NEW PERMUTATION CODING AND EQUIDISTRIBUTION OF SET-VALUED STATISTICS

Dominique Foata and Guo-Niu Han

ABSTRACT. A new coding for permutations is explicitly constructed and its association with the classical Lehmer coding provides a bijection of the symmetric group onto itself serving to show that six bivariable set-valued statistics are equidistributed on that group. This extends a recent result due to Cori valid for integer-valued statistics.

1. Introduction

In a recent paper Cori [Cor08] updates a classical algorithm constructed by Ossona de Mendez and Rosenstiehl [OR04] that provides a oneto-one correspondence between rooted hypermaps and indecomposable permutations. He further constructs a bijection of the symmetric group \mathfrak{S}_n onto itself that maps each permutation having p cycles and q left-to-right maxima onto another one having q cycles and p left-to-right maxima. Moreover, by using an encoding of permutations by Dyck paths due to Roblet and Viennot [RV96] he also shows that three bivariable *integervalued* statistics, introduced in the next paragraph, are equidistributed on \mathfrak{S}_n . The purpose of this paper is to show that all those results can be extended to *set-valued* statistics and that the construction of the underlying bijection is very simple; it involves two permutation codings called the A-*code* and the B-*code*.

The first one, classically referred to as the *Lehmer code* [Le60] or the *inversion table*, goes back, in fact, to more ancient authors (Rothe, Rodrigues, Netto), as knowledgeably stated by Knuth ([Kn98], Ex. 5.1.1-7, p. 14). The second one is a *new* coding that takes the cycle decomposition of permutations into account. Although the motivation of the paper was to prove the equidistribution of several set-valued statistics, its novelty is to fully describe that B-code and exploit its basic properties.

The set-valued statistics in question are introduced as follows. Let $w = x_1 x_2 \cdots x_n$ be a word of length n, whose letters are positive integers. The Left to right maximum place set, $\operatorname{Lmap} w$, of w is defined to be the set of all *places* i such that $x_j < x_i$ for all j < i, while the Right to left minimum letter set, $\operatorname{Rmil} w$, of w is the set of all *letters* x_i such that $x_j > x_i$ for all j > i.

When the word w is a permutation of $12 \cdots n$ that we shall preferably denote by $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$ and the bijection $i \mapsto \sigma(i)$ $(1 \le i \le n)$ has

r disjoint cylces, whose minimum elements are c_1, c_2, \ldots, c_r , respectively, define Cyc σ to be the set

$$\operatorname{Cyc} \sigma := \{c_1, c_2, \dots, c_r\}.$$

When σ is a permutation, the *cardinalities* of Lmap σ , Rmil σ and Cyc σ are denoted by lmap σ , rmil σ and cyc σ , respectively, and classically referred to as the *number of left-to-right maxima*, *number of right-to-left minima*, *number of cycles*.

In Fig. 1 the graphs of the permutation $\sigma = 5, 7, 1, 4, 9, 2, 6, 3, 8$ and its inverse $\sigma^{-1} = 3, 6, 8, 4, 1, 7, 2, 9, 5$ have been drawn. The set Lmap σ (resp. Lmap σ^{-1}) is the set of the *abscissas* of the "bullets," while Rmil σ (resp. Rmil σ^{-1}) is the set of the *ordinates* of the "crosses." The set-valued statistics "Leh," "Rmil Leh" and "Max Leh" will be further introduced. Notice that lmap $\sigma = \text{rmil } \sigma^{-1} = 3$, rmil $\sigma = \text{lmap } \sigma^{-1} = 4$. As σ is the product of the disjoint cycles (15983)(4)(276), we have Cyc $\sigma =$ Cyc $\sigma^{-1} = \{1, 2, 4\}$ and cyc $\sigma = \text{cyc } \sigma^{-1} = 3$.

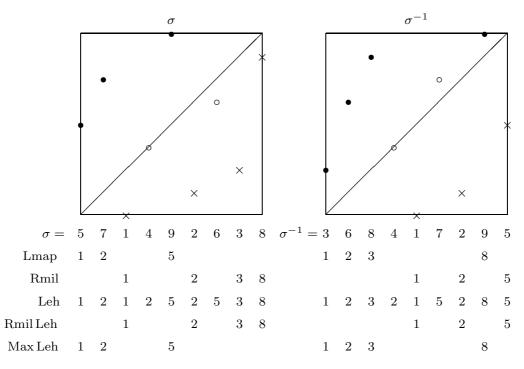


Fig. 1. Graphs of σ and of its inverse σ^{-1}

First, recall Cori's result [Cor08].

The three pairs of integer-valued statistics (rmil, cyc), (cyc, rmil) and (lmap, rmil) are equidistributed on \mathfrak{S}_n .

