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Tree Calculus for Bivariate Difference Equations

Dominique Foata and Guo-Niu Han

Abstract. Following Poupard’s study of strictly ordered binary trees
with respect to two parameters, namely, “end of minimal chain” and
“parent of maximum leaf” a true Tree Calculus is being developed to
solve a partial difference equation system and then make a joint study
of those two statistics. Their joint distribution is shown to be symmetric
and to be expressed in the form of an explicit three-variable generating
function.

1. Introduction

The triangle of numbers

f =

f0(1)
f1(1) f1(2) f1(3)

f2(1) f2(2) f2(3) f2(4) f2(5)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)

f4(1) f4(2) f4(3) f4(4) f4(5) f4(6) f4(7) f4(8) f4(9)

=

1
0 1 0

0 1 2 1 0
0 4 8 10 8 4 0

0 34 68 94 104 94 68 34 0

Table 1.1. Poupard’s triangle.

appears in Sloane’s On-Line Encyclopedia of Integer Sequences [Sl06]
under reference A008301 and is called Poupard’s triangle. As shown by
Christiane Poupard [Po89], f = (fn(m)) (n ≥ 0, 1 ≤ m ≤ 2n + 1) is the
unique solution of the finite difference equation system

(1.1) ∆2fn(m) + 2 fn−1(m) = 0 (n ≥ 1, 1 ≤ m ≤ 2n− 1),

where ∆ stands for the classical finite difference operator (see, e.g., [Jo39])

∆fn(m) := fn(m+ 1)− fn(m),(1.2)

so that

∆2fn(m) = fn(m+ 2)− 2fn(m+ 1) + fn(m),(1.3)

when taking f0(1) = 1; fn(1) = 0, and either fn(2) =
∑

m fn−1(m)
(n ≥ 1), or fn(2n + 1) = 0 (n ≥ 1) as initial values. Note that with the
latter set of initial conditions it is immediately seen that the triangle f is
symmetric with respect to the column f0(1) f1(2) f2(3) . . . fn(n+1) . . .

Key words and phrases. Tree Calculus, partial difference equations, strictly ordered
binary trees, end of minimal chain, parent maximum leaf, bivariate distributions,
Poupard triangle, tangent numbers.
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Let

tanu =
∑

n≥1

u2n−1

(2n− 1)!
T2n−1(1.4)

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 + · · ·

be the Taylor expansion of tanu, the coefficients T2n+1 (n ≥ 0) being
called the tangent numbers (see, e.g., [Ni23, p. 177-178], [Co74, p. 258-
259]); Poupard further shows that each row sum fn(•) := fn(1) + fn(2) +
· · ·+fn(2n+1) is equal to the integer T2n+1/2

n (n ≥ 0), that is, reporting
to Table 1.1: 1, 1, 4, 34, 496,. . .

Finally, on the set T2n+1 of strictly ordered binary trees with (2n + 1)
vertices (see Definition 1.2), she defines two statistics “eoc” (“end of
minimal chain”) and “pom” (“parent of the maximum leaf”), to show
that both statistics “eoc” and “pom+1” are equally distributed on each
set T2n+1, and furthermore,

(1.5) #{t ∈ T2n+1 : eoc(t) = k + 1}=#{t ∈ T2n+1 :pom(t) = k} = fn(k)

for all k; in particular, #T2n+1 = T2n+1/2
n. Note that a combinatorial

proof of the first identity in (1.5) has been given in [FH13].

It was then natural to see whether the joint distribution of the pair
(eoc, pom) on each set T2n+1 could be calculated, no longer by a one-
variable system, such as (1.1), but by a system of partial finite difference
equations (see equations (R 1), (R 2) below), verifying certain initial
conditions. This is the purpose of the paper. To achieve this, we first
introduce a sequence (Mn = (fn(m, k)) of (2n) × (2n)-matrices (n ≥ 1)
with nonnegative integral entries, called a Delta sequence, defined by such
a system and prove that each entry fn(m, k) is equal to the number of

trees t from T2n+1 such that eoc(t) = m and pom(t) = k. We finally
calculate the exponential generating function for the matrices Mn.

For defining the Delta Sequence it is convenient to consider the following
four triangles of each square {(m, k) : 1 ≤ m, k ≤ 2n}:

L
(1)
n := {2 ≤ k + 1 ≤ m ≤ 2n− 2}; L

(2)
n := {4 ≤ k + 3 ≤ m ≤ 2n};

U
(1)
n := {2 ≤ m+ 1 ≤ k ≤ 2n− 2}; U

(2)
n := {4 ≤ m+ 3 ≤ k ≤ 2n}.

By convention, fn(m, k) :=0 if (m, k) 6∈ [1, 2n]× [1, 2n]. The partial differ-

ence operators ∆
m
, ∆

k
, act as follows on the entries of the matrices Mn:

∆
m
fn(m, k) := fn(m+ 1, k)− fn(m, k);(1.6)

∆
k
fn(m, k) := fn(m, k + 1)− fn(m, k).(1.7)
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They serve to define the recurrence relations:

∆
m

2fn(m, k) + 2 fn−1(m, k) = 0 ((m, k) ∈ L(1)
n );(R 1)

∆
k

2fn(m, k) + 2 fn−1(m, k) = 0 ((m, k) ∈ U (1)
n ).(R 2)

Finally, the row and column sums of Mn = (fn(m, k)) are denoted by

fn(m, •) :=
∑

1≤k≤2n

fn(m, k); (1 ≤ m ≤ 2n);

fn(•, k) :=
∑

1≤m≤2n

fn(m, k) (1 ≤ k ≤ 2n).

Definition 1.1. A sequence of matrices (Mn) (n ≥ 1), where each
matrix Mn = (fn(m, k)) (1 ≤ k,m ≤ 2n) has nonnegative integral entries,

having only 0’s along its diagonal, and such that M1 :=

(

0 0
1 0

)

, is said to

be a Delta Sequence, if for n ≥ 2 both recurrence relations (R 1) and (R 2)
hold, together with the initial conditions:

(I 1) for n ≥ 2 the (2n)-th column, Col2n, of Mn is the zero-column; its
the (2n− 1)-st column, Col2n−1, is equal to

fn−1(1, •), fn−1(2, •), . . . , fn−1(2n− 2, •), 0, 0,

when read from top to bottom.

(I 2) the (2n)-th row of Mn is also equal to

fn−1(1, •), fn−1(2, •), . . . , fn−1(2n− 2, •), 0, 0,

when read from left to right; its (2n− 1)-st row is equal to:

fn−1(1, •) + fn−1(•, 1), fn−1(2, •) + fn−1(•, 2), . . . ,

fn−1(2n− 3, •) + fn−1(•, 2n− 3), fn−1(2n− 2, •) + fn−1(•, 2n− 2), 0, 0,

when read from left to right.

As shown in Section 2, conditions (R 1), (R 2), (I 1), (I 2) uniquely
determine the Delta Sequence (Mn) (n ≥ 1), whose first values are
reproduced in Fig. 2.1. As for the “labeled strictly ordered binary trees”
and the statistics “eoc,” “pom” their definitions are now given.

Definition 1.2. An n-labeled strictly ordered binary tree is defined by
the following axioms:

(1) it is a labeled tree with n nodes, labeled 1, 2, . . . , n; the node labeled 1
is called the root;

(2) each node has no child (it is then called a leaf ), or two children,
their order being immaterial (it is then called an internal node);

(3) when getting along each path from the root to each node, the node
labels are in increasing order. Let T2n+1 denote the set of all (2n + 1)-
labeled strictly ordered binary trees.
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Let t ∈ T2n+1 (n ≥ 1). If a node labeled a has two children labeled b
and c, define mina := min{b, c}; if it has one child b, let min a := b. The
minimal chain of t is defined to be the sequence a1 → a2 → a3 → · · · →
aj−1 → aj, with the following properties: (i) a1 = 1 is the label of the
root; (ii) for i = 1, 2, . . . , j − 1 the (i + 1)-st term ai+1 is the label of an
internal node and ai+1 = min ai; (iii) aj is the node of a leaf. Define the
“end of the minimal chain” of t to be eoc(t) := aj. If the leaf with the
maximum label (2n+1) is incident to a node labeled k, define its “parent
of the maximum leaf” to be pom(t) := k.
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Fig. 1.2. Labeled strictly ordered binary tree.

For example, the minimal chain of the tree t displayed in Fig. 1.2 is
1 → 2 → 3 → 7, so that eoc(t) = 7 and the parent of its maximum leaf
(equal to 2n + 1 = 9) is pom(t) = 4. The main results of this paper are
the following theorems.

Theorem 1.1. Let (Mn = (fn(m, k)) (n ≥ 1) be the Delta sequence, as
introduced in Definition 1.1. Then, for all n ≥ 1 and 1 ≤ m, k ≤ 2n

#{t ∈ T2n+1 : eoc(t) = m, pom(t) = k} = fn(m, k).(1.9)

In particular,
∑

m,k

fn(m, k) = T2n+1/2
n (n ≥ 0).(1.10)

Theorem 1.2. Let
(

Mn = (fn(m, k)) (1 ≤ m, k ≤ 2n)
)

(n ≥ 1) be the
Delta sequence. Then, the matrices Mn are symmetric with respect to
their counter-diagonals:

(1.11) fn(m, k) = fn(2n+ 1− k, 2n+ 1−m) (1 ≤ k,m ≤ 2n).

Theorem 1.3. The triple exponential generating function for the lower
triangles of the matrices Mn is given by

(1.12)
∑

2≤k+1≤m≤2n

fn(m, k)
xm−k−1

(m− k − 1)!

yk−1

(k − 1)!

z2n−m

(2n−m)!

=
cos(
√
2x) + cos(

√
2 y) cos(

√
2 z)

2 cos2
(x+ y + z√

2

) .
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Theorem 1.4. The triple exponential generating function for the upper
triangles of the matrices Mn is given by

(1.13)
∑

2≤m+1≤k≤2n−1

fn(m, k)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm−1

(m− 1)!

= sin(
√
2x) sin(

√
2 z)

1

2 cos2
(x+ y + z√

2

) .

Theorems 1.1 and 1.2 will be proved in Sections 3–7, where we develop
a genuine Tree Calculus on the sequence (T2n+1), which appears to be
an alternative for the constructions of several combinatorial bijections. In
Theorems 1.3 and 1.4 note that an adequate normalization for the three-
variable series is to be found for getting such closed expressions for the
generating functions for the fn(m, k)’s.

