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Finite Difference Calculus for Alternating Permutations

Dominique Foata and Guo-Niu Han

Abstract. The finite difference equation system introduced by Chris-
tiane Poupard in the study of tangent trees is reinterpreted in the alter-
nating permutation environment. It makes it possible to make a joint study
of both tangent and secant trees and calculate the generating polynomial
for alternating permutations by a new statistic, referred to as being the
greater neighbor of the maximum.

1. Introduction

Let f = (fu(k)) (n > 1,1 < k < 2n — 1) be a family of rational
numbers, displayed in a triangular array of the form

f1(1)
f2(1) f2(2) f2(3)
(1.1) f= f3(1) f3(2) f3(3) f3(4) f3(5)
) fa(4) fa(5) fa

and consider the finite difference equation system
(1.2) A% fo(k) +4f_i(k)=0 (n>2,1<k<2n-—3),

where A stands for the classical finite difference operator (see, e.g., [Jo39])

(1'3> Afn(k> = fn(k-l_l)_fn(k),
so that
(1'4> Aan(k> :fn(k+2>_2fn(k+1)+fn(k>'

If at each step n > 2 the two entries f,(1) and f,(2) are given explicit
values, the whole system (1.2) has a wunique solution, as the equation
A?f,(1) + 4 f,_1(1) = 0 yields the value of f,(3), then A2f,(2) +
4 fr—1(2) = 0 the value of f,,(4), etc.

The same conclusion holds if the two bordered diagonals

(f1(1)7f2(1>7f3(1)7f4(1>7 o '7fn(1>7 s ')7
(f1(1>7f2(3)7f3(5>7f4(7)7 . '7fn(2n - 1>7 : )
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are taken as initial values. To see this we first note that the equation
f2(1) = 2f2(2) + f2(3) +4f1(1) = 0 determines f2(2) uniquely. Assuming
that the triangle (f,,»(m)) (1 < m < 2n’—1, n’ < n) has been determined,
the system A2 f,, . 1(m)+4 fr,(m) =0 (1 <m < 2n—1) consists of (2n—1)
linear equations with (2n — 1) unknowns, namely, f,+1(2), fn+1(3), ... ,
frn+1(2n), the underlying matrix being trigonal of the form

-21 00---00 O
1 -210---00 0
0 1-21---00 O
Fry1 1= Do S
0 000---1-21
0 000---01 =2
As det Fy,11 = —2n (n > 1), the system has a unique solution.

The purpose of this paper is to solve (1.2) in four cases, when the sets
of initial values called [tan1], [tan2], [sec1], [sec2] are the following:

[tan1] f1(1) =1; f,(1) =0 and f,(2) =25 fn_1(k) for n > 2;

[tan2] fi(1) =1; fu(1) = fu(2n —1) =0 fok} n > 2;

[sec1] f1(1)=1; fo(1) = zk:fn_l(k:) and f,(2) = 3%:fn_1(k:) for n > 2;
[sec2] f1(1)=1; fn(l) = fn(2n—1) = %fn_l(k) for n > 2;

)

It will be proved (see Theorem 1.5) that both initial values [tan1] and
[tan2] (resp. [sec1] and [sec2]) in fact lead to the same solution of the
system and, furthermore, that the solutions found for the f,, (k)’s are non-
negative integral values. To avoid any confusion the solutions of (1.2) will
be denoted by (g, (k)) (resp. (h,(k))) when using [tanl] (resp. [secl]).
The first numerical values of those solutions are displayed in Fig. 1.1.

91(1)21 T1 =1

92(1)=0 ¢2(2)=2 g2(3)=0 T5=2

g3(1)=0 g3(2)=4 g3(3)=8 g3(4)=4 g3(5)=0 T5=16
94(1)=0 g4(2)=32 g4(3)=64 ga(4) =80 g4(5)=64 ¢ga(6)=32 g4(7)=0 T =272
h1(1)=1 E>=1

ho(1)=1 h2(2)=3 h2(3)=1 E4=5
h3(1)=5 h3(2)=15 h3(3)=21 h3(4)=15 h3(5)=5 Eeg=61

ha(1)=61 ha(2)=183 ha(3)=285 ha(4)=327 ha(5)=285 h4(6)=183 hs(7)=61

[Es=1385

Fig. 1.1. The two triangles of the g, (k)’s and h,,(k)’s.

