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Abstract. We find a q-analog of the following symmetrical identity involving binomial
coefficients

(

n

m

)

and Eulerian numbers An,m:

∑

k≥0

(

a+ b

k

)

Ak,a−1 =
∑

k≥0

(

a+ b

k

)

Ak,b−1,

which was published by Chung, Graham and Knuth (J. of comb., Vol. 1, Number1, 29-38,
2010). We shall give two proofs using generating function and bijections, respectively.

1. Introduction

The Eulerian polynomials An(t) are defined by the exponential generating function

∑

n≥0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
. (1.1)

The classical Eulerian numbers An,k are the coefficients of the polynomial An(t), i.e.,
An(t) =

∑n

k=0An,kt
k. Recently, Chung, Graham and Knuth [2] noticed that if we modify

the value of A0(t), which is 1 by (1.1), by taking the convention that A0(t) = A0,0 = 0,
then the following symmetrical identity holds:

∑

k≥0

(

a+ b

k

)

Ak,a−1 =
∑

k≥0

(

a + b

k

)

Ak,b−1 (a, b > 0). (1.2)

Equivalently, instead of (1.1), we define the Eulerian polynomials by the generating func-
tion

∑

n≥0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
− 1 =

ez − etz

ezt − tez
. (1.3)

At the end of [2], the authors asked for, among other unsolved problems, a q-analog of
(1.2). The aim of this paper is to give such an extension and provide two proofs, of which
one is analytical and another one is combinatorial.

We first introduce some q-notations. The q-shifted factorial (z; q)n is defined by (z; q)n :=
∏n−1

i=0 (1−zqi) for any positive integer n and (z; q)0 = 1. The q-exponential function e(z; q)
is defined by

e(z; q) :=
∑

n≥0

zn

(q; q)n
.

1
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Several q-analogs of (1.1) have been proposed in the literature (see [6]). Inspired by the
recent work of Shareshian and Wachs [6] we consider the following q-analog of (1.3):

∑

n≥0

An(t, q)
zn

(q; q)n
=

e(z; q)− e(tz; q)

e(tz; q)− t e(z; q)
. (1.4)

The q-Eulerian polynomials An(t, q) have many remarkable properties analogous to Euler-
ian polynomials, see Shareshian and Wachs [6] and Foata and Han [4]. The q-Eulerian
numbers An,k(q) are then defined by

An(t, q) =

n
∑

k=0

An,k(q)t
k (n ≥ 0).

The first few terms of An,k(q) are as follows:

A0,0(q) = 0, A1,0(q) = 1, A2,0(q) = 1, A2,1(q) = 1, A3,0(q) = 1, A3,1(q) = 2 + q + q2

and A3,2(q) = 1. Also, replacing t by t−1 and z by tz in (1.4) yields that tnAn(t
−1, q) =

tAn(t, q). Thus we have the symmetrical property

An,k(q) = An,n−k−1(q). (1.5)

Recall that the q-binomial numbers
[

n

k

]

q
are defined by

[

n

k

]

q

:=
(q; q)n

(q; q)n−k(q; q)k
for 0 ≤ k ≤ n,

and
[

n

k

]

q
= 0 if k < 0 or k > n.

The following symmetrical identity involving both the q-binomial coefficients
[

n

k

]

q
and

q-Eulerian numbers An,k(q) is a true q-analog of (1.2).

Theorem 1. We have the q-symmetrical identity

∑

k≥0

[

a+ b

k

]

q

Ak,a−1(q) =
∑

k≥0

[

a+ b

k

]

q

Ak,b−1(q) (1.6)

for any positive integers a and b.

We shall first give a generating function proof of (1.6) in Section 2 and then a com-
binatorial proof in Section 3. We conclude the paper with some further extensions and
remarks.

2. A generating function proof of (1.6)

It follows from (1.4) that

(

e(tz; q)− t e(z; q)
)

∑

n≥0

An(t, q)
zn

(q; q)n
=
∑

k

(1− tk)zk

(q; q)k
. (2.1)
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Now,

e(tz; q)
∑

n≥0

An(t, q)
zn

(q; q)n
=
∑

k

(tz)k

(q; q)k

∑

n,i

An,i(q)t
i zn

(q; q)n

=
∑

k,n,i

[

n + k

k

]

q

An,i(q)t
i+k zn+k

(q; q)n+k

=
∑

k,n,i

[

n

k

]

q

An−k,i−k(q)t
i zn

(q; q)n
,

and

t e(z; q)
∑

n≥0

An(t, q)
zn

(q; q)n
= t
∑

k

zk

(q; q)k

∑

n,i

An,i(q)t
i zn

(q; q)n

=
∑

k,n,i

[

n + k

k

]

q

An,i(q)t
i+1 zn+k

(q; q)n+k

=
∑

k,n,i

[

n

k

]

q

An−k,i−1(q)t
i zn

(q; q)n
.