2. Delta and gamma sequences and organization of the paper

Go back to Definition 1.1 of the Delta Sequence. It is based on the
two relations (R 1), (R 2) and the two initial conditions (I 1), (I 2). Those
relations and conditions can be symbolized by the square in Fig. 2.1, as
relation (R 1) (resp. (R 2)) acts on the entries of the lower (resp. upper)
entries of the matrix Mn, and initial conditions (I 1) and (I 2) refer to
the last two columns Col2n−1, Col2n and rows Row2n−1, Row2n of Mn,
respectively.

❅
❅
❅
❅
❅

←→

↓↑Row2n

Row2n−1

Col2n−1 Col2n

(R 2)

(R 1)

Fig. 2.1: Definition of the Delta Sequence.

In Definition 1.1 of the Delta Sequence the entries of each matrix Mn

are derived from Mn−1 by first applying rules (I 1) and (I 2) and letting
the diagonal be null; then, starting from m = 1 up to m = 2n − 3, for
each k from 2n− 3 down to m+1, evaluate fn(m, k) with equation (R 2):
fn(m, k)−2fn(m, k+1)+fn(m, k+2)+2fn−1(m, k) = 0, the coefficients
fn(m, k + 1), fn(m, k + 2) and fn−1(m, k) being already calculated.
Exchanging the roles of m and k the upper entries are obtained by using
equation (R 1). Accordingly, (R 1), (R 2), (I 1), (I 2) uniquely determine
the Delta Sequence (Mn) (n ≥ 1).
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Calculation of the first matrices. First, f1(1, •) = 0, f1(2, •) = 1, so
that

M2 =







0 ? 0 0
? 0 1 0
1 1 0 0
0 1 0 0







by rules (I 1) and (I 2). The remaining entries are obtained by rule (R 2):
f2(1, 2)− 2f2(1, 3)+ f2(1, 4) + 2f1(1, 2) = f2(1, 2)− 2× 0 + 0+ 2× 0 = 0,
so that f2(1, 2) = 0; then, by rule (R 1): f2(2, 1) − 2f2(3, 1) + f2(4, 1) +
2f1(2, 1) = f2(2, 1)− 2× 1 + 0 + 2× 1 = 0, so that f2(2, 1) = 0. Thus,

M2 =







0 0 0 0
0 0 1 0
1 1 0 0
0 1 0 0







and f2(1, •) = 0, f2(2, •) = 1, f2(3, •) = 2, f2(4, •) = 1. The next matrices
are displayed in Fig. 1.2.

M3=















0 0 0 0 0 0
0 0 1 2 1 0
1 1 0 4 2 0
2 3 4 0 1 0
1 3 3 1 0 0
0 1 2 1 0 0















M4=























0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
4 4 0 16 20 16 8 0
8 12 16 0 28 20 10 0
10 18 24 28 0 16 8 0
8 18 24 24 16 0 4 0
4 12 18 18 12 4 0 0
0 4 8 10 8 4 0 0























.

M5 =































0 0 0 0 0 0 0 0 0 0
0 0 34 68 94 104 94 68 34 0
34 34 0 136 188 208 188 136 68 0
68 102 136 0 274 296 262 188 94 0
94 162 222 274 0 352 296 208 104 0
104 198 276 330 352 0 274 188 94 0
94 198 282 330 330 274 0 136 68 0
68 162 240 282 276 222 136 0 34 0
34 102 162 198 198 162 102 34 0 0
0 34 68 94 104 94 68 34 0 0































Fig. 2.2: the first matrices Mn.

Other initial conditions could be stated; they will be mentioned in
Section 9. At this point we just describe a second one, materialized by
the square in Fig. 2.3
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Definition 2.1. A sequence of matrices (Mn) (n ≥ 1), where each
matrix Mn = (fn(m, k)) (1 ≤ k,m ≤ 2n) has nonnegative integral entries,

having only 0’s along its diagonal, and such that M1 :=

(

0 0
1 0

)

, is said to

be a Gamma Sequence, if for n ≥ 2 both recurrence relations

∆
m

2fn(m, k) + 2 fn−1(m, k − 2) = 0 ((k,m) ∈ U (2)
n );(R 3)

∆
k

2fn(m, k) + 2 fn−1(m− 2, k) = 0 ((k,m) ∈ L(2)
n );(R 4)

hold, together with the initial conditions:

(I 3) for n ≥ 2 the first row, Row1, is the zero-row; the second row,
Row2, is equal to

0, fn−1(1, •)(= 0), fn−1(2, •), . . . , fn−1(2n− 2, •), fn−1(2n− 1, •)(= 0);

when read from left to right.

(I 4) the first column, Col1, of Mn is also equal to

0, fn−1(1, •)(= 0), fn−1(2, •), . . . , fn−1(2n− 2, •), fn−1(2n− 1, •)(= 0)

when read from top to bottom; the second column, Col2, is equal to

0, 0, fn−1(2, •) + fn−1(1, •), fn−1(3, •) + fn−1(2, •), . . .

fn−1(2n− 2, •) + fn−1(2n− 3, •), fn−1(2n− 2, •),

when read from left to right.

❅
❅
❅
❅
❅

←→
↓↑

(R 4)

(R 3)

Row1
Row2

Col1 Col2

Fig. 2.3: Definition of the Gamma Sequence.

Using the same reasoning as for Definition 1.1 it is seen that the Gamma
Sequence is uniquely defined. The fact that Delta and Gamma Sequences
are identical will be a consequence of the further theorems (cf. Section 6).

Again, go back to Definition 1.1. Each tree from T2n+1 has an odd

number of vertices, i.e., (2n+1), with n internal nodes and (n+1) leaves.
When giving an orientation (left or right) to each child of each of the n
internal nodes, we generate 2n planar strictly ordered binary trees (also
called “arbres binaires croissants complets” by Viennot [Vi88, chap. 3,
p. 111]). It is known that the latter are equidistributed with the alternating
permutations of order (2n+1), so that their number is equal to the tangent
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number T2n+1, a result that goes back to Désiré André [An1879, An1881].
Accordingly,

(2.1) #T2n+1 = T2n+1/2
n.

When dealing with those strictly ordered binary trees, we adopt the
following notation and convention: for each triple (n,m, k) let T2n+1,m,k

(resp. T2n+1,m,•, resp. T2n+1,•,k) denote the subset of T2n+1 of all trees t
such that eoc(t) = m and pom(t) = k (resp. eoc(t) = m, resp. pom(t) =
k). By convention, designate those families and their cardinalities by the
same symbol and also the matrix of the integers T2n+1,m,k by Mat(T2n+1).
Our plan of action will be to show that the sequence (Mat(T2n+1)) (n ≥ 1)
is identical to the Delta Sequence.

In Sections 3–6 it will be shown that, when replacing each fn(m, k) by
T2n+1,m,k the initial conditions (I 1) and (I 2), the two finite difference
equations systems (R 1), (R 3), the two finite difference equations systems
(R 2), (R 4) and the initial conditions (I 3) and (I 4)) hold. This will
complete the proofs of Theorems 1.1 and 1.2, as done in Section 7. Further
properties of the matrices Mat(T2n+1) (and then matrices Mn) will be
given in Section 8. Finally, several other equivalent definitions of the Delta
sequence will be mentioned in Section 9. Finally, the calculation of the
generating functions for the matrices Mn is made in Section 10.

3. The initial conditions (I 1) and (I 2)

In this section and the next ones we make the convention that whenever
a leaf is deleted from a tree, the edge linking the leaf to the tree is also
deleted.

For verifying that the matrices Mat(T2n+1) have only zero in their
diagonals, it suffices to show that T2n+1,m,m = ∅ (or is equal to 0 with our
convention). This is true, because if t ∈ T2n+1 and eoc(t) = pom(t) = m,
the node (2n + 1) has a parent equal to m. Consequently, m cannot be
the end of a minimal chain. Hence, the previous subset is empty.

Theorem 3.1. The initial conditions (I 1) and (I 2) hold for the matrices
Mat(T2n+1) when fn(m, •) and fn(•, k) are replaced by T2n+1,m,• and
T2n+1,•,k, respectively.

Proof. (I 1) First, the (2n)-th column of the matrix Mat(T2n+1) has
zero entries only, as pom ≤ 2n − 1. Next, each tree from T2n+1,m,2n−1

(1 ≤ m ≤ 2n− 2) must contain the subtree

❅❅��
2n

2n−1

2n+1

Hence, T2n+1,2n−1,2n−1 is empty, for (2n − 1), being an internal node,
cannot be the end of the minimal chain. Also, T2n+1,2n,2n−1 is empty,
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for the sibling of (2n − 1) is necessarily less than (2n − 1), so that the
minimal chain cannot go through (2n − 1) and reach (2n). Furthermore,
T2n+1,1,2n−1 = T2n−1,1,• = 0, as eoc ≥ 2.

In the remaining cases, that is, 2 ≤ m ≤ 2n−2, removing the two leaves
(2n), (2n + 1) transforms each tree from T2n+1,m,2n−1 onto a tree from
T2n−1,m,• in a bijective manner. Such a transformation may be illustrated
by the diagram:

❅
❅❅
�
�
��❅❅

1

2n−1m •
2n 2n+1

7→ ❅
❅❅
�
��

1

2n−1m •

Hence, the (2n− 1)-st column of the matrix Mat(T2n+1) reads:

(3.1) T2n−1,1,•,T2n−1,2,•, . . . ,T2n−1,2n−2,•, 0, 0.

from top to bottom.
(I 2) For the (2n)-th row of the matrix Mat(T2n+1) note that

T2n+1,2n,1 = 0 for n ≥ 2. When k ≥ 2 each tree from T2n+1,2n,k must
contain the subtree

❅❅��
2n •

k

2n+1

By (I 1) we then have: T2n+1,2n,2n−1 = T2n+1,2n,2n = 0. For the remaining
cases 2 ≤ k ≤ 2n−2 we can set up a bijection of T2n+1,2n,k onto T2n−1,k,•

by removing the two leaves 2n and (2n + 1), as illustrated by the next
diagram.

❅
❅❅
�
�
��❅❅

1

k

•2n 2n+1

7→ ❅
❅❅
�
��

1

k•

Note that the node k becomes the end of the minimal chain. Thus, the
(2n)-th row of the matrix T2n+1 is also equal to (3.1) read from left to
right.

Finally, consider the (2n − 1)-st row of T2n+1. In an obvious manner,
T2n+1,2n−1,2n−1 = T2n+1,2n−1,2n = 0 . When 1 ≤ k ≤ 2n − 2, the
trees from the sets T2n+1,2n−1,k fall into two categories TI

2n+1,2n−1,k and

TII
2n+1,2n−1,k. In the first category the trees contain the subtree

❅❅��
2n+1

k

• 2n−1

; in the second one, the subtree ❅❅��
2n

a

2n−1•
(a 6= k).