To the right of each triangle have been calculated the row sums, which
are equal, as stated in the next theorem, to the tangent numbers (resp.
the secant numbers). Those classical numbers, denoted by 75,11 and Es,,
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appear in the Taylor expansions of tanu and sec u:
u2n+1
(15) tanu = Z mTQn+1
=0 3 5 7 9
U u u U
u2n

1
1.6 = = ——Fay,
(1.6) secu Cos U nz>0 (2n)! 2

U2 4 6 8 10

Uu u
1+ C e Y5 e+ L asss + 50521 4 -
LTI T R TR TR

(see, e.g., [Ni23, p. 177-178], [CoT4, p. 258-259]).
Theorem 1.1. Let (g, (k)) (resp. (hn(k)) be the unique solution of the

finite difference equation system (1.2) when using the initial values [tan1]
(resp. [sec1]). Then, the row sums of the solutions are equal to

(1.7) Y gn(k) =Tono1 (n>1);
k

(1.8) > hn(k)=Ea (n>1).
k

As further mentioned, Theorem 1.1 will appear as a consequence of
Theorem 1.4. It will also be shown that the generating functions for the
coefficients g, (k) and h, (k) can be evaluated in the following forms.

Theorem 1.2. Let

x2n+1—k yk—l

Zay)=1+), D, WG )

n>11<k<2n+1

and Z**(x,y) (resp. Z5¢(x,y)) when f,(k) = gn(k) (resp. fn(k) =
hn(k)). Then,

(1.9) Z% (g, y) = sec(z + y) cos(z — y);
(1.10) Z5°¢(x, 1) = sec?(z + y) cos(x — y).

As Z%0 (y, x) = Z%"(z,y) and Z5(y,x) = Z°(x,y), this implies the
following Corollary.

Corollary 1.3. The entries g, (k) and h,, (k) have the symmetry property:
(1'11> gn(k) :gn(2n_k>v hn(k> :hn(2n_k> (1 Skg 2n_1)'

In view of (1.7) and (1.8), two finite sets 2As,,_1 and 2y, of cardinalities
T5,_1 and FEs,, are to be found, together with a statistic, call it “grn,”
defined on those sets with the property that

(1.11) S BT =3 gu(k)at
k

o€/han 1



DOMINIQUE FOATA AND GUO-NIU HAN

(1.12) > aEm =N by (k)at.
k

oo

We shall use Désiré André’s old result [An1879, An1881], who introduced
the notion of alternating permutation, as being a permutation o =
o(1)o(2)---o(n) of 12---n with the property that o(1) > 0(2), 0(2) <
o(3), 0(3) > o(4), etc. in an alternating way. For each n > 1 let 2,
denote the set of all alternating permutations of 12---n. He proved that
H#UAon_1 = Ton_1, #As, = FEo,. The desired statistic “grn” is then the
following.

Definition. Let o = o(1)o(2)---0(n) be an alternating permutation
from 2, so that o(i) = n for a certain ¢ (1 < i < n). By convention, let

0(0) = o(n+ 1) := 0. Define the greater neighbor of n in o to be
(1.13) grn(o) := max{o(i —1),0(i+ 1)}.

Also, let
(1.14) W, p:={oceU,:gm(oc)=k} (0<k<n-1).
Theorem 1.4. Under the same assumptions as in Theorem 1.1 we have
(1.15) gn(k) = #Aopn_16-1 (n=21,1<k<2n—1);
(1.16) hn (k) = #Aon i (n>1,1<k<2n-—1).
Example. There are T3 = 2 alternating permutations of length 3,

namely, 213 and 312, and grn(213) = grn(312) = 1, so that g»(1) =
#9[3’0 = O, 92(2) = #9[3’1 = 2, 92(3) = #2[3’2 = 0; there are Fy =5
alternating permutations of length 4, namely, 4132, 4231, 3142, 3241,
2143, and grn(4132) = 1, grn(4231) = grn(3142) = grn(3241) = 2,
grn(2143) = 3, so that ha(1) = 1, ha(2) = 3, h2(3) = 1; in accordance
with the numerical values in Fig. 1.1.

As #Uop 1 = Ton_1, #As, = Es,, following Désiré André’s result, it
is now clear that Theorem 1.1 is a consequence of Theorem 1.4. Thus, an
analytical result is proved by combinatorial methods.

In Proposition 2.1 it will be proved that #2,¢ = 1, #2210 =
#Aop_12n—2 = 0 (n > 2) and #Az,_11 = 2T,—3 (n > 2); also,
#Ao 1 =1, #UAsp1 = #Aop 2n—1 = Eop_2 (n > 2) and #Asp 2 = 3 E2p—o
(n > 2). In view of Theorem 1.4 this implies that conditions [tan2] and
[sec2] are fulfilled as soon as conditions [tan1] and [sec1] hold, and
then the following theorem.