The equidistribution of the first two pairs (resp. of the last two ones) is proved by updating the Ossona-de-Mendez-Rosenstiehl algorithm [OR04] on hypermaps (resp. by using the Roblet-Viennot Dyck path encoding [RV96]). Second, the set-valued statistics "Cyc" and "Rmil" (or "Lmap") are known to be equidistributed on \mathfrak{S}_n . This is one of the properties of the first fundamental transformation [Lo83, chap. 10]. Our main result is the following theorem.

Theorem 1. The six bivariable set-valued statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are all equidistributed on \mathfrak{S}_n .

Based on two permutation codings, the A-code and B-code, introduced in Sections 2 and 3, respectively, we construct a bijection ϕ of \mathfrak{S}_n onto itself (see (4.1)) having the following property:

(1.1)
$$(\operatorname{Lmap}, \operatorname{Rmil}) \sigma = (\operatorname{Lmap}, \operatorname{Cyc}) \phi(\sigma) \quad (\sigma \in \mathfrak{S}_n).$$

Let $\mathbf{i}: \sigma \mapsto \sigma^{-1}$. As

(1.2)
$$\operatorname{Cyc} \mathbf{i} \, \sigma = \operatorname{Cyc} \, \sigma$$

(1.3)
$$\operatorname{Rmil} \mathbf{i} \, \sigma = \operatorname{Lmap} \sigma$$

(see Fig. 1 for the second relation), it follows from (1.1) that the chain

(1.4)
$$\begin{array}{cccc} \mathfrak{S}_n & \stackrel{\mathbf{i}}{\longrightarrow} & \mathfrak{S}_n & \stackrel{\phi^{-1}}{\longrightarrow} & \mathfrak{S}_n & \stackrel{\mathbf{i}}{\longrightarrow} & \mathfrak{S}_n & \stackrel{\phi}{\longrightarrow} & \mathfrak{S}_n & \stackrel{\mathbf{i}}{\longrightarrow} & \mathfrak{S}_n \\ (1.4) & & & & & & & \\ \begin{pmatrix} \mathrm{Cyc} \\ \mathrm{Rmil} \end{pmatrix} & \begin{pmatrix} \mathrm{Cyc} \\ \mathrm{Lmap} \end{pmatrix} & \begin{pmatrix} \mathrm{Rmil} \\ \mathrm{Lmap} \end{pmatrix} & \begin{pmatrix} \mathrm{Lmap} \\ \mathrm{Rmil} \end{pmatrix} & \begin{pmatrix} \mathrm{Lmap} \\ \mathrm{Cyc} \end{pmatrix} \end{array}$$

provides all the bijections needed to prove Theorem 1. Note that (1.1), on the one hand, and (1.2)-(1.3), on the other hand, are reproduced as

$$\begin{array}{cccc} \mathfrak{S}_n & \stackrel{\phi}{\longrightarrow} & \mathfrak{S}_n & \text{and} & \mathfrak{S}_n & \stackrel{\mathbf{i}}{\longrightarrow} & \mathfrak{S}_n \\ \begin{pmatrix} \mathrm{Lmap} \\ \mathrm{Rmil} \end{pmatrix} & \begin{pmatrix} \mathrm{Lmap} \\ \mathrm{Cyc} \end{pmatrix} & \begin{pmatrix} \mathrm{Cyc} \\ \mathrm{Rmil} \end{pmatrix} & \begin{pmatrix} \mathrm{Cyc} \\ \mathrm{Lmap} \end{pmatrix} \end{array}$$

Let $A = (I_1, I_2, \ldots, I_h)$ be an ordered partition of the set $[n] := \{1, 2, \ldots, n\}$ into disjoint non-empty *intervals*, such that $\max I_j + 1 = \min I_{j+1}$ for $j = 1, 2, \ldots, h - 1$. A permutation σ from \mathfrak{S}_n is said to be *A*-decomposable, if each I_j is the smallest interval such that $\sigma(I_j) = I_j$ (see [Com74], p. 261, exercise 14). For instance, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$ is *A*-decomposable, with $A = (\{1, 2\}, \{3, 4, 5\})$. It is convenient to write Decomp $\sigma = A$, if σ is *A*-decomposable, with A = ([n]). The bijection ϕ defined in (4.1) has the further property

(1.5)
$$\operatorname{Decomp} \phi(\sigma) = \operatorname{Decomp} \sigma \quad (\sigma \in \mathfrak{S}_n).$$

As we evidently have

(1.6)
$$\operatorname{Decomp} \mathbf{i} \, \sigma = \operatorname{Decomp} \sigma,$$

the following result holds.

Theorem 2. Let A be an ordered partition of the set [n] into disjoint consecutive non-empty intervals. Then, (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are equidistributed on the set of all A-decomposable permutations from \mathfrak{S}_n .

The next corollary is relevant to the study of hypermaps, as the set of rooted hypermaps with darts 1, 2, ..., n is in one-to-one correspondence with the subset of indecomposable permutations from \mathfrak{S}_{n+1} (see [Cor08, CM92]).

