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ABSTRACT

An infinite ±1-sequence is called Apwenian if its Hankel de-
terminant of order n divided by 2n−1 is an odd number for
every positive integer n. In 1998, Allouche, Peyrière, Wen
and Wen discovered and proved that the Thue–Morse se-
quence is an Apwenian sequence by direct determinant ma-
nipulations. Recently, Bugeaud and Han re-proved the latter
result by means of an appropriate combinatorial method. By
significantly improving the combinatorial method, we find
several new Apwenian sequences with Computer Assistance.
This research has application in Number Theory to deter-
mining the irrationality exponents of some transcendental
numbers.

CCS Concepts

•Computing methodologies → Symbolic calculus algo-
rithms;
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1. INTRODUCTION
For each infinite sequence c = (ck)k≥0 and each nonneg-

ative integer n the Hankel determinant of order n of the
sequence c is defined by

Hn(c) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

c0 c1 · · · cn−1
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We also speak of the Hankel determinants of the power series
c̃(x) =

∑

k≥0 ckx
k and write Hn(c̃(x)) = Hn(c). The Han-

kel determinants are widely studied in Mathematics and, in
several cases, can be evaluated by basic determinant ma-
nipulation, LU -decomposition, or Jacobi continued fraction
(see, e.g., [12, 13, 7]). However, the Hankel determinants
studied in the present paper apparently have no closed-form
expressions, and require additional efforts to obtain specific
arithmetical properties.

An infinite ±1-sequence c = (ck)k≥0 is called Apwenian1

if its Hankel determinant of order n divided by 2n−1 is an
odd number, i.e., Hn(c)/2

n−1 ≡ 1 (mod 2), for all positive
integers n. The corresponding generating function or the
power series c̃(x) is also said to be Apwenian. Recall that
the Thue–Morse sequence, denoted by

e = (ek)k≥0 = (1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1 . . .),

is a special ±1-sequence, defined by the generating function

ẽ(x) =
∞
∑

k=0

ekx
k =

∞
∏

k=0

(1− x2k), (2)

or equivalently, by the recurrence relations

e0 = 1, e2k = ek and e2k+1 = −ek for k ≥ 0. (3)

The Thue–Morse sequence is also called Prouhet–Thue–Morse
sequence. For other equivalent definitions and properties re-
lated to the sequence, see [3, 2]. In 1998, Allouche, Peyrière,
Wen and Wen established a congruence relation concerning
the Hankel determinants of the Thue–Morse sequence [1].

Theorem 1.1 (APWW). The Thue–Morse sequence on
{1,−1} is Apwenian.

Theorem 1.1 has an important application in Number The-
ory. As a consequence of Theorem 1.1, all the Hankel de-
terminants of the Thue–Morse sequence are nonzero. This
property allowed Bugeaud [4] to prove that the irrational-
ity exponents of the Thue–Morse–Mahler numbers are ex-
actly 2.

The goal of the paper is to find more Apwenian sequences.
Let d be a positive integer and v = (v0, v1, v2, . . . , vd−1)
a finite ±1-sequence of length d such that v0 = 1. The
generating polynomial of v is denoted by ṽ(x) =

∑d−1
i=0 vix

i.
It is clear that the following power series

Φ(ṽ(x)) =
∞
∏

k=0

ṽ(xdk) (4)

1We use the term “Apwenian” to honor the four authors
Allouche, Peyrière, Wen and Wen for their seminal paper [1].



defines a ±1-sequence, whose n-th term is equal to

fn =

d−1
∏

i=1

v
#i(n)
i ,

where #i(n) denotes the number of occurrences of the digit i
in the base-d representation of n. Thus, the power series
displayed in (2) is equal to Φ(1 − x). Our main result is
stated next.

