3. The B-code

The B-code is based on the decomposition of each permutation as
product of disjoint cycles. For a permutation σ = σ(1)σ(2) · · ·σ(n) and
each i = 1, 2, . . . , n let k := k(i) be the smallest integer k ≥ 1 such that
σ−k(i) ≤ i. Then, define

B-codeσ = (b1, b2, . . . , bn) with bi := σ−k(i)(i) (1 ≤ i ≤ n).

For example, with the permutation σ =
(

1 2 3 4 5 6
3 4 5 2 6 1

)

we have:

σ−1(1) = 6, σ−2(1) = 5, σ−3(1) = 3, σ−4(1) = 1, so that b1 = 1;
σ−1(2) = 4, σ−2(2) = 2, so that b2 = 2; σ−1(3) = 1, so that b3 = 1;
σ−1(4) = 2, so that b4 = 2; σ−1(5) = 3, so that b5 = 3;
σ−1(6) = 5, so that b6 = 5. Thus, B-codeσ = (1, 2, 1, 2, 3, 5).

An alternate definition is the following. First, the B-code of the unique
permutation from S1 is defined to be the sequence (1) ∈ SE1. Let n ≥ 2.
When writing each permutation σ ∈ Sn of order n ≥ 2 as a product of its
disjoint cycles, the removal of n yields a permutation σ′ of order (n− 1).
Let b′ = (b′1, b

′

2, . . . , b
′

n−1) be the B-code of σ′. We define the B-code of σ
to be b := (b′1, b

′

2, . . . , b
′

n−1, σ
−1(n)). By induction on n, we immediately

see that the B-code is a bijection of Sn onto SEn.
The following Theorem shows that the set-valued statistics “Lmap” and

“Cyc” can be directly read from the B-code.

Theorem 6. The B-code is a bijection of Sn onto SEn having the
property:

(3.1) (Cyc,Lmap) σ = (Max,Rmil) B-codeσ (σ ∈ Sn).

Proof. By induction, suppose that Lmapσ′ = Rmil b′ and Cycσ′ =
Max b′. If n is a fixed point of σ, so that σ−1(n) = n and b =
(b′1, · · · , b

′

n−1, n), then Lmapσ = Lmapσ′ ∪{n} = Rmil b′ ∪ {n} = Rmilσ.
Also, Cycσ = Cycσ′ ∪ {n} = Max b′ ∪ {n} = Max b.

When n is not a fixed point of σ, then σ is a product of the form

σ = · · · (· · ·σ−1(n)nσ(n) · · ·) · · ·

while σ′ may be expressed as

σ′ = · · · (· · ·σ−1(n)σ(n) · · ·) · · ·

In particular, σ−1(n) < n, σ(n) < n and σ′(σ−1(n)) = σ(n). We have
Cycσ = Cycσ′ = Max b′ = Max b since σ−1(n) < n.
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To prove Lmapσ = Rmil b, three cases are to be considered, (i)
σ(n) = n−1; (ii) σ(n) 6= n−1 and σ−1(n−1) < σ−1(n); (iii) σ(n) 6= n−1
and σ−1(n−1) > σ−1(n), each of them materialized by the following three
tableaux:

(i)
Id = 1 · · · σ−1(n) · · · n−1 n

σ = σ(1) · · · n · · · σ(n−1) σ(n) = n−1
σ′ = σ(1) · · · σ(n) = n−1 · · · σ(n−1) ∗

(ii)
Id = 1 · · · σ−1(n−1) · · · σ−1(n) · · · n−1 n

σ = σ(1) · · · n−1 · · · n · · · σ(n−1) σ(n)
σ′ = σ(1) · · · n−1 · · · σ(n) · · · σ(n−1) ∗

(iii)
Id = 1 · · · σ−1(n) · · · σ−1(n−1) · · · n−1 n

σ = σ(1) · · · n · · · n−1 · · · σ(n−1) σ(n)
σ′ = σ(1) · · · σ(n) · · · n−1 · · · σ(n−1) ∗

In case (i) we get Lmap σ = Lmapσ′, b′ = (. . . , σ−1(n)) and b =
(. . . , σ−1(n), σ−1(n)), then Rmil b = Rmil b′.