Substituting the last two expressions in (2.1) and identifying the coefficients of tizn/(q; q)n
of both sides, we obtain

∑

k

[

n

k

]

q

An−k,i−k(q)−
∑

k

[

n

k

]

q

An−k,i−1(q) =











1, if i = 0 6= n,

−1, if i = n 6= 0,

0, otherwise.

Setting i = a, n = a+ b and using the symmetrical property (1.5) we obtain (1.6). �

We can also derive q-analogs of other identities in [2]. For example, let Hn(t; q) =
∑n

i=0

[

n

i

]

q
ti be the Rogers-Szegö polynomials, see [1, p. 49]. Then

e(tz; q)e(z; q) =
∑

n≥0

zn

(q; q)n
Hn(t; q).

If we multiply (1.4) with e(tz; q)2− t2e(z; q)2 = (e(tz; q)+ te(z; q))(e(tz; q)− te(z; q)), then
the right-hand side is equal to

(e(tz; q) + te(z; q))(e(z; q)− e(tz; q))

=
∑

n≥0

zn

(q; q)n
((1− t)Hn(t; q) + (t− tn)Hn(1; q)) .
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On the other hand, we have

(e(tz; q))2
∑

n≥0

An(t, q)
zn

(q; q)n
=
∑

n,i,k

Hk(1; q)

[

n

k

]

q

An−k,i−k(q)t
i zn

(q; q)n
,

and

t2(e(z; q))2
∑

n≥0

An(t, q)
zn

(q; q)n
=
∑

n,i,k

Hk(1; q)

[

n

k

]

q

An−k,i−2(q)t
i zn

(q; q)n
.

Hence, identifying the coefficients of tizn/(q; q)n in these expressions yields

∑

k

Hk(1; q)

[

n

k

]

q

An−k,i−k(q)−
∑

k

Hk(1; q)

[

n

k

]

q

An−k,i−2(q)

=

[

n

i

]

q

−

[

n

i− 1

]

q

+











Hn(1; q), if i = 1 6= n,

−Hn(1; q), if i = n 6= 1,

0, otherwise.

Of course, we can also multiply (1.4) with e(tz; q)r − tre(z; q)r for any integer r ≥ 1
and derive a q-analog of the more general (and complicated) identity in [2].

3. A combinatorial proof of (1.6)

For each permutation π = π1π2 . . . πn of [n] := {1, . . . , n}, define the following four
statistics:

exc(π) := |{i : 1 ≤ i ≤ n, πi > i}|;

des(π) := |{i : 1 ≤ i ≤ n− 1, πi > πi+1}|;

maj(π) :=
∑

πi>πi+1

i;

inv(π) := |{(i, j) : i < j, πi > πj}|;

called number of excedances, number of descents, major index and inversion number,
respectively. It is well-known that the Eulerian number An,k counts the number of per-
mutation of [n] with k descents or k excedances.

Let Sn be the set of permutations of [n]. Sherashian and Wachs [6] prove that

An(t, q) =
∑

π∈Sn

q(maj−exc)πtexcπ.

For our purpose we shall use another interpretation of An(t, q) due to Foata and Han [3,4].
This interpretation is based on Gessel’s hook factorization of permutations [5], that we
recall now. A word w = x1x2 . . . xm is called a hook if x1 > x2 and either m = 2, or m ≥ 3
and x2 < x3 < . . . < xm. Clearly, each permutation π = π1π2 . . . πn admits a unique
factorization, called its hook factorization, pτ1τ2...τr, where p is an increasing word and
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each factor τ1, τ2, . . . , τk is a hook. To derive the hook factorization of a permutation,
one can start from the right and factor out each hook step by step. For each i let invτi
denote the number of inversions of τi and define

lec(π) :=
∑

1≤i≤k

inv(τi). (3.1)

For example, the hook factorization of π = 1 3 4 14 12 2 5 11 15 8 6 7 13 9 10 is

1 3 4 14 |12 2 5 11 15 |8 6 7 |13 9 10.