Corollary 3. The statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are equidistributed on the set of all indecomposable permutations from \mathfrak{S}_n .

The construction of the bijection ϕ together with the proofs of Theorem 2, and Corollary 3 are given in Section 4. It is followed by the algorithmic definitions of both A-code and B-code in Section 5. Tables and concluding remarks are reproduced in Section 6.

2. The A-code

The Lehmer code [Le60] of a permutation $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$ of $12\cdots n$ is defined to be the sequence Leh $w = (a_1, a_2, \ldots, a_n)$, where for each $i = 1, 2, \ldots, n$

$$a_i := \#\{j : 1 \le j \le i, \, \sigma(j) \le \sigma(i)\}.$$

The sequence Leh w belongs to SE_n of all sequences $a = (a_1, a_2, \ldots, a_n)$, called *subexcedant*, such that $1 \le a_i \le i$ for each $i = 1, 2, \ldots, n$. For such a sequence it makes sense to define the set, denoted by Max a, of all letters (or places!) a_i such that $a_i = i$.

Under the graphs drawn in Fig. 1 the Lehmer codes Leh σ and Leh σ^{-1} have been calculated, as well as the four sets Rmil Leh σ , Rmil Leh σ^{-1} , Max Leh σ and Max Leh σ^{-1} . The next Proposition is geometrically evident and given without proof. It shows that the set-valued statistics "Lmap" and "Rmip" can be directly read from the Lehmer code.

Proposition 4. For each permutation σ we have:

(2.1)
$$\operatorname{Rmil}\operatorname{Leh}\sigma = \operatorname{Rmil}\sigma;$$

(2.2)
$$\operatorname{Max} \operatorname{Leh} \sigma = \operatorname{Lmap} \sigma$$

We then define the A-code of a permutation σ to be

(2.3)
$$\operatorname{A-code} \sigma := \operatorname{Leh} \mathbf{i} \, \sigma.$$

Hence, Max A-code σ = Max Leh $\mathbf{i}\sigma$ = Lmap $\mathbf{i}\sigma$ = Rmil σ . Furthermore, Rmil A-code σ = Rmil Leh $\mathbf{i}\sigma$ = Rmil $\mathbf{i}\sigma$ = Lmap σ . As Leh is a bijection of the symmetric group \mathfrak{S}_n onto SE_n, we obtain the following result. **Theorem 5.** The A-code is a bijection of \mathfrak{S}_n onto SE_n having the property:

(2.4) (Rmil, Lmap)
$$\sigma = (Max, Rmil) \text{ A-code } \sigma \quad (\sigma \in \mathfrak{S}_n)$$

An algorithmic definition of the A-code will be given in Section 5.

3. The B-code

The B-code is based on the decomposition of each permutation as product of disjoint cycles. For a permutation $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$ and each $i = 1, 2, \ldots, n$ let k := k(i) be the *smallest* integer $k \ge 1$ such that $\sigma^{-k}(i) \le i$. Then, define

B-code
$$\sigma = (b_1, b_2, \dots, b_n)$$
 with $b_i := \sigma^{-k(i)}(i)$ $(1 \le i \le n)$.

For example, with the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$ we have:

 $\sigma^{-1}(1) = 6, \ \sigma^{-2}(1) = 5, \ \sigma^{-3}(1) = 3, \ \sigma^{-4}(1) = 1, \text{ so that } b_1 = 1; \\ \sigma^{-1}(2) = 4, \ \sigma^{-2}(2) = 2, \text{ so that } b_2 = 2; \ \sigma^{-1}(3) = 1, \text{ so that } b_3 = 1; \\ \sigma^{-1}(4) = 2, \text{ so that } b_4 = 2; \ \sigma^{-1}(5) = 3, \text{ so that } b_5 = 3; \\ \sigma^{-1}(6) = 5, \text{ so that } b_6 = 5.$ Thus, B-code $\sigma = (1, 2, 1, 2, 3, 5).$

An alternate definition is the following. First, the B-code of the unique permutation from \mathfrak{S}_1 is defined to be the sequence $(1) \in \operatorname{SE}_1$. Let $n \geq 2$. When writing each permutation $\sigma \in \mathfrak{S}_n$ of order $n \geq 2$ as a product of its disjoint cycles, the removal of n yields a permutation σ' of order (n-1). Let $b' = (b'_1, b'_2, \ldots, b'_{n-1})$ be the B-code of σ' . We define the B-code of σ to be $b := (b'_1, b'_2, \ldots, b'_{n-1}, \sigma^{-1}(n))$. By induction on n, we immediately see that the B-code is a bijection of \mathfrak{S}_n onto SE_n .

The following Theorem shows that the set-valued statistics "Lmap" and "Cyc" can be directly read from the B-code.