In case (ii) we clearly have: Lmapσ = Lmapσ′ ∪ {σ−1(n)}. Also,
b′ = (. . . , σ−1(n−1)) and b = (. . . , σ−1(n−1), σ−1(n)). Hence, Lmapσ =
Lmapσ′ ∪ {σ−1(n)} = Rmil b′ ∪ {σ−1(n)} = Rmil b.

Finally, comes case (iii), which is the hardest one. We have Lmapσ =
(Lmapσ′ ∩ [1, σ−1(n) − 1]) ∪ {σ−1(n)}, also b′ = (. . . , b′n−2, σ

−1(n − 1)),
b = (. . . , b′n−2, σ

−1(n− 1), σ−1(n)). But as σ−1(n) < σ−1(n− 1), we have
Rmil b = (Rmil b′ ∩ [1, σ−1(n)− 1]) ∪ {σ−1(n)} = (Lmapσ′ ∩ [1, σ−1(n)−
1]) ∪ {σ−1(n)} = Lmapσ.

4. The bijection φ

The bijection φ, which is the main ingredient in the chain displayed in
(1.4), is simply defined as

(4.1) φ := (B-code)−1 ◦A-code .

It follows from Theorems 6 and 5 that

(Cyc,Lmap)φ(σ) = (Max,Rmil) B-codeφ(σ)

= (Max,Rmil) A-codeσ = (Rmil,Lmap) σ.

This proves relation (1.1) and consequently Theorem 1. It also follows from
Theorem 5 and/or 6 that the distribution of each pair of statistics stated
in Theorem 1 is also equal to the distribution of (Max,Rmil) on SEn.
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It remains to prove identity (1.5) to achieve the proofs of Theorem 2
and its Corollary. Let A = ([p1, q1], [p2, q2], . . . , [ph, qh]) be an ordered
partition of [n] into disjoint non-empty intervals, such that pj + 1 = qj+1

for j = 1, 2, . . . , h−1 and p1 = 1, qh = n. Let G(σ) = {(i, σ(i)) : 1 ≤ i ≤ n}
be the graph of a permutation σ from Sn. Referring to Fig. 2, where the
square [pj , qj ] × [pj , qj ] has been materialized by the four points B, B′′,
D′′, D, we see that σ is A-indecomposable, if for every j = 1, 2, . . . , h

(i) the square [BB′′D′′D] contains the subgraph {(i, σ(i)) :pj≤ i ≤ qj};
(ii) for every l such that pj + 1 ≤ l ≤ qj the rectangle [B′B′′C′′C′]

contains at least one element from G(σ).

�
�

�
�

�
�
��

1

A

pj

A′

l

A′′

qj

pj
B B′ B′′

l C C′ C′′

qj
D D′ D′′

Fig. 2. Graphs of σ and c

We are then led to the following definition.

Definition. Each subexcedant sequence c = (c1, c2, . . . , cn) from SEn

is said to be A-decomposable, if for every j = 1, 2, . . . , h
(i) the triangle [BB′′D′′] contains the subgraph {(i, ci) :pj≤ i ≤ qj};
(ii) for every l such that pj + 1 ≤ l ≤ qj the rectangle [B′B′′C′′C′]

contains at least one element (i, ci) (l ≤ i ≤ qj).

Proposition 6. A permutation σ from Sn is A-decomposable, if and
only if its A-code (resp. B-code) is A-decomposable.

Proof. Let a = (a1, a2, . . . , an) be the A-code of a permutation σ. If σ
is A-decomposable, then for every j = 1, 2, . . . , h and l = pj , pj +1, . . . , qj
the point (σ−1(l), l) belongs to the square [BB′′D′′D]. As al is equal to 1
plus the number of points (i, σ(i)) such that 1 ≤ i < σ−1(l) and σ(i) < l,
we have al ≥ pj , so that the point (l, al) belongs to the triangle [BB′′D′′].
Conversely, if (l, al) ∈ [BB′′D′′], then (σ−1(l), l) ∈ [BB′′D′′D].