Theorem 1.2. The following power series are all Apwe-
nian:

F2(x) = Φ(1− x),

F3(x) = Φ(1− x− x2),

F5(x) = Φ(1− x− x2 − x3 + x4),

F11(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7

+ x8 − x9 − x10),

F13(x) = Φ(1− x− x2 + x3 − x4 − x5 − x6 − x7

− x8 + x9 − x10 − x11 + x12),

F17a(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7 + x8 + x9

+ x10 + x11 − x12 + x13 − x14 − x15 + x16),

F17b(x) = Φ(1− x− x2 − x3 + x4 + x5 − x6 + x7 + x8 + x9

− x10 + x11 + x12 − x13 − x14 − x15 + x16).

Remarks. Let us make some useful comments about the
above theorem.

1. The fact that the generating function F2(x) for the
Thue–Morse sequence is Apwenian has already been
proved in [1].

2. By using the Jacobi continued fraction expansion of a
power series F (x), we know thatHn(F (x)) = Hn(F (−x))
when d is an odd integer. See, for example, [12, 7,
9, 10]. Hence, Theorem 1.2 implies that F3(−x) =
Φ(1 + x− x2), F5(−x) = Φ(1 + x− x2 + x3 + x4), etc.
are all Apwenian.

3. There is no F7 in Theorem 1.2, but two F17 (we mean
F17a and F17b).

4. For each positive integer j we have

Φ(ṽ(x)) = Φ(

j
∏

k=0

ṽ(xdk)).

Consequently, Φ(1− x− x2 + x3) is Apwenian since it
is equal to Φ(1− x).

5. By exhaustive search, the list F2, F3, . . . , F17b of Theo-
rem 1.2 together with the transformation of Remark 2
yields a complete list of Apwenian sequences for prime
integer d.

Actually, Theorem 1.1 has three proofs. The original proof
of Theorem 1.1 is based on determinant manipulation by us-
ing the so-called sudoku method [1, 11]. The second one is a
combinatorial proof derived by Bugeaud and Han [5]. The
third proof is very short and makes use of Jacobi continued
fraction algebra [10]. Unfortunately, the method developed

in the short proof cannot be used for proving our main the-
orem, because the underlying Jacobi continued fractions are
not ultimately periodic [10, 9]. However, another analogous
result for the sequence F3(x) when dealing with modulo 3
(instead of modulo 2) is established using the short method,
as stated in the next theorem [9].

Theorem 1.3. For every positive integer n the Hankel
determinant Hn(F3(x)) of the sequence F3(x) satisfies the
following relation

Hn(F3(x)) ≡

{

1 (mod 3) if n ≡ 1, 2 (mod 4);

2 (mod 3) if n ≡ 3, 0 (mod 4).
(5)

Combining Theorems 1.2 and 1.3 yields the following re-
sult.

Corollary 1.4. For every positive integer n the Hankel
determinant Hn(F3(x)) verifies the following relation

Hn(F3(x))

2n−1
≡

{

1 (mod 6) if n ≡ 0, 1 (mod 4);

5 (mod 6) if n ≡ 2, 3 (mod 4).
(6)

In the following table we reproduce the first few values of
the Hankel determinants of the sequence F3(x) for illustrat-
ing Theorems 1.2, 1.3 and Corollary 1.4.

n 1 2 3 4 5 6 7 8 9
Hn(f) 1 −2 −4 8 16 −32 −64 128 4864

Hn(f) (mod 3) 1 1 2 2 1 1 2 2 1

Hn(f)/2
n−1 1 −1 −1 1 1 −1 −1 1 19

Hn(f)

2n−1 (mod 2)
1 1 1 1 1 1 1 1 1

Hn(f)

2n−1 (mod 6)
1 5 5 1 1 5 5 1 1

Recently, Bugeaud and Han re-proved Theorem 1.1 by
means of an appropriate combinatorial method [5]. The lat-
ter method has been significantly upgraded to prove that
F3(x), F5(x), . . . are Apwenian. As can be seen, in Section 3
Step 2, a family of cases (called types) is considered for prov-
ing the various recurrence relations. Roughly speaking, the
types are indexed by words s0s1s2 · · · sd of length d+1 over
a d-letter alphabet. Comparing to the original combinato-
rial method, the upgrading does not provide a shorter proof;
however, it involves a systematic proof by exhaustion that
only consists of checking all the types. The proof of Theorem
1.2 is then achieved with Computer Assistance.