First, note that TI
2n+1,2n−1,1 = T2n−1,1,• = 0. When 2 ≤ k ≤ 2n − 2,

removing the two leaves (2n + 1), (2n − 1) and replacing the node label
(2n) by (2n− 1) maps TI

2n+1,2n−1,k onto T2n−1,k,• in a bijective manner.
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When 1 ≤ k ≤ 2n − 2, removing the two leaves (2n), (2n − 1), and
replacing the node label (2n + 1) by (2n − 1) maps T

II
2n+1,2n−1,k onto

T2n−1,•,k in a bijective manner. Thus, the (2n− 1)-st row of T2n+1 reads

T2n−1,1,• + T2n−1,•,1, T2n−1,2,• + T2n−1,•,2, . . . ,

T2n−1,2n−3,• + T2n−1,•,2n−3, T2n−1,2n−2,• + T2n−1,•,2n−2, 0, 0.

4. Tree Calculus for the relations (R 1) and (R 3)

In the following Tree Calculus subtrees (possibly leaves) are indicated
by the symbols “©,” “▽”, or “ .” The end of the minimal chain in each
tree is represented by a bullet “•.” Letters occurring below or next to
subtrees are labels of their roots. For instance, the symbols

��❅❅a
•m

b
, [

��❅❅a
•m

b
, c ]

designate the families of all trees t from the underlying set T2n+1 having
a node labeled b [in short, a node b], parent of both a subtree of root a
and the leaf m, which is also the end of the minimal chain; moreover, the
symbol on the right has the further property that the node labeled c does
not belong, either to the subtree of root b, or to the path going from root 1
to b. In the sequel, the letter “m” is always used to designate the end of
the minimal chain, unless explicitly indicated by a letter next to •.

Our Tree Calculus consists of two steps: (a) decomposing the sets
T2n+1,m,k into smaller subsets by considering the mutual positions of the
nodes m, (m+1), (m+2) (resp. k, (k+1), (k+2)); (b) setting up bijections
between those subsets by a simple display of certain subtrees, as done in
(4.1).

For instance,

(4.1) C3 :=
��❅

❅❅��
• ©

m

m+1

m+2

and D1 :=
❅❅�

��❅❅
m+2

•

©

m m+1

may be regarded as two subsets of T2n+1. To each pair (
m+2 ,

©) there
correspond a unique tree from C3 and a unique tree from D1, as the nodes
of “©” are all greater than or equal to (m + 2). This clearly defines a
bijection of C3 onto D1.

Those two principles (a) and (b) will be applied in the proofs of the
next two theorems 4.1 and 5.1.
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Theorem 4.1. If (m, k) belongs to L
(1)
n ∪ U

(2)
n = {2 ≤ k + 1 ≤ m ≤

2n− 2} ∪ {4 ≤ m+ 3 ≤ k ≤ 2n}, then

∆
m

2
T2n+1,m,k + 2

��❅❅m+1
m

•
m+2

= 0,(4.2)

with the understanding that the second term on the left-hand side repre-
sents twice the set of all trees from T2n+1,m+1,k with the further property
that m is the parent of both (m+ 1) and (m+ 2).

Proof. The decomposition

T2n+1,m,k =
��❅❅m
©

m+1
•

+
��❅❅m
©•

means that in each tree from T2n+1,m,k the node (m+1) is, or is not, the
sibling of the leaf m. In the next decomposition the node m is, or is not,
the parent of the leaf (m+ 1):

T2n+1,m+1,k =
��❅❅m+1
©

m

•
+

��❅❅m+1
©

b

•
(b 6= m).

Under the transposition (m,m+1) the node labeled k remains unaffected,

because k ≤ m − 1 if (m, k) ∈ L
(1)
n and m + 3 ≤ k if (m, k) ∈ U

(2)
n , so

that the parent of (2n+ 1) remains k. Thus, the transposition establishes
a one-to-one correspondence between the two second terms. Hence,

∆
m

2
T2n+1,m,k

= (T2n+1,m+2,k − T2n+1,m+1,k)− (T2n+1,m+1,k − T2n+1,m,k)

=
��❅❅m+2

©
m+1

•

−
��❅❅m+1
©
m+2

•
−

��❅❅m+1
©

m

•
+

��❅❅m
©
m+1

•

:= A − B − C + D .

Depending on the mutual positions of nodes m, (m + 1) and (m + 2)
the further decompositions prevail, as again, k remaining still attached to
(2n+ 1):

A =
��❅

❅❅��
• ©
m+1

m+2

m + [
��❅

❅❅��
• ©
m+1

m+2

, m] := A1 + A2;

11



DOMINIQUE FOATA AND GUO-NIU HAN

B =
��❅❅m+1
m

•
m+2

+
❅❅�

��❅❅•
©

m+1 m+2
m

+ [
��❅❅m+1
©

m+2
•

, m] := B1 +B2 +B3;

C =
��❅❅m+1
m

•
m+2

+
❅❅�

��❅❅•
©

m+1 m+2
m

+
��❅

❅❅��
• ©

m

m+1

m+2

+ [
��❅

❅❅��
• ©

m

m+1

, m+ 2]

:= C1 + C2 + C3 + C4;

D =
❅❅�
��❅❅

m+2
•

©

m m+1

+ [
��❅❅m

©
m+1

•

, m+ 2] := D1 +D2.

The permutation
(

m m+1 m+2
m+2 m m+1

)

establishes a one-to-one correspon-
dence between A2 and C4 (resp. between B3 and D2). On the other hand,
A1 = B2 + C2 = 2B2, because the two subtrees in B2 = C2 are incident
to the same node, while in A1 they are incident to two different nodes.
Finally, C3 = D1 as explained in (4.1). Making all the proper cancellations
in the sum ∆

m

2 T2n+1,m,k = A−B − C +D we get identity (4.2).

Corollary 4.2. The relations (R 1) and (R 3) hold for the matrices
Mat(T2n+1), that is,

∆
m

2
T2n+1,m,k + 2T2n−1,m,k = 0, if (m, k) ∈ L(1)

n ;(4.3)

∆
m

2
T2n+1,m,k + 2T2n−1,m,k−2 = 0, if (m, k) ∈ U (2)

n .(4.4)

Proof. For (4.3) change the second term in (4.2) as follows: remove the
two leaves (m+ 1), (m+ 2), and subtract 2 from all the remaining nodes
greater than (m + 2): the term becomes T2n−1,m,k, as the node (2n + 1)
becomes (2n − 1) and is still linked to k. For (4.4) do the same changes,
but this time, as m + 3 ≤ k, the edge going from k to (2n + 1) becomes
an edge going from (k − 2) to (2n− 1).

5. Tree Calculus for the relations (R 2) and (R 4)

Theorem 5.1. If (m, k) belongs to L
(2)
n ∪ U

(1)
n = {4 ≤ k + 3 ≤ m ≤

2n} ∪ {2 ≤ m+ 1 ≤ k ≤ 2n− 2}, then

∆
k

2
T2n+1,m,k + 2 [

��❅
❅❅��

k+1

k+2
2n+1

k , m] + 2
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k = 0,(5.1)

12
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with the understanding that the second term on the left-hand side is twice
the number of all trees from T2n+1,m,k+1 with the further property that
(k + 2) is a leaf incident to (k + 1), itself incident to k, the end m of the
minimum chain being outside the subtree of root k.

Proof. First,

T2n+1,m,k = [
��❅❅k+1

2n+1

k

©

, m] + [
��❅❅

2n+1

k

©

, m, k + 1] +
��❅❅k+1

2n+1

k

•©
m

+ [
��❅❅

2n+1

k

•©
m

, k + 1]

:= A1 + A2 +A3 +A4,

meaning that each tree from T2n+1,m,k has one of the four forms: either
k+1 is incident to k, or not, and m is outside or not the subtree of root k;
furthermore, the leaf m is the end of the minimal chain.

Using the same dichotomy,

T2n+1,m,k+1 = [
��❅

❅❅��
©

k+1

2n+1

k , m] + [
��❅❅

2n+1

k+1

©

, m, k] +
��❅

❅❅��

•©
m

k+1

2n+1

k + [
��❅❅

2n+1

k+1

•©
m

, k]

:= B1 +B2 +B3 +B4.

Consider the subsets A′
4 :=

��❅
❅❅��

•©
m

k+1k

2n+1

of A4 and B′
2 :=

��❅
❅❅��
©

kk+1

2n+1
• m

of B2. The
transposition (k, k + 1) maps A4 \ A′

4 onto B4 and A2 onto B2 \ B′
2 in a

bijective manner.
Hence,

T2n+1,m,k+1 − T2n+1,m,k = (B1 − A1) + ((B2 −B′
2 −A2) +B′

2)

+ (B3 −A3) + (B4 − (A4 − A′
4)− A′

4)

= B1 − A1 +B′
2 +B3 −A3 −A′

4

= [
��❅

❅❅��
©

k+1

2n+1

k , m]− [
��❅❅k+1

2n+1

k

©

, m] +
��❅

❅❅��
©

kk+1

2n+1
• m

+
��❅

❅❅��

•©
m

k+1

2n+1

k −
��❅❅k+1

2n+1

k

•©
m

−
��❅

❅❅��

•©
m

k+1k

2n+1

;

13
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and also

T2n+1,m,k+2 − T2n+1,m,k+1 = [
��❅

❅❅��
©

k+2

2n+1

k+1 , m]− [
��❅❅k+2

2n+1

k+1

©

, m] +
��❅

❅❅��
©

k+1k+2

2n+1
• m

+
��❅

❅❅��

•©
m

k+2

2n+1

k+1 −
��❅❅k+2

2n+1

k+1

•©
m

−
��❅

❅❅��

•©
m

k+2k+1

2n+1

:= D1 − C1 +D′
2 +D3 − C3 − C′

4.

Thus,

∆
k

2
T2n+1,m,k =

(

T2n+1,m,k+2 − T2n+1,m,k+1

)

−
(

T2n+1,m,k+1 − T2n+1,m,k

)

= D1 − C1 +D′
2 +D3 − C3 − C′

4

−B1 + A1 −B′
2 −B3 + A3 + A′

4.