Theorem 1.5. The entries (g, (k)) and (h,,(k)) given by (1.15) and (1.16)
are also solutions of the finite difference equation system (1.2) when the
initial values [tan2] and [sec2] are used, respectively.
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There are other combinatorial models which are also counted by tangent
and secant numbers, or in a one-to-one correspondence with alternating
permutations, in particular, the labeled, binary, increasing, topological
trees, also called “arbres binaires croissants complets” by Viennot [Vi88,
chap. 3, p. 111]. The set of those trees having n labeled nodes is denoted
by ¥,,. The statistic “pom” (parent of the mazimum leaf), introduced by
Poupard [Po89] for her strictly ordered, binary trees can be extended to
all of ¥,,. The usual bijection (see [Vi88]) v : ¥,, — 2,,, called projection,
has the property: pom(t) = grn(+(t)), as proved in Theorem 5.1. We then
have another combinatorial interpretation for the polynomials ", g, (k)z*
and Y, hy, (k)x".

As such, the triangle (g,(k)) (n > 1,1 < k < 2n — 1) does not
appear in Sloane’s On-Line Encyclopedia of Integer Sequences [S106], but
the triangle (g,(k)/2""') does under reference A008301 and is called
Poupard’s triangle, after her pioneering work on strictly ordered binary
trees [Po89]. It is banal to verify that 2"~1 divides g, (k) when dealing
with the combinatorial model ¥, for n odd.

In contrast to Christiane Poupard [Po89], who showed that the dis-
tribution of the strictly ordered binary trees satisfied the finite difference
equation system A2 fo,, 1 1(k)+2 fon_1(k) = 0, we have used the multiplica-
tive factor “4” in equation (1.2) to make a unified study of the tangent and
secant cases and deal with objects in one-to-one correspondence with alter-
nating permutations. Mutatis mutandis, identities (1.15), as well as (1.11)
concerning the tangent numbers, are due to her. She obtains the generating
function for her trees in the form: sec((x +1v)/v/2) cos((z —y)/v/2) instead
of (1.9). However, the alternating permutation development in Sections 2
and 3, identity (1.10) and the combinatorial properties of the entries h,, (k)
are new.

The triangle of the h,(k)’s appears in Sloane’s [SI06] as sequence
A125053. It was deposited there by Paul D. Hanna. The entries have been
calculated by using a procedure equivalent to (1.2) and the initial condi-
tion [tan2]. No combinatorial interpretation is given and no generating
function calculated.

Theorem 1.4 will be proved in Section 3, once evaluations of some
cardinalities such as #%2, ; will be made, as done in Section 2. The proof
of Theorem 1.2 is given in Section 4, together with further identities on
the g, (k) and h,(k)’s.

2. Some special values

The evaluations of #%9,,—1 ,—1 and #%2s, ; made in the next proposi-
tion for some values of n and k will facilitate the derivation of the proof
of Theorem 1.2. They also have their own combinatorial interests.
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Proposition 2.1. The following relations hold:
2.1) #Ao=1, H#UAsp_10=H#™Uop—12n-2=0 (n>2)

(
(2.2)  #Usp—11 =H#™Uon_1,2n-3 =213 (n>2);
(2.3)  #RUop_12=H#Aon_12n—4=4Ton_3 (n 2> 3);
(24)  #RAop_13=#Aon_12n-5=6T2,_3 —8Ts,_5 (n>23);
(2.5) > #Uono1p =Ton1 (n>1).
k>0
(2.6) #Az1 =15
(2.7) #Aon 1 = #Aonon—1 = Eop—o  (n > 2);
(2.8) #Aop o = #Aop 2n—2 =3 Eop_a  (n > 2);
(2.9) #Aop 3 = #Aonon-—3 =5F2_9—4FE9y_4 (n>2);
(2.10) Z #H#Aop o = Eopp (n>1).

k>1

Proof. (2.1) The set 2 is the singleton 1 and grn(l) = 0 by
definition, so that #2l; o = 1. For n > 2 all alternating permutations from
Ao,—1 have a “grn” at least equal to 1. Hence, #2s,_1 0 = 0. Finally,
each alternating permutation of length (2n — 1) (n > 2) contains neither
the factor (2n —2)(2n—1), nor (2n—1)(2n —2). Hence, #A2,,—1,2n—2 = 0.