In practice, the number of types is very large. For ex-
ample, as described in [8] for the study of F11(x), there are
2274558 types! Fortunately, the set of permutations of each
type can be decomposed into the Cartesian product of so-
called atoms (see Substep 3(d) in the sequel), and moreover,
the cardinality of each atom can be rapidly evaluated by a
sequence of tests (see Definition 4.1 and Table 2).

Problem 1.5. Is the following power series Apwenian:

F19(x) = Φ(1− x− x2 − x3 + x4 − x5 + x6 − x7 − x8 + x9

+x10 − x11 − x12 − x13 − x14 − x15 + x16 − x17 − x18) ?

Find a fast computer assisted proof for Theorem 1.2 to an-
swer the above question.

For proving that F17a(x) is Apwenian, our C program has
taken about one week by using 24 CPU cores. No hope for
F19(x).



Problem 1.6. Find a human proof of Theorem 1.2 with-
out computer assistance.

Problem 1.7. Characterize all the finite ±1-sequences v

such that Φ(ṽ(x)) is Apwenian.

As an application of Theorem 1.2 in Number Theory,
the irrationality exponents of F5(1/b), F11(1/b), F17a(1/b),
F17b(1/b) are proved to be equal to 2 (see [6]).

2. PROOF OF THEOREM 1.2
Let d be a positive integer and v = (v0, v1, v2, . . . , vd−1) be

a finite±1-sequence of length d with v0 = 1. Let f = (fk)k≥0

be the±1-sequence defined by the following generating func-
tion

f̃ (x) = Φ(ṽ(x)) =
∞
∏

k=0

ṽ(xdk), (7)

where ṽ(x) =
∑d−1

i=0 vix
i. The above power series satisfies

the following functional equation

f̃ (x) = ṽ(x)

∞
∏

k=1

ṽ
(

xdk
)

= ṽ(x)f̃(xd). (8)

The sequence f can also be defined by the recurrence rela-
tions

f0 = 1, fdn+i = vifn for n ≥ 0 and 0 ≤ i ≤ d− 1. (9)

We divide the set {1, 2, . . . , d−1} into two disjoint subsets

P = {1 ≤ i ≤ d− 1 | vi−1 6= vi},

Q = {1 ≤ i ≤ d− 1 | vi−1 = vi}.

Two disjoint infinite sets of integers J and K play an im-
portant role in the proof of Theorem 1.2.

Definition 2.1. If vd−1 = −1, define

J = {(dn+ p)d2k − 1 | n, k ∈ N, p ∈ P}
⋃

{(dn+ q)d2k+1 − 1 | n, k ∈ N, q ∈ Q},

K = {(dn+ q)d2k − 1 | n, k ∈ N, q ∈ Q}
⋃

{(dn+ p)d2k+1 − 1 | n, k ∈ N, p ∈ P}.

If vd−1 = 1, define

J = {(dn+ p)dk − 1 | n, k ∈ N, p ∈ P},

K = {(dn+ q)dk − 1 | n, k ∈ N, q ∈ Q}.

From the above definition it is easy to see that N = J ∪K
and following lemma.

Lemma 2.1. For each t ≥ 0 the integer δt := |(ft −
ft+1)/2| is equal to 1 if and only if t is in J.

Let Sm = S{0,1,...,m−1} be the set of all permutations on
{0, 1, . . . ,m − 1}. The following theorem which was proved
in [5] may be viewed as the combinatorial interpretation of
Theorem 1.2.