The further decompositions of the components of the previous sum
depend on the mutual positions of the nodes k, (k + 1), (k + 2). First,
evaluate the subsum: S1 := D1 −C1 −B1 +A1 using the decompositions:

D1 = [
��❅

❅❅��
©

k+2

2n+1

k+1 , m] = [
��❅

❅❅��
©

k+2

2n+1

k+1 , m, k ] + [
��

��❅
❅❅

❅❅

��
©

k+2

2n+1

k+1
▽
k , m]

:= D1,1 +D1,2;

C1 = [
��❅❅k+2

2n+1

k+1

©

, m] = [
��❅❅k+2

2n+1

k+1

©

, m, k ] + [
��❅

❅❅��
©

k+1

k+2
2n+1

k , m]

:= C1,1 + C1,2;

B1 = [
��❅

❅❅��
©

k+1

2n+1

k , m] = [
��❅

❅❅��
©

k+1

2n+1

k , m, k + 2] + [
��❅

❅❅��
k+1

k+2
2n+1

k , m]

+ [
��

��❅
❅❅

❅❅

��
© ▽

k+2
k+1

2n+1

k , m] + [
��❅

❅❅��
k+1

2n+1

k

k+2

, m] + [
�
�
�❅❅

❅
❅❅�� k+2

k+1

2n+1
©

k

▽

, m]

:= B1,1 +B1,2

+B1,3 +B1,4 +B1,5;

14
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A1 = [
��❅❅k+1

2n+1

k

©

, m] = [
��❅❅k+1

2n+1

k

©

, m, k + 2 ] + [
��❅

❅❅��
©

k+1

k+2

k

2n+1

, m]

:= A1,1 + A1,2.

Also, let

D′
1,1 :=

��
��❅

❅❅

❅❅

��
©

k+2

2n+1

k+1
▽•

m

k

; C′
1,1 :=

��❅
❅❅��
©

▽•
m

k+1

k+2
2n+1

k

.

The permutation
(

k k+1 k+2
k+2 k k+1

)

maps D1,1 \D′
1,1 onto B1,1 and C1,1 \

C′
1,1 onto A1,1. Hence, D1,1 = B1,1 +D′

1,1, C1,1 = A1,1 + C′
1,1. Moreover,

D1,2 = 2B1,3, C1,2 = A1,2, B1,2 = B1,4, B1,3 = B1,5. Altogether,
S1 = D1 −C1 −B1 +A1 = (B1,1 +D′

1,1 +2B1,3)− (A1,1 +C′
1,1 +A1,2)−

(B1,1 +B1,2 +B1,3 +B1,2 +B1,3) + (A1,1 +A1,2). Thus,

(5.2) S1 = −2B1,2 +D′
1,1 − C′

1,1.

Next, evaluate the sum S2 := D′
2 +D3 −C3 −C′

4 −B′
2 −B3 +A3 +A′

4

by decomposing each of its components. We have:

D′
2 =

��❅
❅❅��
©

k+1k+2

2n+1
• m

= [
��❅

❅❅��
©

k+1k+2

2n+1
• m

, k] +
��❅

❅❅��
©

k+1k+2

2n+1

k

• m

:= D′
2,1 +D′

2,2;

D3 =
��❅

❅❅��

•©
m

k+2

2n+1

k+1= [
��❅

❅❅��

•©
m

k+2

2n+1

k+1, k] +
��

��❅
❅❅

❅❅

��

•©
m

k+2

2n+1

k+1
▽
k

:= D3,1 +D3,2;

C3 =
��❅❅k+2

2n+1

k+1

•©
m

= [
��❅❅k+2

2n+1

k+1

•©
m

, k] +
��❅

❅❅��

•©
m

k+1

k+2
2n+1

k

:= C3,1 + C3,2;

C′
4 =

��❅
❅❅��

•©
m

k+2k+1

2n+1

= [
��❅

❅❅��

•©
m

k+2k+1

2n+1

, k] +
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k +
�
�
�❅❅

❅
❅❅��

•©
m

k+2
k+1

2n+1

k

▽

:= C′
4,1 + C′

4,2 + C′
4,3;
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B′
2 =

��❅
❅❅��
©

kk+1

2n+1
• m

= [
��❅

❅❅��
©

kk+1

2n+1
• m

, k + 2] +
��❅

❅❅��
©

kk+1

k+2
2n+1

• m

+
�
�
�❅❅

❅
❅❅�� k

k+1

2n+1
© ▽•

m

k+2

:= B′
2,1 +B′

2,2 +B′
2,3;

B3 =
��❅

❅❅��

•©
m

k+1

2n+1

k = [
��❅

❅❅��

•©
m

k+1

2n+1

k , k + 2] +
��❅

❅❅��

•©
m

k+1

k+2
2n+1

k +
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k +
�
�
�❅❅

❅
❅❅��

•©
m

k+2
k+1

2n+1

k

▽

:= B3,1 +B3,2 +B3,3 +B3,4;

A3 =
��❅❅k+1

2n+1

k

•©
m

= [
��❅❅k+1

2n+1

k

•©
m

, k + 2] +
��❅

❅❅��

•©
m

2n+1

k+1

k+2

k

:= A3,1 + A3,2;

A′
4 =

��❅
❅❅��

•©
m

k+1k

2n+1

= [
��❅

❅❅��

•©
m

k+1k

2n+1

, k + 2] +
��❅

❅❅��

•©
m

k+1k

k+2
2n+1

+
�
�
�❅❅

❅
❅❅��

•©
m

k+1
k

2n+1 ▽
k+2

:= A′
4,1 + A′

4,2 +A′
4,3.

Within the sum S2 there are numerous cancellations we now describe.
(a) Components of the form [t, k] or [t, k + 2], where t is a subtree,

whose root is labeled. There are four of them: D3,1, −C3,1, −B3,1, A3,1.
Consider the subsets:

B3,1,1 :=
��

��❅
❅❅

❅❅

��

•©
m

k+1

2n+1

k
▽
k+2

; A3,1,1 :=
��❅

❅❅��

•©
m

k

k+1
2n+1

▽
k+2

;

of B3,1 and A3,1, respectively. The permutation
(

k k+1 k+2
k+2 k k+1

)

maps D3,1

onto B3,1 \B3,1,1 and C3,1 onto A3,1 \A3,1,1. Hence, D3,1 −C3,1 −B3,1 +
A3,1 = (B3,1 −B3,1,1)− (A3,1 −A3,1,1)−B3,1 +A3,1 = −B3,1,1 +A3,1,1.

(b) Components of the form [t, k] or [t, k + 2], where t is a subtree,

whose root is not labeled. There are four of them: D′
2,1, −C′

4,1, −B′
2,1,

A′
4,1. Again, the permutation

(

k k+1 k+2
k+2 k k+1

)

maps D′
2,1 onto B′

2,1, and C′
4,1

onto A′
4,1. Hence, D′

2,1 −B′
2,1 = −C′

4,1 + A′
4,1 = 0. Their sum vanish.
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(c) Components represented by a tree t, whose root is unlabeled. There
are four of them: −B′

2,2, −B′
2,3, −A′

4,2, A′
4,3. As B′

2,2 = A′
4,2, the

contribution of those components to S2 is then −B′
2,3 + A′

4,3.

(d) Components represented by a tree t, whose root is labeled. There
are nine of them: D′

2,2, D3,2, −C3,2, −C′
4,2, −C′

4,3 −B3,2, −B3,3, −B3,4,
A3,2. By simply comparing the subtree contents we have: D′

2,2 − C3,2 =
−B3,2 + A3,2 = 0, D3,2 − (C′

4,3 + B3,4) = 0 and C′
4,2 = B3,3. The

contribution of those terms is then −2C′
4,2.

Hence, S1+S2 = (−2B1,2+D′
1,1−C′

1,1)+
(

(−B3,1,1+A3,1,1)+(−B′
2,3+

A′
4,3) + (−2C′

4,2)
)

. As D′
1,1 = B′

2,3, C
′
1,1 = A3,1,1 and B3,1,1 = A′

4,3, we
get S1 + S2 = −2B1,2 − 2C′

4,2, that is,

∆
k

2
T2n+1,m,k − 2 [

��❅
❅❅��

k+1

k+2
2n+1

k , m] − 2
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k .

Corollary 5.2. The relations (R 2) and (R 4) hold for the matrices
Mat(T2n+1), that is,

∆
k

2
T2n+1,m,k + 2T2n−1,m−2,k = 0, if (m, k) ∈ L(2)

n ;(5.3)

∆
k

2
T2n+1,m,k + 2T2n−1,m,k = 0, if (m, k) ∈ U (1)

n .(5.4)

Proof. When (m, k) belongs to L
(2)
n , the second term in (5.1) is in

bijection with 2[
��❅❅2n−1
k

, m− 2] and the third one with 2
��❅❅

•©m−2
2n−1

k
, that is,

the set of trees in which the end m − 2 of the minimal chain is outside
(resp. inside) the subtree of root k. The sum of those two terms is then
2T2n−1,m−2,k.

When (m, k) belongs to U
(1)
n , the third term of (5.1) vanishes and the

second one is in bijection with 2[
��❅❅2n−1
k

, m], equal to 2T2n−1,m,k.

6. The initial conditions (I 3) and (I 4)

Property 6.1. Initial conditions (I 3) and (I 4) hold for the matrices
Mat(T2n+1).

Proof. (I 3) The first row of each matrix Mat(T2n+1) is obviously the
zero-row, as 1 can never be the end of the minimal chain. For the second
row note that for n ≥ 2 the set T2n+1,2,k is empty when k = 2 or 2n. Also
the set T2n+1,2,1 is empty, for 2 and (2n+ 1) can be both children of the
root only when n = 1.
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Let 3 ≤ k ≤ 2n− 1. As illustrated by the diagram

�
�
��

❅❅
❅❅
❅❅

•
1

k

3
2

2n+1

7→ �
��

❅❅
❅❅

1

2n−1

k−2

each tree from T2n+1,2,k is transformed into a tree from T2n−1,•,k−2 by
deleting the two nodes 2 and 1 and reducing the remaining nodes by 2.
This transformation is obviously a bijection. Thus, T2n+1,2,k = T2n−1,•,k−2

for 3 ≤ k ≤ 2n − 1. The second row of Mat(T2n+1) is then equal to the
sequence

(6.1) 0, 0,T2n−1,•,1,T2n−1,•,2, . . . ,T2n−1,•,2n−3,T2n−1,•,2n−2(= 0);

which is also equal to

(6.2) 0,T2n−1,1,•(= 0),T2n−1,2,•, . . . ,T2n−1,2n−2,•, 0,

by Poupard’s result (1.5) (also by our combinatorial proof in [FH13]
mentioned in the Introduction).

(I 4) The set T2n+1,m,1 is empty when m = 1, 2 or 2n. When 3 ≤ m ≤
2n− 1 the diagram

�
��

❅❅
❅❅
•

1

m

2
2n+1

7→ ��❅❅
1

m−1•

serves to illustrate the transformation that maps each tree from T2n+1,m,1

onto a tree from T2n−1,m−1,•, by deleting the two nodes (2n+1) and 1,
and reducing the remaining nodes by 1. Thus, the first column of Mn is
equal to sequence (6.2), when read from top to bottom.