(2.2) When n > 2, each alternating permutation from s, 1 starts
with (2n — 1)1, or ends with 1(2n — 1). After removal of those two
letters, there remains an alternating permutation on {2,3,...,2n — 2}.
Hence, #%2,—11 = 27T5,-3. Next, each permutation from s, _1 2,3
must contain, either the three-letter factor (2n — 1)(2n — 3)(2n — 2), or
(2n — 2)(2n — 3)(2n — 1). The removal of the factor (2n — 1)(2n — 3)
(resp. (2n — 3)(2n — 1)) yields an alternating permutation of the set
{1,2,...,(2n —4),(2n — 2)}, of cardinality (2n — 3). This proves relation
#22p,1,2n—3 = 212, 3.

(2.3) Start with an alternating permutation on {1,3,4,...,2n — 2},
then having (2n — 3) elements. There are four possibilities to generate
a permutation from 2As,_19: (1) insert (2n — 1)2 to the left; (2) insert
2 (2n—1) to the right; (3) insert 2(2n—1) just before 1; (4) insert (2n—1) 2
just after 1. For the second identity in (2.3) proceed in the same way:
in each alternating permutation on {1,2,...,2n — 1} \ {2n — 4,2n — 1}
the two letters (2n — 3), (2n — 2) are necessarily local maxima. There
are four possibilities to obtain a permutation from 2As,_1 2,—4: insert
(2n — 1) (2n — 4) just before, either (2n — 3), or (2n — 2); also insert
(2n —4) (2n — 1) just after, either (2n — 3), or (2n — 2).

(2.4) Each permutation from 2,1 3 containing the factor 21 (resp.
12) starts with 21 (resp. ends with 12). Dropping the factor 21 (resp.
12) and subtracting 2 from the remaining letters yields an alternating
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permutation from Ag,,_3 1. There are then 2(27T5,,_5) permutations from
2A9p,—1,3 containing, either 21, or 12.

If a permutation from 2Ay,,_1 3 contains neither one of those two factors,
it has one of the siz properties: it starts with (2n — 1)3, or contains
one of the three-letter factor 1(2n — 1)3, 3(2n — 1)1, 2(2n — 1) 3,
3(2n — 1) 2, or still ends with 3 (2n — 1). After removal of the two-letter
factor (2n—1) 3 or 3 (2n— 1) there remains an alternating permutation on
{1,2,4,...,(2n — 2)} not starting with 21 and not ending with 12. There
are then 6(7%,_3 — 2T5,_5) such permutations. Altogether, #2s,_13 =
4T5, 5+ 6(Ton—3 —2Top—5) = 6Top_3 — 815y 5.

The proof of the second identity in (2.4) follows a different pattern.
If the letter (2n — 4) is a local minimum (i.e., less than its two adjacent
letters) in a permutation o from A, _1 2,5, then o necessarily contains
one of the four five-letter factors (2n —1)(2n —5)(2n —2)(2n —4)(2n — 3),
(2n—1)(2n —5)(2n —3)(2n —4)(2n — 2), (2n — 2)(2n —4)(2n — 3)(2n —
5)(2n—1), (2n —3)(2n — 4)(2n — 2)(2n — 5)(2n — 1). Replacing this five-
letter factor by (2n — 5) yields a permutation from 2As,_5. Thus, there
are 4T5,_5 permutations from 2s,_1 2,—5 in which (2n —4) is a local
minimum.

In the other permutations from 25,1 2,,—5 all the four letters (2n —4),
(2n — 3), (2n — 2), (2n — 1) are local maxima (i.e., greater than their
adjacent letters). Let %5, 1 5, 5 be the set of those permutations. When
the two-letter factor (2n — 1)(2n —5) or (2n — 5)(2n — 1) is deleted from
such a permutation, there remains a permutation on {1,2,...,(2n—1)}\
{(2n—5),(2n — 1)} in which the third largest letter (2n —4) is not a local
minimum. Let 25,5 be the set of those permutations. But the alternating
permutations on the latter set in which (2n — 4) is a local minimum
necessarily contain the three-letter factor (2n — 3)(2n — 4)(2n — 2) or
(2n—2)(2n—4)(2n—3). There are then 2 T5,,_5 such permutations. Hence,
#A3,_3 = Ton3 — 215, 5. To obtain a permutation from 45, ; ,, 5 it
suffices to start from a permutation ¢’ from 245, 5 and insert (2n—1)(2n—
5) (resp. (2n—>5)(2n—1)) just before (resp. just after) each one of the three
letters (2n —4), (2n —3), (2n —2) (which are all local maxima). There are
then 6(7%,—3 — 2T%y,_5) such permutations. Altogether, #o,—1 25n-5 =
4T2n_5 + 6(T2n_3 - 2T2n_5) == 6T2n_3 - 8T2n_5. No comment for (25)
and (2.6).