Now, the rectangle [B′B′′C′′C′] contains no element from G(σ) if and
only if all the points (σ−1(l), l), . . . , (σ−1(qj), qj) are in the square
[C′C′′D′′D′]. This is equivalent to saying that all the quantities σ−1(l), l,
. . . , σ−1(qj), qj lie between l and qj , which is also equivalent to the fact
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that al, . . . , aqj lie between l and qj , that is, the rectangle [B′B′′C′′C′]
has no element (i, ai) (l ≤ i ≤ qj).

Next, let b = (b1, b2, . . . , bn) be the B-code of σ. If σ is A-decomposable,
the restriction of σ to the interval [pj, qj ] is a product of cycles all elements
of which lie between pj and qj . By definition of the B-code all the terms bpj

,
. . . , bqj also lie between pj and qj and conversely, if it is the case, all the
points (pj, σ(pj)), . . . , (qj , σ(qj)) belong to the square [BB′′D′′D]. The
same argument can be applied when all the points (l, σ(l)), . . . , (qj , σ(qj))
belong to the square [C′C′′D′′D′]. All terms bl, . . . , bqj are greater than
or equal to l and the rectangle [B′B′′C′′C′] contains no element of the
form (i, bi) with l ≤ i ≤ qj .

Thus, if σ is A-decomposable, so are A-codeσ and the composition
product (B-code)−1 A-code(σ) = φ(σ). This proves identity (1.5) and then
Theorem 2 and its corollary.

5. Algorithmic definitions and examples

Although the A-code has been greatly described in various forms (see,
e.g., [Kn98], p. 14), we give a full algorithmic definition, which is to be
compared with the analogous definition for the B-code.

Algorithmic definition of A-code. Let σ = σ(1)σ(2) · · ·σ(n) be a
permutation of 12 · · ·n. By definition the A-code of σ is the sequence
a = (a1, a2, . . . , an) where for each i = 1, 2, . . . , n

ai := #{j : 1 ≤ j ≤ i, σ−1(j) ≤ σ−1(i)},

or still

ai := #{σ(k) : 1 ≤ σ(k) ≤ i, k ≤ σ−1(i)}.(5.1)

Thus, ai is equal to 1 plus the number of letters less than i, to the left of i,

in the word σ = σ(1)σ(2) · · ·σ(n).
For instance, with σ = 4, 6, 1, 2, 3, 5 the A-code of σ is equal to

a = (1, 2, 3, 1, 5, 2): a1 = 1, a2 = 2 as 1 is to the left of 2, a3 = 3 as
1 and 2 are to the left of 3, a4 = 1, as 4 is the leftmost letter of σ, etc.
Thus,

(5.2) A-code(4, 6, 1, 2, 3, 5) = (1, 2, 3, 1, 5, 2).

Algorithmic definition of A-code−1. Given a = (a1, a2, . . . , an) ∈ SEn

write a word with n empty places numbered 1 to n from left to right. First,
move the letter n to the an-th leftmost place; let σn be the resulting word
(having one non-empty letter!). Next, move (n − 1) to the place having
an−1 − 1 empty letters to its left. Let σn−2 be the resulting word (having
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two non-empty letters). Move (n− 2) to the place having an−2 − 1 empty
letters to its left, etc. Thus, A-code−1(a) is the final permutation σ1.

For instance, start with a = (1, 2, 1, 2, 3, 5). We successively get:

∗ ∗ ∗ ∗ ∗ ∗
σ6 = ∗ ∗ ∗ ∗ 6 ∗ a6 = 5
σ5 = ∗ ∗ 5 ∗ 6 ∗ a5 = 3
σ4 = ∗ 4 5 ∗ 6 ∗ a4 = 2
σ3 = 3 4 5 ∗ 6 ∗ a3 = 1
σ2 = 3 4 5 ∗ 6 2 a2 = 2
σ1 = 3 4 5 1 6 2 a1 = 1

Thus

(5.3) A-code−1(1, 2, 1, 2, 3, 5) = 3, 4, 5, 1, 6, 2.