Theorem 6. The B-code is a bijection of \mathfrak{S}_n onto SE_n having the property:

(3.1) (Cyc, Lmap)
$$\sigma = (Max, Rmil)$$
 B-code σ ($\sigma \in \mathfrak{S}_n$).

Proof. By induction, suppose that $\operatorname{Lmap} \sigma' = \operatorname{Rmil} b'$ and $\operatorname{Cyc} \sigma' = \operatorname{Max} b'$. If n is a fixed point of σ , so that $\sigma^{-1}(n) = n$ and $b = (b'_1, \dots, b'_{n-1}, n)$, then $\operatorname{Lmap} \sigma = \operatorname{Lmap} \sigma' \cup \{n\} = \operatorname{Rmil} b' \cup \{n\} = \operatorname{Rmil} \sigma$. Also, $\operatorname{Cyc} \sigma = \operatorname{Cyc} \sigma' \cup \{n\} = \operatorname{Max} b' \cup \{n\} = \operatorname{Max} b$.

When n is not a fixed point of σ , then σ is a product of the form

$$\sigma = \cdots (\cdots \sigma^{-1}(n) n \sigma(n) \cdots) \cdots$$

while σ' may be expressed as

$$\sigma' = \cdots (\cdots \sigma^{-1}(n)\sigma(n)\cdots)\cdots$$

In particular, $\sigma^{-1}(n) < n$, $\sigma(n) < n$ and $\sigma'(\sigma^{-1}(n)) = \sigma(n)$. We have $\operatorname{Cyc} \sigma = \operatorname{Cyc} \sigma' = \operatorname{Max} b' = \operatorname{Max} b$ since $\sigma^{-1}(n) < n$.

D. FOATA AND G.-N. HAN

To prove Lmap σ = Rmil *b*, three cases are to be considered, (*i*) $\sigma(n) = n-1$; (*ii*) $\sigma(n) \neq n-1$ and $\sigma^{-1}(n-1) < \sigma^{-1}(n)$; (*iii*) $\sigma(n) \neq n-1$ and $\sigma^{-1}(n-1) > \sigma^{-1}(n)$, each of them materialized by the following three tableaux:

In case (i) we get $\operatorname{Lmap} \sigma = \operatorname{Lmap} \sigma'$, $b' = (\ldots, \sigma^{-1}(n))$ and $b = (\ldots, \sigma^{-1}(n), \sigma^{-1}(n))$, then $\operatorname{Rmil} b = \operatorname{Rmil} b'$.

In case (*ii*) we clearly have: $\operatorname{Lmap} \sigma = \operatorname{Lmap} \sigma' \cup \{\sigma^{-1}(n)\}$. Also, $b' = (\ldots, \sigma^{-1}(n-1))$ and $b = (\ldots, \sigma^{-1}(n-1), \sigma^{-1}(n))$. Hence, $\operatorname{Lmap} \sigma = \operatorname{Lmap} \sigma' \cup \{\sigma^{-1}(n)\} = \operatorname{Rmil} b' \cup \{\sigma^{-1}(n)\} = \operatorname{Rmil} b$.

Finally, comes case (*iii*), which is the hardest one. We have $\operatorname{Lmap} \sigma = (\operatorname{Lmap} \sigma' \cap [1, \sigma^{-1}(n) - 1]) \cup \{\sigma^{-1}(n)\}$, also $b' = (\dots, b'_{n-2}, \sigma^{-1}(n-1))$, $b = (\dots, b'_{n-2}, \sigma^{-1}(n-1), \sigma^{-1}(n))$. But as $\sigma^{-1}(n) < \sigma^{-1}(n-1)$, we have $\operatorname{Rmil} b = (\operatorname{Rmil} b' \cap [1, \sigma^{-1}(n) - 1]) \cup \{\sigma^{-1}(n)\} = (\operatorname{Lmap} \sigma' \cap [1, \sigma^{-1}(n) - 1]) \cup \{\sigma^{-1}(n)\} = \operatorname{Lmap} \sigma$.

4. The bijection ϕ

The bijection ϕ , which is the main ingredient in the chain displayed in (1.4), is simply defined as

(4.1)
$$\phi := (B \text{-code})^{-1} \circ A \text{-code}.$$

It follows from Theorems 6 and 5 that

$$(Cyc, Lmap) \phi(\sigma) = (Max, Rmil) B-code \phi(\sigma)$$
$$= (Max, Rmil) A-code \sigma = (Rmil, Lmap) \sigma.$$

This proves relation (1.1) and consequently Theorem 1. It also follows from Theorem 5 and/or 6 that the distribution of each pair of statistics stated in Theorem 1 is also equal to the distribution of (Max, Rmil) on SE_n .