For the second column we first note that T2n+1,m,2 is empty when
m = 1, 2 and n ≥ 2. When m = 3, the mapping

�
��

❅❅
❅❅
•

1

2

3

2n+1

©
7→ ��❅❅

1

2n+1
©

shows that T2n+1,3,2 is in bijection with T2n−1,•,1 = T2n−1,2,•. When
m = 4, the following decomposition prevails

T2n+1,4,2 = �
�
��

❅❅
❅❅
❅❅
•

1

4

2

3

2n+1

©
+ �

��
❅❅
❅❅
•

1

2

4

2n+1

©
3

the two sets on the right-hand side being in bijection, respectively, with
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= �
��

❅❅
❅❅
•

1

2

3©
+ ��❅❅

1

2•©
3 ,

that is,

= T2n−1,3,• + T2n−1,2,•.

To prove the identity T2n+1,m,2 = T2n−1,m−1,• + T2n−1,m−2,• =
T2n+1,m,1 + T2n+1,m−1,1 (by (6.2) and (I 4)) for 5 ≤ m ≤ 2n proceed
by induction on m using relation (R 1) already proved in (4.3). Write

T2n+1,m,2 = 2T2n+1,m−1,2−T2n+1,m−2,2−2T2n−1,m−2,2 [by (4.3)]

2T2n+1,m−1,2 = 2T2n+1,m−1,1 + 2T2n+1,m−2,1 [by induction on m]

− T2n+1,m−2,2 = −T2n+1,m−2,1 − T2n+1,m−3,1 [by induction on m]

− 2T2n−1,m−2,2 = −2T2n−1,m−2,1 − 2T2n−1,m−3,1

[by induction on n and m]

2T2n+1,m−1,1 − T2n+1,m−2,1 − 2T2n−1,m−2,1 = T2n+1,m,1 [by (4.3)]

2T2n+1,m−2,1 − T2n+1,m−3,1 − 2T2n−1,m−3,1 = T2n+1,m−1,1. [by (4.3)]

By summing those six equations we get T2n+1,m,2 = T2n+1,m,1 +
T2n+1,m−1,1, also equal to T2n−1,m−1,• + T2n−1,m−2,• by (6.2).

Remark. It would be interesting to make up a proof of Property 6.1
that would have no recourse to a recurrence argument for m ≥ 5 as above.

7. Proofs of Theorems 1.1 and 1.2

Taking Theorem 2.1, Corollaries 4.2 and 5.2, Property 6.1 into account
we conclude that the sequence of matrices Mat(T2n+1) is both a Delta and
a Gamma sequence. Those sequences are then identical and we may write

(7.1) fn(m, k) = T2n+1,m,k

for all n,m, k. This completes the proof of Theorem 1.1.

We now exploit the properties of the strictly ordered binary trees to
prove that the matrices Mn are symmetric with respect to their counter-
diagonals (Theorem 1.2). First, the symmetry property is banal for M1,
M2. For n ≥ 3 consider the NE- and SW-corners

(

fn(1, 2n− 1) fn(1, 2n)
fn(2, 2n− 1) fn(2, n)

)

=

(

0 0
fn(2, 2n− 1) 0

)

(

fn(2n− 1, 1) fn(2n− 1, 2)
fn(2n, 1) fn(2n, 2)

)

=

(

fn(2n− 1, 1) fn(2n− 1, 2)
0 fn(2n, 2)

)

19



DOMINIQUE FOATA AND GUO-NIU HAN

of the matrix Mn. As fn(2n−1, 1) = fn(2n, 2) = T2n−3 = T2n−3/2
n−2 (by

combining (1.11), (I 2), (I 3), (6.1) and (6.2)), both corners are symmetric
with respect to their counter-diagonals [in short, counter-symmetric].

Let us prove that the upper part of the matrix Mn is counter-symmetric
and for i = 1, 2, . . . , n− 1 adopt the notation:

Rowi = {(i, i+ 1), (i, i+ 2), . . . , (i, 2n− i), (i, 2n− i+ 1)};
Col2n−i+1 = {(i, 2n− i+ 1), (i+ 1, 2n− i+ 1),

. . . , (2n− i− 1, 2n− i+ 1), (2n− i, 2n− i+ 1)}.

Note that Rowi and Col2n−i+1 have the cell (i, 2n − i + 1), belonging to
the counter-diagonal, in common. There is nothing to prove for the pairs
(m, k) along the counter-diagonal and also for the entries from Row1 and
Col2n, which are all zero.

Let (m0, k0) belong to Rowj for some j such that 2 ≤ j ≤ n − 1.
Further, assume that (1.11) holds for all (m, k) ∈ Row1 ∪ · · · ∪ Rowj−1

and all (m, k) ∈ Rowj lying on the right of (m0, k0), not including (m0, k0),
that is, m = j and k > k0. By symmetry, (1.11) also holds for all
(m, k) ∈ Col2n ∪ · · · ∪ Col2n−j+2 and all (m, k) ∈ Col2n−j+1 lying above
(2n+ 1− k0, 2n+ 1−m0) not including the latter pair.

Now, the following relations hold:

fn(m0, k0)=2fn(m0, k0 + 1)− fn(m0, k0 + 2)− 2 fn−1(m0, k0) [by (R 2)]

fn−1(m0, k0) = fn−1(2n− 1− k0, 2n− 1−m0), [by induction on n]

fn(m0, k0 + 1) = fn(2n− k0, 2n+ 1−m0),

fn(m0, k0+2) = fn(2n−1−k0, 2n+1−m0).[both by the local induction]

Therefore,

fn(m0, k0)− 2 fn(2n− k0, 2n+ 1−m0)

+ fn(2n− 1− k0, 2n+ 1−m0) + 2 fn−1(2n− 1− k0, 2n− 1−m0) = 0.

But by (R 3) written at (m, k) = (2n− 1− k0, 2n+ 1−m0) we have:

fn(2n− 1− k0, 2n+ 1−m0)− 2 fn(2n− k0, 2n+ 1−m0)

− fn(2n− k0 + 1, 2n+ 1−m0) + 2 fn−1(2n− 1− k0, 2n− 1−m0) = 0.

By comparing the last two equations we conclude that

fn(m0, k0) = fn(2n− k0 + 1, 2n+ 1−m0),

which means that (1.11) now holds for (m, k) = (m0, k0).
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For the entries of Mn lying below the diagonal we proceed in the same
manner and adopt the notation:

Row2n+1−i = {(2n+ 1− i, i), . . . , (2n+ 1− i, 2n− i)};
Coli = {(i+ 1, i), (i+ 2, i), . . . , (2n+ 1− i, i)};

for i = 1, 2, . . . , n−1. Again, Row2n+1−i and Coli have the cell (2n+1−i, i)
in common.

Let (m0, k0) belong to Colj for some j such that 1 ≤ j ≤ n − 1.
Further, assume that (1.11) holds for all (m, k) ∈ Col1 ∪ · · · ∪ Colj−1

and all (m, k) ∈ Colj lying below (m0, k0), not including (m0, k0), that
is, m > m0 and k = k0. By symmetry, (1.11) also holds for all (m, k) ∈
Row2n ∪ · · · ∪ Row2n−j+2 and all (m, k) ∈ Row2n+1−j lying to the left of
(2n+ 1− k0, 2n+ 1−m0) not including the latter pair.

Now, the following relations hold:

fn(m0, k0)=2fn(m0 + 1, k0)− fn(m0 + 2, k0)− 2 fn−1(m0, k0),

[by (R 1)],

fn−1(m0, k0) = fn−1(2n− 1− k0, 2n− 1−m0),

[by induction on n],

fn(m0 + 1, k0) = fn(2n+ 1− k0, 2n−m0),

fn(m0 + 2, k0) = fn(2n+ 1− k0, 2n− 1−m0),

[by the local induction].

Therefore,

fn(m0, k0) = 2 fn(2n+ 1− k0, 2n−m0)

− fn(2n+ 1− k0, 2n− 1−m0)− 2 fn−1(2n− 1− k0, 2n− 1−m0).

But by (R 4) written at (m, k) = (2n+ 1− k0, 2n− 1−m0) we have:
fn(2n+ 1− k0, 2n− 1−m0) = 2 fn(2n+ 1− k0, 2n−m0)

− fn(2n+ 1− k0, 2n+ 1−m0)− 2 fn−1(2n− 1− k0, 2n− 1−m0).

By comparing the last two equations we conclude that

f2n+1(m0, k0) = f2n+1(2n+ 1− k0, 2n+ 1−m0)),
which means that (1.11) now holds for (m, k) = (m0, k0).

Define

(7.2) Eoc(t) := eoc(t), but Pom(t) := 2n+ 1− pom(t).

Theorem 7.2. Let T2n+1(x, y) :=
∑

t∈T2n+1

xEoc(t)yPom(t) be the generating

polynomial for the set T2n+1 by the pair of statistics (Eoc,Pom). Then,

(7.3) T2n+1(x, y) = T2n+1(y, x).

21



DOMINIQUE FOATA AND GUO-NIU HAN

Proof. This is a simple consequence of Theorem 1.2: let gn(m, k) :=
#{Eoc = m,Pom = k}. Then,

gn(m, k) = #{eoc = m, pom = 2n+ 1− k} = fn(m, 2n+ 1− k)

= fn(k, 2n+ 1−m) [by (1.11)]

= gn(k,m).

Thus,

T2n+1(x, y) =
∑

t∈T2n+1

xEoc(t)yPom(t) =
∑

m,k

gn(m, k)xmyk

=
∑

m,k

gn(k,m)xmyk = T2n+1(y, x).

8. Further properties

Other properties of the Delta Sequence can be obtained by having a
further look at the geometry of the strictly ordered binary trees. The sub-
and superdiagonals of the matrices Mn for n = 2, 3, 4, 5 are equal, as can
be seen in Fig. 2.2. For an arbitrary n ≥ 2 we have the following.

Property 8.1. Sub- and super diagonals are equal:

(8.1) fn(k + 1, k) = fn(k, k + 1) (n ≥ 2; 1 ≤ k ≤ 2n− 1).

Proof. First, note that k and (k + 1) can be siblings in a tree from
T2n+1,k,k+1, but never in a tree from T2n+1,k+1,k. Second, k can be parent
of (k+1) in a tree from the latter set, but never in a tree from the former
one. Also, fn(2, 1) = fn(1, 2) = 0 for n ≥ 2 and for k ≥ 2 we have the
decompositions:

fn(k, k + 1) =
��❅

❅❅��

2n+1

k+1

©
• k

+ [
��❅

❅❅��
© 2n+1

k+1

, • k ];

fn(k + 1, k) =
��❅

❅❅��
•

2n+1

k

k+1 ©

+ [
��❅

❅❅��
© 2n+1

k

, • (k + 1) ].