Algorithmic definition of B-code. Let σ = σ(1)σ(2) · · ·σ(n) ∈ Sn. Its
B-code b = (b1, b2, . . . , bn) is calculated as follows. First, bn is the place
occupied by n in σn := σ. Permute the two letters n and σ(n) in the
word σ. Let σn−1 be the resulting word. Then, bn−1 is the place occupied
by (n− 1) in σn−1. Next, permute the two letters (n− 2) and σ(n− 2) in
σn−1 and let σn−2 be the resulting word. Let bn−2 is the place occupied
by (n−2) in σn−2. Permute (n−3) and σ(n−3) in σn−2, etc. The B-code
of σ is (b1, b2, · · · , bn).

Start with σ = 3, 4, 5, 2, 6, 1. We successively get:

Id = 1 2 3 4 5 6
σ6 = 3 4 5 2 6 1 b6 = 5
σ5 = 3 4 5 2 1 6 b5 = 3
σ4 = 3 4 1 2 5 6 b4 = 2
σ3 = 3 2 1 4 5 6 b3 = 1
σ2 = 1 2 3 4 5 6 b2 = 2
σ1 = 1 2 3 4 5 6 b1 = 1

Thus

(5.4) B-code(3, 4, 5, 2, 6, 1) = (1, 2, 1, 2, 3, 5).

Algorithmic definition of B-code−1. Let b = (b1, b2, . . . , bn) ∈ SEn.
Start with the identity permutation σ1 = 1, 2, . . . , n. In σ1 exchange 2
and the letter at the b2-th place. Let σ2 be the resulting word. In σ2

permute 3 and the letter at the b3-th place. Let σ3 be the resulting word.
In σ3 permute 4 and the letter at the b4-th place, etc. The permutation
σ = B-code−1 b is the permutation σn.

9



D. FOATA AND G.-N. HAN

For example, starting with b = (1, 2, 3, 1, 5, 2). We successively form:

σ1 = 1 2 3 4 5 6 b1 = 1
σ2 = 1 2 3 4 5 6 b2 = 2
σ3 = 1 2 3 4 5 6 b3 = 3
σ4 = 4 2 3 1 5 6 b4 = 1
σ5 = 4 2 3 1 5 6 b5 = 5
σ6 = 4 6 3 1 5 2 b6 = 2

Thus,

(5.5) B-code−1(1, 2, 3, 1, 5, 2) = 4, 6, 3, 1, 5, 2.

Let Φ := iφ iφ−1 i be the product of the bijections occurring in (1.4).
With σ = 6, 4, 1, 2, 3, 5 the computation of Φ(σ) can be made as follows.

Id = 1 2 3 4 5 6
σ = 6 4 1 2 3 5
i σ = 3 4 5 2 6 1

B-code i σ = 1 2 1 2 3 5 (by (5.4))
A-code−1 B-code i σ = φ−1 i σ = 3 4 5 1 6 2 (by (5.3))

iφ−1 i σ = 4 6 1 2 3 5
A-code iφ−1 i σ = 1 2 3 1 5 2 (by (5.2))

B-code−1 A-code iφ−1 i σ = φ iφ−1 i σ = 4 6 3 1 5 2 (by (5.5))
Φ(σ) = iφ iφ−1 i σ = 4 6 3 1 5 2.

We verify that

(Cyc,Rmil) σ = (Rmil,Cyc)Φ(σ) = ({1, 2}, {1, 2, 3, 5}).

6. Concluding remarks and Tables

The bijection constructed by Cori [Cor08] only preserves the cardinal-

ities “cyc” and “lmap”, but not the sets “Cyc” and “Lmap.” With the
example used in his paper, the permutation

θ = 6, 5, 7, 4, 2, 10, 3, 8, 9 = (1, 6, 10)(2, 5)(3, 7)(4)(8)(9)

is mapped onto

θ′ = 4, 6, 5, 7, 3, 8, 1, 9, 10, 2 = (1, 4, 7)(2, 6, 8, 9, 10)(3, 5),

so that (Lmap,Cyc) θ′ = ({1, 2, 4, 6, 8, 9}, {1, 2, 3}) 6= ({1, 2, 3, 4, 8, 9}, {1,
3, 6}) = (Cyc,Lmap) θ. However, (cyc, lmap) θ = (lmap, cyc) θ′ = (6, 3).
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In our case, we take the bijection φ iφ−1 that satisfies (see (1.4))

(Cyc,Lmap) θ = (Lmap,Cyc)φ iφ−1(θ).