NEW PERMUTATION CODING AND EQUIDISTRIBUTION

It remains to prove identity (1.5) to achieve the proofs of Theorem 2 and its Corollary. Let $A = ([p_1, q_1], [p_2, q_2], \ldots, [p_h, q_h])$ be an ordered partition of [n] into disjoint non-empty intervals, such that $p_j + 1 = q_{j+1}$ for $j = 1, 2, \ldots, h-1$ and $p_1 = 1, q_h = n$. Let $G(\sigma) = \{(i, \sigma(i)) : 1 \le i \le n\}$ be the graph of a permutation σ from \mathfrak{S}_n . Referring to Fig. 2, where the square $[p_j, q_j] \times [p_j, q_j]$ has been materialized by the four points B, B'',D'', D, we see that σ is A-indecomposable, if for every $j = 1, 2, \ldots, h$

(i) the square [BB''D''D] contains the subgraph $\{(i, \sigma(i)): p_j \le i \le q_j\};$

(*ii*) for every l such that $p_j + 1 \leq l \leq q_j$ the rectangle [B'B''C''C'] contains at least one element from $G(\sigma)$.

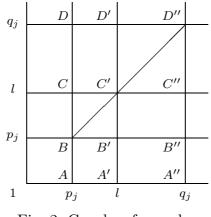


Fig. 2. Graphs of σ and c

We are then led to the following definition.

Definition. Each subexcedant sequence $c = (c_1, c_2, \ldots, c_n)$ from SE_n is said to be A-decomposable, if for every $j = 1, 2, \ldots, h$

(i) the triangle [BB''D''] contains the subgraph $\{(i, c_i): p_j \leq i \leq q_j\};$

(*ii*) for every l such that $p_j + 1 \leq l \leq q_j$ the rectangle [B'B''C''C'] contains at least one element (i, c_i) $(l \leq i \leq q_j)$.

Proposition 6. A permutation σ from \mathfrak{S}_n is A-decomposable, if and only if its A-code (resp. B-code) is A-decomposable.

Proof. Let $a = (a_1, a_2, \ldots, a_n)$ be the A-code of a permutation σ . If σ is A-decomposable, then for every $j = 1, 2, \ldots, h$ and $l = p_j, p_j + 1, \ldots, q_j$ the point $(\sigma^{-1}(l), l)$ belongs to the square [BB''D''D]. As a_l is equal to 1 plus the number of points $(i, \sigma(i))$ such that $1 \le i < \sigma^{-1}(l)$ and $\sigma(i) < l$, we have $a_l \ge p_j$, so that the point (l, a_l) belongs to the triangle [BB''D'']. Conversely, if $(l, a_l) \in [BB''D'']$, then $(\sigma^{-1}(l), l) \in [BB''D'']$.

Now, the rectangle [B'B''C''C'] contains no element from $G(\sigma)$ if and only if all the points $(\sigma^{-1}(l), l), \ldots, (\sigma^{-1}(q_j), q_j)$ are in the square [C'C''D''D']. This is equivalent to saying that all the quantities $\sigma^{-1}(l), l, \ldots, \sigma^{-1}(q_j), q_j$ lie between l and q_j , which is also equivalent to the fact that a_l, \ldots, a_{q_j} lie between l and q_j , that is, the rectangle [B'B''C''C'] has no element (i, a_i) $(l \leq i \leq q_j)$.

Next, let $b = (b_1, b_2, \ldots, b_n)$ be the B-code of σ . If σ is A-decomposable, the restriction of σ to the interval $[p_j, q_j]$ is a product of cycles all elements of which lie between p_j and q_j . By definition of the B-code all the terms b_{p_j} , \ldots , b_{q_j} also lie between p_j and q_j and conversely, if it is the case, all the points $(p_j, \sigma(p_j)), \ldots, (q_j, \sigma(q_j))$ belong to the square [BB''D''D]. The same argument can be applied when all the points $(l, \sigma(l)), \ldots, (q_j, \sigma(q_j))$ belong to the square [C'C''D''D']. All terms b_l, \ldots, b_{q_j} are greater than or equal to l and the rectangle [B'B''C''C'] contains no element of the form (i, b_i) with $l \leq i \leq q_j$.

Thus, if σ is A-decomposable, so are A-code σ and the composition product $(B\text{-}code)^{-1} \text{A-}code(\sigma) = \phi(\sigma)$. This proves identity (1.5) and then Theorem 2 and its corollary.

5. Algorithmic definitions and examples

Although the A-code has been greatly described in various forms (see, e.g., [Kn98], p. 14), we give a full algorithmic definition, which is to be compared with the analogous definition for the B-code.

Algorithmic definition of A-code. Let $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$ be a permutation of $12\cdots n$. By definition the A-code of σ is the sequence $a = (a_1, a_2, \ldots, a_n)$ where for each $i = 1, 2, \ldots, n$

$$a_i := \#\{j : 1 \le j \le i, \, \sigma^{-1}(j) \le \sigma^{-1}(i)\},\$$

or still

(5.1)
$$a_i := \#\{\sigma(k) : 1 \le \sigma(k) \le i, k \le \sigma^{-1}(i)\}.$$

Thus, a_i is equal to 1 plus the number of letters less than *i*, to the left of *i*, in the word $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$.