(2.7) Simply note that the only alternating permutations from s, 1
and s, 2,1 are, respectively, of the form: (2n)10(3)---0(2n) and
o(l)o(2)---(2n) (2n —1).

(2.8) Same proof as for (2.3): start with an alternating permutation
on{1,3,4,...,(2n—1)}. There are exactly three possibilities to generate a
permutation from g, o: insert (2n) 2 to the left, or just after the letter 1,
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or still insert 2 (2n) just before the letter 1. For the second identity start
with a permutation on {1,2,...,2n}\{2n—2,2n} and insert (2n) (2n —2)
either to the right, or just before (2n — 1), or still insert (2n — 2) (2n) just
after (2n —1).

(2.9) Each permutation from s, 3 containing the factor 21 is nec-
essarily of the form o = 210(3)---0(2n), so that the alternating per-
mutation ¢’ := (c(3) — 2)---(0(2n) — 2) belongs to 2As,_2 1. There are
then Fs,,_4 such permutations. If a permutation from I3, 3 does not con-
tain 21, it has one of the five properties: it starts with (2n)3, or con-
tains one of the three-letter factor 1(2n)3, 3(2n)1, 2(2n)3, 3(2n)2.
After removal of the two-letter factor (2n)3 or 3(2n) there remains
an alternating permutation on {1,2,4,...,(2n — 1)} not starting with
21. There are then 5(Fs,_o — Fa,_4) such permutations. Altogether,
#Aop 3 = Eop_y + 5(Eap_9 — Eop_4) = 5E9,_9 — 4E9,_4.

The proof for the second identity in (2.9) is quite similar. Each permu-
tation from sy, 2,,—3 containing the factor (2n—1)(2n—2) necessarily ends
with the four-letter factor (2n)(2n — 3)(2n — 1)(2n — 2). There are then
Es,,—4 such permutations. The other permutations from 2(3,, 2,3 contain
one of the four three-letter factors (2n)(2n—3)(2n—2), (2n—2)(2n—3)(2n),
(2n)(2n—3)(2n—1), (2n—1)(2n—3)(2n), or ends with (2n)(2n—3). After
removal of the two-letter factor (2n)(2n —3) or (2n —3)(2n) there remains
an alternating permutation on {1,2,...,(2n —4),(2n —2),(2n — 1)}, not
ending with the two-letter factor (2n—1)(2n—2). There are Eo,,_o— FEo,_4
such permutations. Altogether, #%20s,, 2n,—3 = Eap—4 + 5(E2,—2 — Eop_4).

No comment for (2.10). []

3. Proof of Theorem 1.4

Let a, (k) := #2A2p—1,,—1 and b, (k) := #As, . From Proposition 2.1
it follows that the initial conditions [tanl] and [tan2] hold when
fn(k) = an(k), and [secl] and also [sec2] when f,(k) = b,(k). It
remains to prove that in each case (1.2) holds.

By means of identities (2.2)—(2.4) and (2.7)—(2.9) we easily verify that
(1.2) holds for both a,, (k) and b, (k) whenn =2,3 and 1 < k < 2n—3. It
also holds for a,,(k) when n >4 and k = 1,2,2n — 4, 2n — 3, and for b, (k)
whenn >4 and k£ =1,2n — 3.

What is left to prove is: A%a,, (k)+4a,_1(k) = 0, that is, A?Rs, 1 x_1+
4A9,,—31—1 = 0 for n > 4 and 3 < k < 2n — 5—by identifying each
finite set with its cardinality—and also A2%b, (k) + 4b,_1(k) = 0, that is,
Azﬂzn,k +42As, 9 =0forn >4 and 2 < k < 2n — 4; altogether,

(2.11) AQan,k—i—Zlan_g’k:O forn>7and 2 <k <n—4 (neven)
2<k<n-5(nodd).
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Let v = y1 - - -y, be a nonempty word with distinct letters from the set
{0,1,2,...,n} and U = y,, - - - y1 be its mirror-image. If m = 1 and y; = 0,
let [v] = [0] be the empty set. If m > 2 and y; = 0 (resp. y, = 0), let
[v] be the set of all alternating permutations from 2,,, if any, whose left
factors are equal to ys - - - ¥, or whose right factors are equal to 4., - - - yo.
When y; > 1, let [v] be the set of all alternating permutations from 2A,,, if
any, containing, either the factor v, or the factor v. Finally, let [v] := [v].

Using those notations we get

Ay = Z [ynk]

0<y<k-—1

= Z [ynk(k +1)] + Z lynkz] + Z [ynk0];
0<y<k-—1 0<y<k-—1 1<y<k-—-1

k+2<z<n-—1
U pir = > [yn(k+1)]

0<y<k

=[kn(k+ D]+ > nk+Dz+ > [yn(k+1)0).