The first terms in the previous two equations are in bijection, as well as the
second ones, the notation “• k” meaning that k is the end of the minimal
chain, following our convention on Tree Calculus (cf. Section 4).

Property 8.2. We have the crossing equalities:

(8.2) fn(k + 1, k − 1) + fn(k − 1, k + 1)

= fn(k + 1, k) + fn(k − 1, k)

= fn(k, k + 1) + fn(k, k − 1) (2 ≤ k ≤ 2n− 1).
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As can be seen in Fig. 2.2, the involved entries in the first identities are
located on the four bullets drawn in the following diagram.

k − 1 k k + 1

• •✟✟✟✟✟✟• •

k − 1

k

k + 1

Proof. Let i, j be two different integers from the set {(k−1), k, (k+1)}.
Say that i and j are connected in a tree t, if the tree contains the edge
i—j, or if i and j are brothers and one of them is the end of the minimal
chain of t. Each of the four ingredients of the previous identity is now
decomposed into five terms, depending on whether the nodes (k − 1), k,
(k + 1) are connected or not, namely: no connectedness; only k, (k + 1)
connected; (k − 1), k connected; (k − 1), (k+ 1) connected; all connected.
Thus,

fn(k − 1, k) = [
��❅❅k−1
©•

,
��❅❅ k

2n+1

, k + 1] + [
��❅❅k−1
©•

,
��❅❅2n+1
k

k+1

]

+ [
��❅

❅❅��
© 2n+1

k
• k−1

, k + 1 ] + [
��❅❅k−1
©
k+1

•

,
��❅❅ k

2n+1

] +
��❅

❅❅��

2n+1

k

©
k+1 • k−1

:= A1 + A2 + A3 + A4 + A5;

fn(k + 1, k) = [
��❅❅k+1
©•

, k − 1,
��❅❅2n+1
©

k

•

] + [
��❅❅k+1

2n+1

k

•

, k − 1]

+ [
��❅❅k+1
©•
,

��❅
❅❅�� ©
k

2n+1

k−1 ] + [
��❅❅k+1
k−1

•
,

��❅❅2n+1
©

k
] +

��❅
❅❅��
•

©
k

k+1
2n+1

k−1

:= B1 +B2 +B3 +B4 +B5;

fn(k + 1, k − 1) = [
��❅❅k+1
©•

,
��❅❅ k−1

2n+1

, k] + [
��❅❅k+1
k

•

,
��❅❅

2n+1

k−1

©

]

+ [
��❅❅k+1
©•
,

��❅❅2n+1
k−1

k

] + [
��❅❅k+1

2n+1

k−1

•
, k] +

��❅
❅❅��
• ©

k

k+1

k−1

2n+1

:= C1 + C2 + C3 + C4 + C5;
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fn(k − 1, k + 1) = [
��❅❅k−1
©•

, k ,
��❅❅ k+1

2n+1

] + [
��❅❅k−1

•

,
��❅

❅❅��
▽

©
k+1

2n+1

k ]

+ [
��❅❅k−1 k

•

,
��❅❅

2n+1

k+1

©

] + [
��❅

❅❅��
© 2n+1

k+1
•
k−1

, k ] +
��

��❅
❅❅

❅❅

��
2n+1

k+1

©

k • k−1

:= D1 +D2 +D3 +D4 +D5.

Now, the following identities hold: A1 = C1, A2 = C3, A3 = D4,
A4 = D3, 2A5 = D5; B1 = D1, B3 = D2, B5 = C5. Moreover,

B4 − C2 =
�
�
�❅❅

❅
❅❅��

k+1 •

k
k−1

2n+1©

= D5 = 2A5;

C4 −B2 =
��❅

❅❅��
• 2n+1

k−1

k+1 ©
k

= A5.

Altogether,
∑

i(Ai +Bi)−
∑

i(Ci +Di) = (B4−C2)− (C4−B2) + (A5−
D5) = 2A5 − A5 + (A5 − 2A5) = 0.

Property 8.3. The row sums fn(m, •) form a Poupard Triangle, the
initial conditions being: f0(1, •) = 1, fn(1, •) = 0 and fn(2, •) =
2
∑

m fn−1(m, •) (n ≥ 1); and the finite difference system:

(8.3) ∆
m

2fn(m, •) + 2 fn−1(m, •) = 0 (1 ≤ m ≤ 2n− 1).

The column sums fn(•, k) form a Poupard Triangle, the initial conditions
being: f0(•, 0) = 1, fn(•, 0) = 0 and fn(•, 1) = 2

∑

k fn−1(•, k) (n ≥ 1);
and the finite difference system:

(8.4) ∆
k

2fn(•, k) + 2 fn−1(•, k) = 0 (0 ≤ k ≤ 2n− 2).

There are several proofs of this Property. First, the methods developed
in Section 4 can be readapted by disregarding the conditions involving the
pom-statistic. Here, we simply work out a specialization of the recurrence
relations (R 1)—(R 4), that makes use of the previous two properties.
Besides, we only prove the first part of the property that deals with the
row sums.

24



TREE CALCULUS FOR DIFFERENCE EQUATIONS

Proof. For 1 ≤ m ≤ 2n− 2 we have:

∆
m

2fn(m, •) =
∑

1≤k≤2n

∆
m

2fn(m, k)

=
∑

1≤k≤m−1

∆
m

2fn(m, k)

+ ∆
m

2(fn(m,m) + fn(m,m+ 1) + fn(m,m+ 2))

+
∑

m+3≤k≤2n

∆
m

2fn(m, k)

=
∑

1≤k≤m−1

−2fn−1(m, k)

+ fn(m,m)− 2fn(m+ 1, m) + fn(m+ 2, m)

+ fn(m,m+ 1)− 2fn(m+ 1, m+ 1) + fn(m+ 2, m+ 1)

+ fn(m,m+ 2)− 2fn(m+ 1, m+ 2) + fn(m+ 2, m+ 2)

+
∑

m+3≤k≤2n

−2fn−1(m, k − 2).

In the previous sum the diagonal terms vanish. Also, fn(m + 1, m) =
fn(m,m + 1), fn(m + 2, m + 1) = fn(m + 1, m + 2) by (8.1). The sum
of the nine intermediate terms becomes: −fn(m+1, m) + fn(m+2, m)−
fn(m+ 1, m+ 2) + fn(m,m+ 2), which is 0 by (8.2). Hence,

∆
m

2fn(m, •) = −2
∑

1≤k≤m−1

fn−1(m, k)− 2
∑

m+1≤k≤2n−2

fn−1(m, k)

= −2fn−1(m, •).

On the other hand, by (I 2) and (1.10),

fn(2n− 1, •) =
∑

1≤k≤2n

fn(2n− 1, k) =
∑

1≤k≤2n−2

(fn−1(k, •) + fn−1(•, k))

= 2 fn−1(•, •) := 2#T2n−1 = 2T2n−1/2
n−1;

fn(2n, •) =
∑

1≤k≤2n

fn(2n, k) =
∑

1≤k≤2n−2

fn−1(k, •)

= fn−1(•, •) = #T2n−1 = T2n−1/2
n−1;

fn(2n+ 1, •) = 0.

The last three evaluations imply that ∆
m

2fn(2n − 1, •) = −2 fn−1(2n −
1, •) = 0.
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9. Other equivalent definitions for the Delta sequence

Definitions 1.1 and 2.1 have been shown to be equivalent to characterize
a Delta Sequence. Other combinations of the recurrence relations (R 1)–
(R 4), together with the initial conditions (I 1)–(I 4), can be used. We
describe them by means of squares and arrows, as was done in Fig. 2.1
and 2.3 (see Fig. 9.1 (a) and (b)). Moreover, further initial conditions can
be introduced; they are denoted by (SW ), (NE), as they refer only to the
South-West and North-East corners of the matrices:

(

fn(2n− 1, 1) fn(2n− 1, 2)
fn(2n, 1) fn(2n, 2)

)

=

(

fn−1(•, 1) fn−1(2, •) + fn−1(•, 2)
0 fn−1(•, 1)

)

;(SW )

(

fn(1, 2n− 1) fn(1, 2n)
fn(2, 2n− 1) fn(2, n)

)

=

(

0 0
fn−1(2, •) 0

)

=

(

0 0
fn−1(2n− 2, •) 0

)

.(NE)

When one of those two conditions (SW ), (NE) is involved, two recur-
rence relations among (R 1)–(R 4) are needed to build up an equivalent
definition. In Fig. 9.1 (c) for instance, (R 1) and (R 4) are to be associated
with (SW ). We then get five further equivalent definitions (Fig. 9.1 (c-g)):

❅
❅
❅
❅
❅

↓↑

↓↑
Row2n−1

Row2n

Row1
Row2

(R 1)

(R 3)

(a)

❅
❅
❅
❅
❅

←→ (R 2)←→(R 4)

Col2n−1

Col2n
Col1 Col2

(b)

❅
❅
❅
❅
❅

←→
↓↑

↓↑(SW )

(R 4)

(R 1)

(R 3)

(c)

❅
❅
❅
❅
❅

←→

↓↑(SW )

(R 4)

(R 1)

(R 2)←→

Col2n−1

Col2n

(d)

❅
❅
❅
❅
❅

↓↑

↓↑

(NE)

(R 3)

(R 1)

(R 2)←→
Row2n−1

Row2n

(e)

(R 4)

❅
❅
❅
❅
❅

←→
↓↑ (NE)

(R 3)

(R 2)←→

Col1 Col2

(f)

❅
❅
❅
❅
❅

←→

↓↑(SW )

(R 4)

(R 1)

(R 2)←→

(g)

↓↑ (NE)

(R 3)

Fig. 9.1 Other definitions of the Delta sequence.

We do not reproduce any proofs for those equivalences, but point out
the fact that our Tree Calculus requires that each initial condition be
combinatorially interpreted, as was done in Sections 2 and 5.
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10. Generating functions for the Delta sequence

1. Poupard matrices. Let G = (gi,j) (i ≥ 0, j ≥ 0) be an infinite
matrix with nonnegative integral entries. Say that G is a Poupard matrix,
if for every i ≥ 0, j ≥ 0 the following identity holds:

(10.1) gi,j+2 − 2 gi+1,j+1 + gi+2,j + 2 gi,j = 0.