For instance, with $\sigma = 4, 6, 1, 2, 3, 5$ the A-code of σ is equal to a = (1, 2, 3, 1, 5, 2): $a_1 = 1$, $a_2 = 2$ as 1 is to the left of 2, $a_3 = 3$ as 1 and 2 are to the left of 3, $a_4 = 1$, as 4 is the leftmost letter of σ , etc. Thus,

(5.2)
$$A-code(4, 6, 1, 2, 3, 5) = (1, 2, 3, 1, 5, 2).$$

Algorithmic definition of A-code⁻¹. Given $a = (a_1, a_2, \ldots, a_n) \in SE_n$ write a word with *n* empty places numbered 1 to *n* from left to right. First, move the letter *n* to the a_n -th leftmost place; let σ_n be the resulting word (having one non-empty letter!). Next, move (n - 1) to the place having $a_{n-1} - 1$ empty letters to its left. Let σ_{n-2} be the resulting word (having two non-empty letters). Move (n-2) to the place having $a_{n-2} - 1$ empty letters to its left, etc. Thus, A-code⁻¹(a) is the final permutation σ_1 .

For instance, start with a = (1, 2, 1, 2, 3, 5). We successively get:

	* *	* *	* *	*	
$\sigma_6 =$	* *	* *	6	*	$a_6 = 5$
$\sigma_5 =$	* *	5 *	6	*	$a_5 = 3$
$\sigma_4 =$	* 4	5 *	6	*	$a_4 = 2$
$\sigma_3 =$	34	5 *	6	*	$a_3 = 1$
$\sigma_2 =$	34	5 *	6 2	2	$a_2 = 2$
$\sigma_1 =$	34	$5\ 1$	6	2	$a_1 = 1$

Thus

(5.3)
$$A\text{-code}^{-1}(1, 2, 1, 2, 3, 5) = 3, 4, 5, 1, 6, 2$$

Algorithmic definition of B-code. Let $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n) \in \mathfrak{S}_n$. Its B-code $b = (b_1, b_2, \ldots, b_n)$ is calculated as follows. First, b_n is the place occupied by n in $\sigma_n := \sigma$. Permute the two letters n and $\sigma(n)$ in the word σ . Let σ_{n-1} be the resulting word. Then, b_{n-1} is the place occupied by (n-1) in σ_{n-1} . Next, permute the two letters (n-2) and $\sigma(n-2)$ in σ_{n-1} and let σ_{n-2} be the resulting word. Let b_{n-2} is the place occupied by (n-2) in σ_{n-2} . Permute (n-3) and $\sigma(n-3)$ in σ_{n-2} , etc. The B-code of σ is (b_1, b_2, \cdots, b_n) .

Start with $\sigma = 3, 4, 5, 2, 6, 1$. We successively get:

Thus

$$(5.4) B-code(3,4,5,2,6,1) = (1,2,1,2,3,5).$$

Algorithmic definition of B-code⁻¹. Let $b = (b_1, b_2, \ldots, b_n) \in SE_n$. Start with the identity permutation $\sigma_1 = 1, 2, \ldots, n$. In σ_1 exchange 2 and the letter at the b_2 -th place. Let σ_2 be the resulting word. In σ_2 permute 3 and the letter at the b_3 -th place. Let σ_3 be the resulting word. In σ_3 permute 4 and the letter at the b_4 -th place, etc. The permutation $\sigma = B$ -code⁻¹ b is the permutation σ_n .

D. FOATA AND G.-N. HAN

For example, starting with b = (1, 2, 3, 1, 5, 2). We successively form:

Thus,

(5.5)
$$B\text{-code}^{-1}(1,2,3,1,5,2) = 4,6,3,1,5,2.$$

Let $\Phi := \mathbf{i} \phi \mathbf{i} \phi^{-1} \mathbf{i}$ be the product of the bijections occurring in (1.4). With $\sigma = 6, 4, 1, 2, 3, 5$ the computation of $\Phi(\sigma)$ can be made as follows.