0<y<k-—1 1<y<k—1
k4+2<z<n-1

The transposition (k, k + 1) maps the set [ynkz| onto the set [yn(k + 1)z]
for z € {k+2,...,n—1} U{0}, so that we may write

AU =An o1 — Anp = [kn(k + D] = > [ynk(k +1)]
0<y<k-—1

= [kn(k+ D= Y [yink(k+ ys);

0<y1,y2<k—1
Y17£Y2
A an,k:—l—l - Q'[n,k—i—Z - Q'[n,k—l—l

= [(k+Dn(k+2)]— > [yn(k+1)(k+2)]
0<y<k
= [(k+ Dn(k+2)] — [kn(k + 1)(k + 2)]
= D e+ D(k+2)K = D [pin(k+ 1)k +2)yo].

0<y<k—1 0<y1,y2<k—1
Y17Y2

For 2 < k < n — 4 the permutation ( ZHkﬁ_zkf) maps [y1nk(k + 1)ys]

onto [y1n(k + 1)(k + 2)y2] in a bijective manner. Hence,

AU g = AUAp i1 — A
= [(k+ Dn(k +2)] — [kn(k + 1)(k + 2)]
— Y [lyn(k+1)(k+2)k] — [kn(k + 1)].

0<y<k—1
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But

kn(k +1)] = [(k+ 2)kn(k + 1)] + [kn(k + 1)(k + 2)]

+ > EVCESENE
z1,22€{k+3,...,n—1}U{0}
21722

Again, the permutation ( Z 1k;:i2k;:2) maps the last sum onto the set

[(k + 1)n(k + 2)]. Altogether, as [(k + 2)kn(k + 1)] = [kn(k + 1)(k + 2)],

we have

AUp e ==3[kn(k+ D)(k+2)] - > [yn(k+1)(k+2)k].

When removing the factor (k+1)(k+2) and replacing each integer z >
k+2 by (z—2), in each alternating permutation, both sets [kn(k+1)(k+2)]

and > [yn(k + 1)(k + 2)k] are transformed into 2,2 ; so that
0<y<k—1

A291n,k =—4 an—Q,k-
4. The bivariate generating functions

Let f = (fu(k)) (n > 1,1 < k < 2n — 1) be the family of rational
numbers, as displayed in (1.1), that satisfies the finite-difference equation
system (1.2) under the initial conditions [tan2] of [sec2]. We know that
the system has then a unique solution. With the triangle f associate the
infinite matrix

fi(1) 0 f2(3) 0 f3(5) O fa(7)
0 f2(2) 0 f3(4) 0 fa(6) ---
f21) 0 f3(3) 0 fa(5)

(4.1) T'=(v5)@i>0,j>0) = 0 f3(2) 0 fa(4) ---
f3(1) 0 fa(3) -+
0 fu(2) -
fa(l) -

In other words, define v;; := 0 when ¢ + j is odd, and v;; := f,(k)
with £k == 5+ 1, 2n = 24+ 4+ j when ¢ + 5 is even. For 7 4+ j even
the mapping (7, j) — (n, k) is one-to-one, the reverse mapping being for
n>1,1<k<2n—-1givenby:i=2n—-1—-Fk, j=k—1.

In terms of the entries ;; relation (1.2) may be written in the form

1 . .
(42)  vij=2%-15-1+ 5(%‘—1,j+1 +Yir15-1) (0>1,5>1);

(43) Yi; = 0, if 4 +j odd.

10
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Furthermore, the full matrix I' = (v;;) (¢ > 0,7 > 0) is completely
determined as soon as its first row (7o,;) (j > 0) and first column (7, )
(i > 0) are known. Let f +— I' denote the above correspondence between
those triangles and matrices.

>
>

Let Z(z,y) Z Yi.j ‘ . It is easily verified that Z(x,y) satisfies

120, 5>0
the partial differential equatlon

0*Z(z,y)
Ox Jy

19°Z(w,y)  19°Z(x,y)
2 Ox? 2 oy

(4.4) = 27(z,y) +

if and only if the coefficients v; ; satisfy relation (4.2). Hence, Z(z,y)
is fully determined by (4.4) and by the generating functions Z(x,0) =

> viozt/il and Z(0,y) = > 70,547 /;! for the first column and first row
i>0 §>0
of the matrix I'.