Hence p = 1 3 4 14, τ1 = 12 2 5 11 15, τ2 = 8 6 7, τ3 = 13 9 10 and

lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Let pτ1τ2...τr be the hook factorization of a permutation π. Let A0 (resp. Ai (1 ≤ i ≤
r)) denote the set of all letters in the word p (resp. in the hook τi). We call A0 = cont(p)
(resp. Ai = cont(τi) (1 ≤ i ≤ r)) the content of p (resp. of hook τi) and content of π
the sequence Cont(π) = (A0,A1, ...,Ar). The statistic (inv− lec)π is equal to the number
of pairs (k, l) such that k ∈ Ai, l ∈ Aj, k > l and i < j, a number we shall denote by
inv(A0,A1, ...,Ar).

From Foata and Han [3, 4] we derive the following combinatorial interpretations:

An(t, q) =
∑

π∈Sn

q(inv−lec)πtlecπ.

Therefore

An,k(q) =
∑

π∈Sn
lecπ=k

q(inv−lec)π. (3.2)

Recall [1] that the q-multinomial coefficient
[

n

a0, a1, . . . , ak

]

q

=
(q; q)n

(q; q)a0(q; q)a1 · · · (q; q)ak

has the following interpretation
[

n

a0, a1, . . . , ak

]

q

=
∑

(A0,A1,...,Ak)

qinv(A0,A1,...,Ak), (3.3)

where the sum is over all ordered partitions (A0,A1, . . . ,Ak) of [n] such that |Ai| = ai,
0 ≤ i ≤ k.

We will give a combinatorial proof of (1.6) using (3.2) and (3.3). As a warm up we first
prove the symmetric property (1.5) by constructing an explicit involution on permutations.

Lemma 2. There is an involution π 7→ σ on Sn satisfying

lec(π) = n− 1− lec(σ), and (inv− lec)π = (inv− lec)σ.
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Proof. Let τ be a hook with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where x1 < . . . < xm.
Define d(τ) = xm−k+1x1 . . . xm−kxm−k+2 . . . xm. Clearly d(τ) is the unique hook satisfying
cont(d(τ)) = cont(τ) and inv(d(τ)) = m− k = |cont(τ)| − inv(τ).

Let τ be a word with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where x1 < . . . < xm.
Define d′(τ) = xm−kx1 . . . xm−k−1xm−k+1 . . . xm. Clearly d′(τ) is the unique word satisfying
cont(d′(τ)) = cont(τ) and inv(d′(τ)) = m− k − 1 = |cont(τ)| − inv(τ)− 1.

Let π = pτ1τ2 . . . τr be the hook factorization of π ∈ Sn.

• If p 6= ∅, let σ = d′(p)d(τ1)d(τ2), . . . , d(τr).
• If p = ∅, let σ = d′(τ1)d(τ2)d(τ3) . . . d(τr).

Since d and d′ are two involutions, it is routine to check that such a mapping is an
involution with the required properties. �

For each fixed positive integer n, a two-pix-permutations of [n] is a sequence of words

v = (p1, τ1, τ2, . . . , τr−1, τr, p2) (3.4)

satisfying the following conditions:

(C1) p1 and p2 are two increasing words, possibly empty;
(C2) τ1, . . . , τr are hooks for some positive integer r;
(C3) The concatenation p1τ1τ2 . . . τr−1τrp2 of all components of v is a permutation of

[n].

We also extend the two statistics to the two-pix-permutations by

lec(v) = inv(τ1) + inv(τ2) + · · ·+ inv(τr),

inv(v) = inv(p1τ1τ2 . . . τr−1τrp2).

It follows that

(inv− lec)v = inv(cont(p1), cont(τ1), cont(τ2), . . . , cont(τr), cont(p2)). (3.5)

Lemma 3. The generating function of all two-pix-permutations v of n such that lec(v) = s
by the statistic inv− lec is

∑

k≥0

[

n

k

]

q

Ak,s(q). (3.6)

Proof. By the hook factorization, the two-pix-permutation v in (3.4) is in bijection with
the pair (σ, p2), where σ = p1τ1τ2 . . . τr−1τr is a permutation on [n] \ cont(p2) and p2 is an
increasing word. Thus, by (3.2), (3.3) and (3.5), the generating function of all two-pix-
permutations v of [n] such that lec(v) = s and |p2| = n − k with respect to the weight
q(inv−lec)(v) is