$$\begin{aligned} \mathrm{Id} &= 1\ 2\ 3\ 4\ 5\ 6\\ \sigma &= 6\ 4\ 1\ 2\ 3\ 5\\ \mathbf{i}\ \sigma &= 3\ 4\ 5\ 2\ 6\ 1\\ \mathrm{B-code}\ \mathbf{i}\ \sigma &= 3\ 4\ 5\ 2\ 6\ 1\\ \mathrm{B-code}\ \mathbf{i}\ \sigma &= 1\ 2\ 1\ 2\ 3\ 5\\ \mathrm{(by}\ (5.4))\\ \mathbf{i}\ \phi^{-1}\ \mathbf{i}\ \sigma &= 4\ 6\ 1\ 2\ 3\ 5\\ \mathrm{A-code}\ \mathbf{i}\ \phi^{-1}\ \mathbf{i}\ \sigma &= 4\ 6\ 1\ 2\ 3\ 5\\ \mathrm{A-code}\ \mathbf{i}\ \phi^{-1}\ \mathbf{i}\ \sigma &= 4\ 6\ 3\ 1\ 5\ 2\\ \mathrm{(by}\ (5.2))\\ \mathrm{B-code}\ \mathbf{i}\ \phi^{-1}\ \mathbf{i}\ \sigma &= 4\ 6\ 3\ 1\ 5\ 2\\ \mathrm{(by}\ (5.5))\\ \Phi(\sigma) &= \mathbf{i}\ \phi\ \mathbf{i}\ \phi^{-1}\ \mathbf{i}\ \sigma &= 4\ 6\ 3\ 1\ 5\ 2.\end{aligned}$$

We verify that

$$(Cyc, Rmil) \sigma = (Rmil, Cyc) \Phi(\sigma) = (\{1, 2\}, \{1, 2, 3, 5\}).$$

6. Concluding remarks and Tables

The bijection constructed by Cori [Cor08] only preserves the *cardinalities* "cyc" and "lmap", but not the sets "Cyc" and "Lmap." With the example used in his paper, the permutation

$$\theta = 6, 5, 7, 4, 2, 10, 3, 8, 9 = (1, 6, 10)(2, 5)(3, 7)(4)(8)(9)$$

is mapped onto

$$\theta' = 4, 6, 5, 7, 3, 8, 1, 9, 10, 2 = (1, 4, 7)(2, 6, 8, 9, 10)(3, 5),$$

so that $(\text{Lmap}, \text{Cyc}) \theta' = (\{1, 2, 4, 6, 8, 9\}, \{1, 2, 3\}) \neq (\{1, 2, 3, 4, 8, 9\}, \{1, 3, 6\}) = (\text{Cyc}, \text{Lmap}) \theta$. However, $(\text{cyc}, \text{lmap}) \theta = (\text{lmap}, \text{cyc}) \theta' = (6, 3)$.

NEW PERMUTATION CODING AND EQUIDISTRIBUTION

In our case, we take the bijection $\phi \mathbf{i} \phi^{-1}$ that satisfies (see (1.4))

$$(Cyc, Lmap) \theta = (Lmap, Cyc) \phi \mathbf{i} \phi^{-1}(\theta).$$

The calculation of $\phi \mathbf{i} \phi^{-1}(\theta)$ is made for the same θ , together with the relevant set-valued statistics. We successively get:

$$\begin{aligned} \theta &= 6, 5, 7, 4, 2, 10, 3, 8, 9 \\ &= (1, 6, 10)(2, 5)(3, 7)(4)(8)(9) \\ \text{B-code}\,\theta &= 1, 2, 3, 4, 2, 1, 3, 8, 9, 6 \\ \text{A-code}^{-1}\,\text{B-code}\,\theta &= \phi^{-1}(\theta) = 6, 1, 7, 5, 2, 10, 3, 4, 8, 9 \\ &\mathbf{i}\,\phi^{-1}(\theta) &= 2, 5, 7, 8, 4, 1, 3, 9, 10, 6 \\ \text{A-code}\,\,\mathbf{i}\,\phi^{-1}(\theta) &= 1, 1, 3, 2, 2, 6, 3, 4, 8, 9 \\ &\phi\,\mathbf{i}\,\phi^{-1}(\theta) &= 2, 5, 7, 8, 4, 6, 3, 9, 10, 1 \\ &= (1, 2, 5, 4, 8, 9, 10)(3, 7)(6) \end{aligned}$$

Thus $(Cyc, Lmap)\theta = (Lmap, Cyc)\phi \mathbf{i} \phi^{-1}(\theta) = (\{1, 2, 3, 4, 8, 9\}, \{1, 3, 6\}).$

In Fig. 3 the common distribution over \mathfrak{S}_n of each bivariable statistic (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc)has been reproduced for n = 1, 2, 3, 4. On each cell (A, B), where $A, B \subset [n]$, is written the number of permutations σ from \mathfrak{S}_n such that (Cyc, Rmil) $\sigma = (A, B)$. In the table for n = 4 the total sums occurring at the bottom and on the right are the numbers $\#\{\sigma \in \mathfrak{S}_4 :$ $\operatorname{cyc} \sigma = k\}$ for k = 4, 3, 2, 1, which are the coefficients of the polynomial x(x+1)(x+2)(x+3) ([Ri58], chap. 4, § 3). It will be noticed that all those tables are symmetric with respect to the main diagonal.