But for any given formal power series in one variable f(x) = 1+
2n

Zan—

2n)] it can be also verified that the bivariate formal power series
n>1

(4.5) Z %J ‘ — = f(z +y)sec(z +y) cos(x — y)
i>0, >0 !

satisfies (4.4) and that the generating functions for its first column and
first row are given by f(x) and f(y), respectively. This proves the following
proposition.

2n

Proposition 4.1. Let f(z) = 14+ > fon ﬁ
n>1

(¢ > 0,7 > 0) be an infinite matrix, whose entries satisfy relations (4.2)
and (4.3), on the one hand, and such that 9,0 = 1, Y2n+1,0 = Y0,2n+1 = 0
for n > 0 and v2p,0 = Y0,2n = fon for n > 1, on the other hand. Then,
identity (4.5) holds.

be given and I' = (v;;)

Using the correspondence v;; <> fn(k) above mentioned, the series
Z(x,y) can be rewritten

x2n+1—k yk—l

(46)  Z@y)=1+> > S WG TG

n>11<k<2n+1

which is then equal to f(z+y)sec(x+y) cos(x —y) under the assumptions
of the previous proposition.

11
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Now, consider the two triangles described in Fig. 1.1 and let I'*3" =
(7i") and T = (75°) be the two I'-matrices attached to them:

g1(1) 0 g2(3) 0 g3(5) 0 ga(7)--
0 ¢2(2) 0 g3(4) O 94(6) o
g2(1) 0 g3(3) O 94(5)
M=) =1 0 g3(2) 0 94(4) ;
g3(1) 0 94(3)
0 94(2>
g4(1) -
hi(1) 0 ha(3) 0 hz(5) 0 ha(7)---
0 ha(2) 0 hz(4) 0 hy(6) ---
ha(1) 0 h3(3) 0 ha(5) ---
[=(y)=1 0 ha(2) 0 hy(4) ---
hs(1) 0 ha(3) -
0 ha(2) ---
ha(1) ---

The exponential generating function for the first row and first column
of T is equal to f(z) = 1. On the other hand, as h,(1) = h,(2n +
1) = #™j9y1 = FEa,—2 by [sec2], (1.8) and (1.16), the exponential
generating function for the first row and first column of I'*°¢ is equal to
hi(1)+he(1)2z?/2!+hs(1)xt /A4 - - = Eg+Eox /2! + Eqz* /4+- - - = sec(x).
Theorem 1.2 is then a consequence of the previous Proposition.

When (z,y) is equal to (z,x), then to (z,—z) in (1.9) and (1.10),
we obtain: Z%"(z,x) = sec(2x); Z'**(x,—x) = cos(2x); Z5°°(x,x) =
sec’(2x) = 1+ Y, ;4" Top12°"/(2n)! and Z%°¢(z,—x) = cos(2x).
Looking for the coefficients of 2" /(2n)! on both sides in the first (resp.
last) two formulas yields four further identities
(4.7 3 ( 2n )gn+l<k> — By (n>1):

k—1
1<k<2n+1

a8 Y (o = 0tz 1

1<k<2n+1 )

(1.9 > () ) =T 021

1100 3 () = 1Mz,
1<k<2n+1

The last two ones are mentioned in Sloane’s Encyclopedia [S107] (sequence
A125053) without proofs.
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5. Alternating permutations and binary trees

In this Section the traditional vocabulary on trees, such as node, leaf,
child, root, ... is used. In particular, when a node is not a leaf, it is said
to be an internal node.

Definition. An n-labeled, binary, increasing, topological tree is defined
by the following axioms:

(1) it is a labeled tree with n nodes, labeled 1,2, ..., n; the node labeled 1
is called the root;

(2) each node has no child (then called a leaf), or one child, or two
children;

(3) the label of each node is smaller than the label of its children, if
any;

(4) the tree is planar and each child of a node is, either on the left (it
is then called the left child), or on the right (the right child);

(5) when n is odd, each node is, either a leaf, or a node with two
children; when n is even, each node is, either a leaf, or a node with two
children, except the rightmost node (uniquely defined) which has one left
child, but no right child. It will be referred to as being the one-son child.

Each such binary tree ¢ may be drawn on a Euclidean plane: the root
has coordinates (0,0), the left son of the root (—1,1) and the right son
(1,1), the grandsons (—3/2,2), (—=1/2,2), (1/2,2), (3/2,2), respectively,
the great-grandsons (—7/4,3), (=5/4,3), ... , (7/4,3), etc. With this
convention all the nodes have different abscissas. Let ¢ have n nodes
and make the orthogonal projections of those nodes on a horizontal axis.
Writing the labels of the projected n nodes yields a permutation o =
o(1)o(2)---o(n) of 12 --- n. We say that o is the projection of t and ¢
the spreading out of o. Moreover, o is alternating. For instance, the two
trees t; and 5 in Fig. 1.2 are labeled, binary, increasing, topological
trees, with 7 and 8 nodes, respectively. Their projections 01 =6154723
and 09 = 61548273 are alternating.