The calculation of φ iφ−1(θ) is made for the same θ, together with the
relevant set-valued statistics. We successively get:

θ = 6, 5, 7, 4, 2, 10, 3, 8, 9

= (1, 6, 10)(2, 5)(3, 7)(4)(8)(9)

B-code θ = 1, 2, 3, 4, 2, 1, 3, 8, 9, 6

A-code−1 B-code θ = φ−1(θ) = 6, 1, 7, 5, 2, 10, 3, 4, 8, 9

iφ−1(θ) = 2, 5, 7, 8, 4, 1, 3, 9, 10, 6

A-code iφ−1(θ) = 1, 1, 3, 2, 2, 6, 3, 4, 8, 9

φ iφ−1(θ) = 2, 5, 7, 8, 4, 6, 3, 9, 10, 1

= (1, 2, 5, 4, 8, 9, 10)(3, 7)(6)

Thus (Cyc,Lmap)θ = (Lmap,Cyc)φ iφ−1(θ) = ({1, 2, 3, 4, 8, 9}, {1, 3, 6}).

In Fig. 3 the common distribution over Sn of each bivariable statis-
tic (Cyc,Rmil), (Cyc,Lmap), (Rmil,Lmap), (Rmil,Cyc), (Lmap,Rmil),
(Lmap,Cyc)has been reproduced for n = 1, 2, 3, 4. On each cell (A,B),
where A,B ⊂ [n], is written the number of permutations σ from Sn such
that (Cyc,Rmil) σ = (A,B). In the table for n = 4 the total sums oc-
curring at the bottom and on the right are the numbers #{σ ∈ S4 :
cycσ = k} for k = 4, 3, 2, 1, which are the coefficients of the polynomial
x(x+1)(x+2)(x+3) ([Ri58], chap. 4, § 3). It will be noticed that all those
tables are symmetric with respect to the main diagonal.

B= 1
A=1 1

n = 1

B= 1, 2 2
A=1,2 1

2 1

n = 2

B= 1, 2, 3 1, 3 2, 3 3
A=1,2,3 1

1,3 1
2,3 1 1
3 1 1

n = 3
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B= 1, 2, 3, 4 1, 2, 4 1, 3, 4 2, 3, 4 1, 4 2, 4 3, 4 4
A=1,2,3,4 1

1,2,4 1
1,3,4 1 1
2,3,4 1 1 1
1,4 1 1
2,4 1 1 1
3,4 1 1 2 2
4 1 1 2 2
Σ 1 6 11 6

Σ
1

6

11

6

n = 4

Fig. 3. Distribution of (Cyc,Rmil) over Sn.

There exist other bijections σ 7→ a such that the sum
∑

i(ai − 1) is
equal to a statistic different from the inversion number “inv,” but having
interesting properties. Let us quote the Tompkins-Paige method ([To56,
Le60, We61]) for generating permutations on a computer. That method
was further used in [Ha92, Ha94] to show that the corresponding sum
∑

i(ai − 1) is equal to the major index “maj”. Let us also mention the
Denert coding [FZ90, Ha94], whose sum

∑

i(ai − 1) is equal to the Denert

statistic “den”. Those codings serve to prove that the statistics “inv,”
“maj” and “den” are equidistributed on Sn, their common distribution
being called Mahonian.

Let b = (b1, b2, . . . , bn) be the B-code of a permutation σ ∈ Sn. In
its turn the sum env σ :=

∑

i(bi − 1) becomes a new Mahonian statistic.
Moreover, it follows from the properties of the bijection φ defined in (4.1)
that the two three-variable statistics (env, Cyc, Lmap) and (inv, Rmil,
Lmap) are equidistributed on Sn.
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