				B=	1, 2, 3	1, 3	2,3	3
				A = 1, 2, 3	1			
	B = [1, 2]	2		$1,\!3$		1		
B=1	A=1,2 1			2,3			1	1
A=1 1	2	1		3			1	1
n = 1	n = 2			n=3				

D. FOATA AND G.-N. HAN

B=	1, 2, 3, 4	1, 2, 4	1, 3, 4	2, 3, 4	1, 4	2, 4	3, 4	4	Σ
A=1,2,3,4	1								1
1,2,4		1							
1,3,4			1		1				6
2,3,4				1			1	1	
1,4			1		1				
2,4						1	1	1	11
3,4				1		1	2	2	
4				1		1	2	2	6
Σ	1		6			11		6	

Fig. 3. Distribution of (Cyc, Rmil) over \mathfrak{S}_n .

There exist other bijections $\sigma \mapsto a$ such that the sum $\sum_i (a_i - 1)$ is equal to a statistic different from the inversion number "inv," but having interesting properties. Let us quote the *Tompkins-Paige method* ([To56, Le60, We61]) for generating permutations on a computer. That method was further used in [Ha92, Ha94] to show that the corresponding sum $\sum_i (a_i - 1)$ is equal to the *major index* "maj". Let us also mention the *Denert coding* [FZ90, Ha94], whose sum $\sum_i (a_i - 1)$ is equal to the *Denert statistic* "den". Those codings serve to prove that the statistics "inv," "maj" and "den" are equidistributed on \mathfrak{S}_n , their common distribution being called *Mahonian*.

Let $b = (b_1, b_2, \ldots, b_n)$ be the B-code of a permutation $\sigma \in \mathfrak{S}_n$. In its turn the sum env $\sigma := \sum_i (b_i - 1)$ becomes a new Mahonian statistic. Moreover, it follows from the properties of the bijection ϕ defined in (4.1) that the two three-variable statistics (env, Cyc, Lmap) and (inv, Rmil, Lmap) are equidistributed on \mathfrak{S}_n .

References

[Com74] Comtet, Louis, Advanced Combinatorics. D. Reidel, Boston, 1974.

[Cor08] Cori, Robert, Indecomposable permutations, hypermaps and labeled Dyck paths, preprint, arXiv:0812.0440, 2008, 30 p., to appear in J. Combin. Theory, ser. A.

[CM92] Cori, Robert; Machí, A., Maps, hypermaps and their automorphisms, a survey, Expo. Math., vol. 10, 1992, p. 403–467.

- [FZ90] Foata, Dominique; Zeilberger, Doron, Denert's Permutation Statistic Is Indeed Euler-Mahonian, Studies in Appl. Math., vol. 83, 1990, p. 31-59.
- [Ha92] Han, Guo-Niu, Une courte démonstration d'un résultat sur la Z-statistique, C. R. Acad. Sci. Paris, vol. 314, Série I, 1992, p. 969–971.
- [Ha94] Han, Guo-Niu, Une transformation fondamentale sur les réarrangements de mots, Adv. in Math., vol. 105(1), 1994, p. 26–41.
- [Kn98] Knuth, Donald E., The Art of Computer Programming, vol. 3, Sorting and Searching (second edition). Addison-Wesley, Boston, 1998.
- [Le60] Lehmer, D. H., Teaching combinatorial tricks to a computer, Proc. Sympos. Appl. Math., vol. 10, 1960, p. 179–193. Amer. Math. Soc., Providence, R.I.
- [Lo83] M. Lothaire, Combinatorics on Words. Addison-Wesley, Encyclopedia of Math. and its Appl., 17, London, 1983.
- [OR04] Ossona de Mendez, P.; Rosenstiehl, P., Transitivity and connectivity of permutations, *Combinatorica*, vol. **24**, 2004, p. 487–502.
- [RV96] Roblet, E.; Viennot, X.G., Théorie combinatoire des T-fractions et approximants de Padé en deux points, *Discrete Math.*, vol. **153**, 1996, p. 271–288.
- [Ri58] Riordan, John, An introduction to Combinatorial Analysis. John Wiley, New York, 1958.
- [To56] Tompkins, C. B., Machine attacks on problems whose variables are permutations. Proceedings of Symposia in Applied Mathematics, vol. VI, Numerical Analysis, McGraw-Hill, New York, 1956, 195-211.
- [We61] Wells, Mark B., Generation of permutations by transposition, Math. Computation, vol. 15, 1961, p. 192-195.

Dominique Foata	Guo-Niu Han
Institut Lothaire	I.R.M.A. UMR 7501
1, rue Murner	Université de Strasbourg et CNRS
F-67000 Strasbourg, France	7, rue René-Descartes
foata@math.u-strasbg.fr	F-67084 Strasbourg, France
	guoniu@math.u-strasbg.fr