For each n > 1 let ¥,, be the set of all n-labeled, binary, increasing,
topological trees. Then, t — o is a bijection of ¥,, onto 2,,, so that we
also have: #0511 = Tont1, #2Ao, = Es,. Each tree ¢t from T, is said to
be tangent (resp. secant), if n is odd (resp. even).

cp=6 1 5 4 7 2 3 oo=6 1 5 4 8 2 7 3
Fig. 1.2. Tangent, secant trees and alternating permutations.

13
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The two statistics “emc” (“end of minimal chain”) and “pom” (“parent
of maximum leaf”) we now define on each set ¥,, have been introduced
by Christiane Poupard [Po89] in her study of the strictly ordered binary
trees and provide two other combinatorial interpretations for the entries
gn(k) and h,, (k). Their definitions are also valid for all binary increasing
trees, in particular, for secant and tangent trees. Let n > 2 and t be a
binary increasing tree, with n nodes labeled 1,2,...,n. Let a be the label
of an internal node. If the node has two children labeled b and ¢, define
min a := min{b, c}; if it has one child b, let mina := b. The minimal chain
of t is defined to be the sequence a; — a2 — a3 = --- — a;—1 — a;, with
the following properties:

(i) a1 = 1 is the label of the root;

(ii) for i = 1,2,...,j—1 the i-th term a; is the label of an internal node
and a;1 = min a;;

(iii) a; is the label of a leaf.

Define the end of the minimal chain in t to be: eoc(t) := a;. As t is
increasing, there is a unique leaf with label n. If that leaf is incident
to a node labeled k, define the (parent of the maximum leaf) in t to
be: pom(t) := k. By convention, eoc(t) = 1 and pom(t) = 0 for the
unique t € T7.

The minimal chain of the tree ¢; (resp. t2) displayed in Fig. 1.2 is
1—2—3(resp. 1 =2 — 3 — 7). Then eoc(t;) = 3, eoc(tz) = 7. Also,
pom(t1) = 4 and pom(ty) = 4.

Theorem 5.1. Let 0 = o(1)o(2)---0(n) be the projection of the n-
labeled, binary, increasing, topological tree t. Then pom(t) = grn(c). In
other words, the parent of the maxium leaf in t is the greater neighbor
ofnino.

Proof. Let o(i) = n with 2 < i < n — 1. The parent of the node
labeled n in ¢ is, either the node labeled o(i — 1), or the node labeled
o(i + 1). Let o(j) be the label of the node of the common ancester of
the previous two nodes in ¢. Then, o(j) < min{o(i — 1), o(i + 1)}, j # 1
and i — 1 < j < i+ 1. Hence, either o(j) = o(i — 1) < o(i + 1), or
o(j) =0(i+1) < o(i—1). In the first (resp. the second) case the parent
of nis o(i+1) (resp. o(i — 1)) and grn(o) = max{o(i — 1),0(: + 1)}. []

In [Hal2] an explicit bijection of ¥,, onto itself is constructed that
maps the statistic “eoc —1” onto the statistic “pom.” For each of the
polynomials Y, g, (k)z*, >, h,(k)x*, we then have three combinatorial
interpretations: one on alternating permutations by the statistic “grn,”
and two on labeled, binary, increasing, topological trees by “pom” and

14
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Recently, there has been a revival of studies on arithmetical and
combinatorial properties of both tangent and secant numbers. Ordering
the alternating permutations according to their leftmost elements has led
to the Entringer recurrence, having interesting properties ([En66, FZ71,
FZT71a, Po97, GHZ10]). The geometry of those permutations has been
fully exploited ([KPP94, St10]), in particular by looking at their quadrant
marked mesh patterns in [KR12], or for defining and studying natural ¢-
analogs of the tangent and secant numbers ([AGT78, AF80, Fo81], [St99,
p. 148-149]). Further g-analogs were also introduced, based no longer on
alternating permutations, but on the so-called doubloon model (see [FH10,
FH10a, FH11]). The classical continued fraction expansions of secant and
tangent have made possible the discovery of other g-analogs (see [Pr08,
Pr00, Fu00, HRZ01, Jos10, SZ10]).

Acknowledgement. The authors should like to thank the referee for his
careful reading and his knowledgeable remarks.
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