[

n

k

]

q
Ak,s(q). �

Lemma 4. There is a bijection v 7→ u on the set of all two-pix-permutations of [n]
satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u.
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Proof. We give an explicit construction of the bijection. Let v be a two-pix-permutation
and write

v = (τ0, τ1, τ2, . . . , τr−1, τr, τr+1),

where τ0 = p1 and τr+1 = p2. If τi (resp. τj) is the leftmost (resp. rightmost) non-empty
word (Clearly i = 0, 1 and j = r, r + 1), we can write v in the following compact way by
removing the empty words at the beginning or at the end

v = (τi, τi+1, . . . , τj−1, τj). (3.7)

It is easy to see that the above procedure is reversible by adding some necessary empty
words at the two ends of the compact form (3.7). Now we work with the compact form.
Recall that

(inv− lec)v = inv(cont(τi), cont(τi+1), . . . , cont(τj−1), cont(τj)) (3.8)

and lec(v) =
∑j

k=i lec(τk).
If i = j, then only one word τi is in the sequence v. We define u = (∅, σi, ∅), where σi

is the unique word (hook) with content [n] such that lec(σi) = n− 2− lec(τi).
If j > i, we define the two-pix-permutation u as follows

u = (d′(τi), d(τi+1), d(τi+2), . . . , d(τj−1), d
′(τj)),

where d and d′ are two involutions defined in the proof of Lemma 2.
Since lec(d′(τi)) = |cont(τi)| − 1 − lec(τi), lec(d′(τj)) = |cont(τj)| − 1 − lec(τj) and

lec(d′(τk)) = |cont(τk)| − lec(τk = for k 6= i, j, we have

lec(u) =
∑

|cont(τk)| − 2− lec(v) = n− 2− lec(v).

Finally it follows from (3.8) that (inv − lec)u = (inv − lec)v.
We give an example to illustrate the bijection. Let v = (27, 6389, 514, ∅). Then v is a

two-pix-permutation of [9] and inv(v) = 19, lec(v) = 3, (inv − lec)v = 16. The compact
form is (27, 6389, 514), so that

u = (d′(27), d(6389), d′(514) = (72, 9368, 145).

Since the first word 72 is not increasing, we obtain the standard form by adding the
empty word at the beginning. So that u = (∅, 72, 9368, 145). Hence inv(u) = 20, lec(u) =
4, (inv− lec)u = 16. �

Combining Lemmas 2, 3 and 4 we obtain a combinatorial proof of (1.6).

4. Further extensions and remarks

The classical Eulerian polynomials correspond to the generating function of descent
numbers of symmetric groups. Let r ≥ 1 be an integer. As a natural extension of (1.4),
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we consider the polynomial A
(r)
n (t, q) defined by the following generating function

e(z; qr)− e(trz; qr)

e(trz; qr)− te(z; qr)
=
∑

n≥1

A(r)
n (t, q)

zn

(qr; qr)n
. (4.1)

It is easy to see that A
(r)
n (1, 1) = rnn!, which is the cardinality of Cr ≀ Sn, that is, the

wreath product of a cyclic group Cr of order r with the symmetric group Sn. Introduce

the coefficients A
(r)
n,i by

A(r)
n (t, q) =

∑

i

A
(r)
n,i(q)t

i. (4.2)

The generating function proof of (1.6) can be applied to derive immediately the following
identity

∑

k

[

n

k

]

qr

A
(r)
k,rn−i−1(q) =

∑

k

[

n

k

]

qr

A
(r)
k,i−1(q) (4.3)

for positive integers i and n such that i 6= rn.
Let r and n be two positive integers. Let A = {a, b, . . .} be any subset of [n]. We define

the r-colored of A by

Ar := {a1, b1, . . . , a2, b2, . . . , . . . , ar, br, . . .}.

Define the order of [n]r by

11 < 12 . . . < 1r < 21 < 22 . . . < 2r < . . . < n1 < n2 < . . . < nr.

A pix-r-colored-word is a sequence of colored words

w = (p, τ1, τ2, . . . , τk)

satisfying the following conditions:

(C1) p is an increasing word, with content Ar
0, the r-colored of A0, possibly empty;

(C2) τi (1 ≤ i ≤ k) are hooks, with content Ar
i , the r-colored of Ai, and the positive

integer k is not fixed;
(C3) (A0,A1, . . . ,Ak) is an ordered partition of [n].