Let G(x, y) :=
∑

i≥0, j≥0

gi,j (x
i/i) (yj/j!); Ri(y) :=

∑

j≥0

gi,j (y
j/j!) (i ≥ 0);

Cj(x) :=
∑

i≥0

gi,j (x
i/i) (j ≥ 0) be the exponential generating functions for

the matrix itself, its rows and columns, respectively.

Proposition 10.1. The following four properties are equivalent:
(i) G = (gi,j) (i ≥ 0, j ≥ 0) is a Poupard matrix;
(ii) R′′

i (y)− 2R′
i+1(y) +Ri+2(y) + 2Ri(y) = 0 for all i ≥ 0;

(iii) C′′
j (x)− 2C′

j+1(x) + Cj+2(x) + 2Cj(x) for all j ≥ 0;
(iv) G(x, y) satisfies the partial differential equation:

(10.2)
∂2G(x, y)

∂x2
− 2

∂2G(x, y)

∂x ∂y
+

∂2G(x, y)

∂y2
+ 2G(x, y) = 0.

Proof. It suffices to write R′′
i (y) − 2R′

i+1(y) + Ri+2(y) + 2Ri(y) =
∑

j≥0

(gi,j+2 − 2 gi+1,j+1 + 2 gi+2,j − 2 gi,j)(y
j/j!), and, similarly, C′′

j (x) −

2C′
j+1(x) + Cj+2(x) + 2Cj(x) =

∑

i≥0

(gi+2,j − 2 gi+1,j+1 + 2 gi,j+2 −

2 gi,j)(x
i/i!) to obtain the equivalence between the first three properties.

As for the last one, simply note that G(x, y) =
∑

i≥0 Ri(y) x
i/i! =

∑

j≥0

Cj(x) y
j/j! and make the appropriate derivations.

Proposition 10.2. We have

(10.3) G(x, y) = A(x+ y) cos(
√
2 y) +B(x+ y) sin(

√
2 y),

where A(x) and B(x) are two arbitrary series.

Proof. Let ξ := x + y, η := y. Then, ∂G/∂x = ∂G/∂ξ; ∂G/∂y =
∂G/∂ξ + ∂G/∂η; ∂2G/∂x2 = ∂2G/∂ξ2; ∂2G/∂y2 = ∂2G/∂ξ2 +
2 ∂2G/∂ξ ∂η + ∂2G/∂η2; ∂2G/∂x ∂y = ∂2G/∂ξ2 + ∂2G/∂ξ ∂η.

Thus, (10.2) can be rewritten as

(10.4)
∂2G

∂η2
+ 2G = 0.
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The ordinary differential equation G′′ + 2G = 0, whose characteristic
polynomial is r2+2 = 0, has a general solution of the form A cos(

√
2 η)+

B sin(
√
2 η), so that the general solution of (10.2) is exactly given by

(10.3).

The exact expression for the generating function G(x, y) can then be
derived, if A(x + y) and B(x + y) can be obtained by an independent
calculation, as done in the sequel.

2. A sequence of Poupard matrices for the lower triangles. The entries
fn(m, k) (1 ≤ k < m ≤ 2n) from the lower triangles in the matrices Mn

(n ≥ 1) are now recorded as entries λ
(p)
i,j (p ≥ 0, i ≥ 0, j ≥ 0) of infinite

matrices Λ(p) = (λ
(p)
i,j ) (i ≥ 0, j ≥ 0) as follows.

Define

(10.5) λ
(p)
i,j :=

{

0, if i+ j ≡ p mod 2;
fn(m, k), if i+ j ≡ p+ 1 mod 2;

with k := j+1,m := i+j+2, 2n := p+(i+j)+1. The latter equation makes
sense, as i+j and p are of different parity. The mapping (p, i, j) 7→ (n,m, k)
is one-to-one, the reverse mapping being: p := 2n−m+1, i := m− k− 1,
j := k − 1. Thus, for p ≥ 0, the matrix Λ(2p+1) reads:













0 1 2 3 4 5

0 fp+1(2, 1) 0 fp+2(4, 3) 0 fp+3(6, 5) 0 · · ·

1 0 fp+2(4, 2) 0 fp+3(6, 4) 0 · · ·

2 fp+2(4, 1) 0 fp+3(6, 3) 0 · · ·

3 0 fp+3(6, 2) 0 · · ·

4 fp+3(6, 1) 0 · · ·

5 0 · · ·

6 · · ·













;

and for p ≥ 1, the matrix Λ(2p) is equal to












0 1 2 3 4 5

0 0 fp+1(3, 2) 0 fp+2(5, 4) 0 fp+3(7, 6)
1 fp+1(3, 1) 0 fp+2(5, 3) 0 fp+3(7, 5) · · ·

2 0 fp+2(5, 2) 0 fp+3(7, 4) · · ·

3 fp+2(5, 1) 0 fp+3(7, 3) · · ·

4 0 fp+3(7, 2) · · ·

5 fp+3(7, 1) · · ·

6 · · ·













.

Proposition 10.3. Every matrix Λ(p) (p ≥ 0) is a Poupard matrix.

Proof. Using Definition (10.5) we have

λ
(p)
i,j+2 − 2λ

(p)
i+1,j+1 + λ

(p)
i+2,j + 2λ

(p)
i,j

= fn+1(m+ 2, k + 2)− 2 fn+1(m+ 2, k + 1)

+ fn+1(m+ 2, k) + 2 fn(m, k)

= ∆
k
fn+1(m+ 2, k) + 2 fn(m, k) = 0,

by rule (R 4).
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3. The first matrix Λ(1). The counter-diagonal of Λ(1) at depth 2i
(i ≥ 0) reads

λ
(1)
2i,0 = fi+1(2i+ 2, 1); λ

(1)
2i−1,1 = fi+1(2i+ 2, 2); · · ·

· · · λ(1)
2i−j,j = fi+1(2i+ 2, j + 1); · · · λ(1)

0,2i = fi+1(2i+ 2, 2i+ 1).

Those (2i+1) terms are equal to the first (2i+1) entries of the (2i+2)-nd
row of the matrix Mi+1, that is, to the single term f1(2, 1) = 1 for i = 0
and for i ≥ 1 to

fi(1, •) = 0, fi(2, •), . . . , fi(j + 1, •), . . . , fi(2i, •), 0,

by virtue of (I 2). Thus, Λ(1) is identical to the Poupard matrix (fi(j+1, •))
(i, j ≥ 0):





















0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 f1(2, •) 0 f2(4, •) 0 f3(6, •)

2 0 0 f2(3, •) 0 f3(5, •)

3 0 f2(2, •) 0 f3(4, •)

4 0 0 f3(3, •)

5 0 f3(2, •)

6 0





















,

equal to

























0 1 2 3 4 5 6 · · ·

0 1 0 0 0 0 0 0 · · ·

1 0 1 0 1 0 4 · · ·

2 0 0 2 0 8 · · ·

3 0 1 0 10 · · ·

4 0 0 8 · · ·

5 0 4 · · ·

6 0 · · ·

· · · ·

























,

4. The first two columns of Λ(p). In the sequel the column labeled j

of Λ(p) will be denoted by Λ
(p)
•,j and the exponential generating func-

tion for that column by Λ
(p)
•,j (x) =

∑

i≥0 λ
(p)
i,j x

i/i!. Also, Λ(p)(x, y) :=
∑

j≥0 Λ
(p)
•,j (x)y

j/j! will be the double exponential generating function for

the matrix Λ(p).
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Proposition 10.4. The first two columns of each matrix Λ(p) (p ≥ 2) are
related to the columns of Λ(1) by the identities:

(10.6) Λ
(p)
•,0(x) = Λ

(1)
•,p−1(x), Λ

(p)
•,1(x) =

d

dx
Λ
(1)
•,p−1(x) + Λ(1)

•,p(x).

Proof. For the first identity it suffices to prove λ
(p)
i,0 = λ

(1)
i,p−1, that is

fn(i+ 2, 1) = fn(p+ i+ 1, p)

when 2n = p+ i+1. This is true by Theorem 1.2. For the second identity

it suffices to prove λ
(p)
i,1 = λ

(1)
i+1,p−1 + λ

(1)
i,p , that is

(10.7) fn(i+ 3, 2) = fn(p+ i+ 2, p) + fn(p+ i+ 2, p+ 1)

when 2n = p+ i+ 2. But by (I 4)

fn(i+ 3, 2) = fn(i+ 2, 1) + fn(i+ 3, 1),

so that by Theorem 1.2, identity (10.7) holds.

5. Solving the partial differential equation. By (10.6)

Λ(p)(x, y)
∣

∣

∣

{y=0}
= Λ

(p)
•,0(x) = Λ

(1)
•,p−1(x);

∂

∂y
Λ(p)(x, y)

∣

∣

∣

{y=0}
= Λ

(p)
•,1(x) =

d

dx
Λ
(1)
•,p−1(x) + Λ(1)

•,p(x).

As each Λ(p) is a Poupard matrix, we can use identity (10.3), so

that Λ(p)(x, y)
∣

∣

∣

{y=0}
= A(x) and ∂Λ(p)(x, y)/∂y = A′(x+ y) cos(

√
2y) −

√
2A(x+y) sin(

√
2y)+B′(x+y) sin(

√
2y)+

√
2B(x+y) cos(

√
2y). Hence,

Λ(p)(x, y)
∣

∣

∣

{y=0}
= A(x) = Λ

(1)
•,p−1(x);

∂Λ(p)(x, y)

∂y

∣

∣

∣

{y=0}
= A′(x) +

√
2B(x) =

d

dx
Λ
(1)
•,p−1(x) + Λ(1)

•,p(x).

Consequently, A(x) = Λ
(1)
•,p−1(x) and B(x) = Λ

(1)
•,p(x)/

√
2 and the general

expression for Λp(x, y) reads:

(10.8) Λ(p)(x, y) = Λ
(1)
•,p−1(x+ y) cos(

√
2 y) + Λ(1)

•,p(x+ y) sin(
√
2 y)/

√
2.

This expression still holds for p = 1. We know that Λ
(1)
•,0(x) = 1. On

the other hand, the coefficient of x2k+1/(2k + 1)! (k ≥ 0) in Λ
(1)
•,1(x) is

fk+1(2, •) = T2k+1/2
k. Hence, Λ

(1)
•,1(x) =

√
2 tan(x/

√
2) and

Λ(1)(x, y) = cos(
√
2 y) +

√
2 tan

(x+ y√
2

) sin(
√
2 y)√
2

= cos
(x− y√

2

) /

cos
(x+ y√

2

)

,(10.9)

a result already obtained by Poupard.
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Remark. For getting the solution for Λ(1)(x, y) we can also start with
the general expression displayed in (10.3) and calculate A and B with the
initial conditions Λ(1)(0, y) = Λ(1)(x, 0) = 1. We find

Λ(1)(x, y) = cos(
√
2y) +

1− cos(
√
2(x+ y))

sin(
√
2(x+ y))

sin(
√
2y)

=
sin(
√
2x) + sin(

√
2y)

sin(
√
2(x+ y))

,(10.10)

an expression which is naturally equal to the right-hand side of (10.9) (by
a simple trigonometric calculation).