Let Wn,r be the set of all pix-r-colored-words of [n]. For each w ∈ Wn,r we define two
statistics by

invr(w) = inv(pτ1τ2 . . . τr−1τr),

lecr(w) = inv(τ1) + · · ·+ inv(τk).

Proposition 5. Let A
(r)
n (t, q) be defined by (4.1). Then

∑

σ∈Wn,r

q(invr−lecr)(σ)tlecr(σ) = A(r)
n (t, q).
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Proof. By definition and (3.3) we have
∑

σ∈Wn,r

q(invr−lecr)(σ)tlecr(σ) =
∑

a0+a1+...+ak=n

ai≥1

∏

1≤i≤k

Prai(t)
∑

(A0,A1,...,Ak)
#Ai=ai

qinvr(A0,A1,...,Ak)

=
∑

a0+a1+...+ak=n

ai≥1

[

n

a0, a1, . . . , ak

]

qr

∏

1≤i≤k

Prai(t),

where Pm(t) := t+ t2 + . . .+ tm−1. So the generating function is

∑

n,i

∑

σ∈Wn,r

q(invr−lecr)(σ)tlecr(σ)
zn

(qr; qr)n

=
∑

n≥0

∑

a0+a1+...+ak=n

ai≥1

[

n

a0, a1, . . . , ak

]

qr

∏

1≤i≤k

Prai(t)
zn

(qr; qr)n

=

(

∑

a≥0

za

(qr; qr)a

)(

1−
∑

b≥1

Prb(t)
zb

(qr; qr)b

)−1

= e(z; qr)

(

1−
∑

b≥1

t− trb

1− s

zb

(qr; qr)b

)−1

=
(1− t)e(z; qr)

e(trz; qr)− t e(z; qr)
.

This completes the proof in view of (4.1). �

Similarly, we can define the two-pix-r-colored-words to be sequences of colored words

w = (p1, τ1, τ2, . . . , τk, p2)

with the following conditions:

(C1) p1 and p2 are increasing words, with content Ar
0 and Br

0, possibly empty;
(C2) τi (1 ≤ i ≤ k) are hooks, with content Ar

i , the r-colored of Ai, and the positive
integer k is not fixed;

(C3) (A0,A1, . . . ,Ak,B0) is an ordered partition of [n].

Clearly we can give a combinatorial proof of (4.3) by applying the following generalization
of Lemma 4.

Proposition 6. There is a bijection v 7→ u on the set of all two-pix-r-colored-words such
that

lecrv = rn− 2− lecru, and (invr − lecr)v = (invr − lecr)u.
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When r = 1, through Gessel’s hook factorization we can translate the statistic (invr, lecr)
onto Sn. It would be interesting to see whether there is an analogue hook factorization
for general r ≥ 1 so that we can translate our (invr, lecr) defined on Wn,r onto Cr ≀Sn.

We conclude this paper with another symmetric identity for the Eulerian numbers.
Notice that for any positive integers n and k we have

[

2n

2k + 1

]

−1

= 0 and

[

2n

2k

]

−1

=

(

n

k

)

.

It is known [8, Corollary 6.2] that if dk = n and ωd is a primitive dth root of unity, then

An(t, ωd) = Ak(t)

(

1− td

1− t

)k

.

In particular, if d = 2, then ωd = −1. Hence, assuming that a + b is even, substituting
q = −1 in (1.6) yields

∑

k≥0

(

a+b
2

k

)

∑

i+j=a−1

(

k

i

)

Ak,j =
∑

k≥0

(

a+b
2

k

)

∑

i+j=b−1

(

k

i

)

Ak,j. (4.4)

This identity can be rephrased as follows:

∑

k≥0

(

c + d

k

)

∑

i+j=2c−1

(

k

i

)

Ak,j =
∑

k≥0

(

c+ d

k

)

∑

i+j=2d−1

(

k

i

)

Ak,j

and
∑

k≥0

(

c+ d− 1

k

)

∑

i+j=2(c−1)

(

k

i

)

Ak,j =
∑

k≥0

(

c+ d− 1

k

)

∑

i+j=2(d−1)

(

k

i

)

Ak,j

for any positive integers c and d.
The last two symmetrical identities involving binomial coefficients and Eulerian num-

bers cry out for a combinatorial interpretation.
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sité Lyon 1, France

E-mail address : zeng@math.univ-lyon1.fr


	1. Introduction
	2. A generating function proof of (??)
	3. A combinatorial proof of (??)
	4. Further extensions and remarks
	Acknowledgement

	References