We have not worked out other explicit formulas for Λ(p)(x, y) when
p ≥ 3, but only derived the exponential generating function for those
series, as explained in the next subsection.

6. A generating function for the lower triangles. By (10.9)

∂

∂y
Λ(1)(x, y) =

∂

∂y
cos

(x− y√
2

) /

cos
(x+ y√

2

)

= sin(
√
2x)

/ √
2 cos2

(x+ y√
2

)

.(10.11)

Let Λ(x, y, z) :=
∑

p≥1

Λ(p)(x, y)
zp−1

(p− 1)!
.

Then,

Λ(x, y, z) = cos(
√
2 y)

∑

p≥1

zp−1

(p− 1)!
Λ
(1)
•,p−1(x+ y)

+
sin(
√
2 y)√
2

∑

p≥1

zp−1

(p− 1)!
Λ(1)

•,p(x+ y) [by (10.8)]

= cos(
√
2 y) Λ(1)(x+ y, z) +

sin(
√
2 y)√
2

∂

∂z
Λ(1)(x+ y, z),

since Λ(1)(x, z) =
∑

p≥0

zp

p!
Λ(1)

•,p(x).

By (10.11) we then get:

Λ(x, y, z) = cos(
√
2 y) cos

(x+ y − z√
2

) /

cos
(x+ y + z√

2

)

+ sin(
√
2 y) sin(

√
2(x+ y))

/

2 cos2
(x+ y + z√

2

)

=
cos(
√
2x) + cos(

√
2 y) cos(

√
2 z)

2 cos2
(x+ y + z√

2

) .
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Now, express Λ(x, y, z) as a series in the fn(m, k)’s. By definition,

Λ(x, y, z) =
∑

p,i,j

λ
(p)
i,j

zp−1

(p− 1)!

xi

i!

yj

j!
(p ≥ 1, i ≥ 0, j ≥ 0);

so that by (10.5)

Λ(x, y, z) =
∑

k,m,n

fn(m, k)
xm−k−1

(m− k − 1)!

yk−1

(k − 1)!

z2n−m

(2n−m)!
,

the latter sum over the set {2 ≤ k+1 ≤ m ≤ 2n}. This achieves the proof
of Theorem 1.4.

Note that the right-hand side of (1.12) is symmetric in y, z, that is,
Λ(x, y, z) = Λ(x, z, y). The change y ↔ z in the left-hand side of (1.12)
shows that

fn(2n+ 1− k, 2n+ 1−m) = fn(m, k),

the symmetry proved for the entries fn(m, k) such that m ≥ k + 1.

Remark. Let z = 0 in (1.14). We get

∑

2≤k+1≤2n

fn(2n, k)
x2n−k−1

(2n− k − 1)!

yk−1

(k − 1)!
=

cos(
√
2 x) + cos(

√
2 y)

2 cos2
(x+ y√

2

) ;

or,

∑

i≥0, j≥0

λ
(1)
i,j

xi

i!

yj

j!
= Λ(1)(x, y) =

cos(
√
2 x) + cos(

√
2 y)

2 cos2
(x+ y√

2

) ;

which is another expression for Λ(1)(x, y) than (10.9) and (10.10).

7. A generating function for the upper triangles. The entries fn(m, k)
(1 ≤ m < k ≤ 2n) from the upper triangles in the matrices Mn (n ≥ 1)

are next recorded as entries ω
(p)
i,j (p ≥ 0, i ≥ 0, j ≥ 0) of infinite matrices

Ω(p) = (ω
(p)
i,j ) (i ≥ 0, j ≥ 0) as follows.

Define

ω
(p)
i,j :=

{

0, if i+ j 6≡ p mod 2;
fn(m, k), if i+ j ≡ p mod 2;

with m := p+1, k := p+ j+2, 2n := p+ i+ j+2. Conversely, i := 2n−k,
j := k −m− 1, p := m− 1. Thus, for p ≥ 0
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Ω(2p+1) =












0 1 2 3

0 0 fp+2(2p+ 2, 2p+ 4) 0 · · ·

1 fp+2(2p+ 2, 2p+ 3) 0 fp+4(2p+ 2, 2p+ 5) · · ·

2 0 fp+3(2p+ 2, 2p+ 4) · · ·

3 fp+3(2p+ 2, 2p+ 3) · · ·

4 · · ·













Ω(2p) =












0 1 2 3

0 fp+1(2p+ 1, 2p+ 2) 0 fp+2(2p+ 1, 2p+ 4) 0

1 0 fp+2(2p+ 1, 2p+ 3) 0 · · ·

2 fp+2(2p+ 1, 2p+ 2) 0 · · ·

3 0 · · ·

4 · · ·













Remark. The first rows of all matrices Mn are null, so that Ω(0) is the
infinite matrix with all entries equal to zero!

Also, write
Ω(1) =

























0 1 2 3 4 5 6 7

0 0 f2(2, 4) 0 f3(2, 6) 0 f4(2, 8) 0 f5(2, 10)

1 f2(2, 3) 0 f3(2, 5) 0 f4(2, 7) 0 f5(2, 9) · · ·

2 0 f3(2, 4) 0 f4(2, 6) 0 f5(2, 8) · · ·

3 f3(2, 3) 0 f4(2, 5) 0 f5(2, 7) · · ·

4 0 f4(2, 4) 0 f5(2, 6) · · ·

5 f4(2, 3) 0 f5(2, 5) · · ·

6 0 f5(2, 4) · · ·

7 f5(2, 3) · · ·

























=

























0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 1 0 1 0 4 0 34 · · ·

2 0 2 0 8 0 68 · · ·

3 1 0 10 0 94 · · ·

4 0 8 0 104 · · ·

5 4 0 94 · · ·

6 0 68 · · ·

7 34 · · ·

























.

Proposition 10.5. Every matrix Ω(p) (p ≥ 0) is a Poupard matrix.

Same proof as for Proposition 10.3.
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The row labeled i of Ω(p) will be denoted by Ω
(p)
i,• and the exponential

generating function for that row by Ω
(p)
i,• (y) =

∑

j≥0 ω
(p)
i,j y

j/j!. Also,

Ω(p)(x, y) :=
∑

i≥0 Ω
(p)
i,• (y)x

i/i! will be the double exponential generating

function for the matrix Ω(p). As x and y play a symmetric role in (10.2),
the solution in (10.2) may also be written

G(x, y) = A(x+ y) cos(
√
2x) +B(x+ y) sin(

√
2 x),

so that the generating function of each matrix Ω(p) is of the form

Ω(p)(x, y) = A(x+ y) cos(
√
2x) +B(x+ y) sin(

√
2 x).

As the first row of each matrix Ω(p) is the zero sequence, we have
Ω(p)(0, y) = A(y) = 0. Hence, Ω(p)(x, y) = B(x+ y) sin(

√
2 x) and

∂

∂x
Ω(p)(x, y) =

( ∂

∂x
B(x+ y)

)

sin(
√
2x) +

√
2 B(x+ y) cos(

√
2x).

Therefore,

Ω
(p)
1,•(y) =

∂

∂x
Ω(p)(x, y)|

∣

∣

∣

{x=0}
=
√
2B(y)

and then

Ω(p)(x, y) =
1√
2
sin(
√
2 x) Ω

(p)
1,•(x+ y).(10.12)

The evaluation of Ω
(1)
1,•(y) is easy, as the row labeled 1 of Ω(1) is

(1, 0, 1, 0, 4, 0, 34, 0, . . .), compared with (0, 1, 0, 1, 0, 4, 0, 34, 0, . . .), which
is the sequence of the coefficients of the Taylor expansion of

√
2 tan(y/

√
2).

In fact we have ω
(1)
1,2j = fj+2(2, 2j+3) = fj+1(2j+2, •) = T2j+1/2

j . Thus,

Ω
(1)
1,•(y) =

d

dy

√
2 tan

( y√
2

)

=
1

cos2(y/
√
2)

;
so that

Ω(1)(x, y) =
1√
2
sin(
√
2 x)

1

cos2
(x+ y√

2

) .(10.13)

Proposition 10.6. For all p ≥ 1 we have:

(10.14) Ω
(p)
1,•(y) = Ω(1)

p,•(y).

Same proof as for Proposition 10.4. Now, define:

(10.15) Ω(x, y, z) :=
∑

p≥1

Ω(p)(x, y)
zp

p!
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and make use of (10.18)—(10.20):

Ω(x, y, z) =
1√
2
sin(
√
2 x)

∑

p≥1

Ω
(p)
1,•(x+ y)

zp

p!

=
1√
2
sin(
√
2 x)

∑

p≥1

Ω(1)
p,•(x+ y)

zp

p!

=
1√
2
sin(
√
2 x) Ω(1)(z, x+ y)

= sin(
√
2 x) sin(

√
2 z)

1

2 cos2
(x+ y + z√

2

) .

As all the entries ω
(p)
0,j (p ≥ 1, j ≥ 0) are null,

Ω(x, y, z) =
∑

p,i,j

ω
(p)
i,j

zp

p!

xi

i!

yj

j!
(p ≥ 1, i ≥ 1, j ≥ 0);

so that by definition of the ω
(p)
i,j ’s

Ω(x, y, z) =
∑

k,m,n

fn(m, k)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm−1

(m− 1)!
,(10.16)

the latter sum over the set {2 ≤ m + 1 ≤ k ≤ 2n − 1}. This achieves the
proof of Theorem 1.4.

The right-hand side of (1.13) is symmetric in x, z, that is, Ω(x, y, z) =
Ω(z, y, x). The change x↔ z in the left-hand side of (1.13) shows that

fn(2n+ 1− k, 2n+ 1−m) = fn(m, k),

the symmetry proved for the entries fn(m, k) such that m+ 1 ≤ k.

Recently, there has been a revival of studies on arithmetical and
combinatorial properties of both tangent and secant numbers. Désiré
André’s classical model of alternating permutations has been largely
used ([KPP94, St10]), in particular by taking the Entringer recurrence

(see [En66, Po82, Po97, GHZ10]) into account, also by looking at their
quadrant marked mesh patterns [KR12]. As developed in the present
paper, the model of ordered binary tree, with its natural statistics “eoc”
and “pom,” gives rise to other refinements of those trigonometric numbers,
as was also done in [FH14].
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