Theorem 2.2 ([5]). Let v be a ±1-sequence of length d
with v0 = 1. The sequence f and the set J associated with v

are defined by (7) and Definition 2.1 respectively. Then, the
sequence f is Apwenian if, and only if, the number of permu-
tations σ ∈ Sm such that i+σ(i) ∈ J for i = 0, 1, . . . ,m− 2
(no constraint on m − 1 + σ(m− 1) ∈ N) is an odd integer
for every integer m ≥ 1.

For proving that the sequence f is Apwenian by means
of Theorem 2.2, it is convenient to introduce the following
notations.

Definition 2.2. For m ≥ ℓ ≥ 0 let Jm,ℓ (resp. Km,ℓ)
be the set of all permutations σ = σ0σ1 · · ·σm−1 ∈ Sm such
that i+σi ∈ J (resp. i+σi ∈ K) for i ∈ {0, 1, . . . ,m−1}\{ℓ}.
Let n ≥ 1; for simplicity, write:

jm,ℓ := #Jm,ℓ, km,ℓ := #Km,ℓ,

Xn :=

n−1
∑

i=0

jn,i, Yn := jn,n, Zn := jn,n−1,

Un :=
n−1
∑

i=0

kn,i, Vn := kn,n, Wn := kn,n−1,

Tn := Xn +XnYn + Yn,

Rn := Un + UnVn + Vn.

Notice that if ℓ = m, then {0, 1, . . . ,m−1}\{ℓ} = {0, 1, . . . ,
m− 1}, so that jm,m (resp. km,m) is the number of permu-
tations σ ∈ Sm such that i + σ(i) ∈ J (resp. ∈ K) for
all i.

By Theorem 2.2 and Definition 2.2 the sequence f is Ap-
wenian if and only if Zn ≡ 1 (mod 2). In Section 4 we
describe an algorithm enabling us to find and also prove a
list of recurrence relations between Xn, Yn, Zn, Un, Vn,Wn.
Then, it is routine to check whether Zn ≡ 1 (mod 2) or not.
Our program Apwen.py is an implementation of the latter
algorithm in Python.

We now produce the proof of Theorem 1.2 by means of
the program Apwen.py. Since F2(x) has been proved to be
Apwenian in [1], only the three power series F3(x), F5(x)
and F11(x) require our attention. We can also prove that
F13(x), F17a(x), F17b(x) are Apwenian in the same manner.
However, the full proofs are lengthy and are not reproduced
in the paper.

Consider F3(x). Take v = (1,−1,−1) with d = 3 and
vd−1 = −1. Then, the corresponding infinite ±1-sequence f

is equal to F3(x). We have P = {1}, Q = {2} and

J = {(3n+ 1)32k − 1 | n, k ∈ N}

∪ {(3n+ 2)32k+1 − 1 | n, k ∈ N}

= {0, 3, 5, 6, 8, 9, 12, 14, 15, 18, . . .},

K = {(3n+ 2)32k − 1 | n, k ∈ N}

∪ {(3n+ 1)32k+1 − 1 | n, k ∈ N}

= {1, 2, 4, 7, 10, 11, 13, 16, 17, . . .} = N \ J.

By enumerating a list of 24 types of permutations (see Sec-
tion 3), the program Apwen.py finds and proves the following
recurrences.

Lemma 2.3. For each n ≥ 1 we have

X3n+0 ≡ Un, Y3n+0 ≡ Un + Vn,

X3n+1 ≡ Wn+1(Un + Vn), Y3n+1 ≡ Wn+1Vn,

X3n+2 ≡ Wn+1(Un+1 + Vn+1), Y3n+2 ≡ Wn+1Vn+1,

Z3n+0 ≡ Wn(Un + UnVn + Vn),

Z3n+1 ≡ Wn+1(Un + UnVn + Vn),

Z3n+2 ≡ Wn+1.



As explained in Section 3, the above relations expressX,Y, Z
in terms of U,V,W since vd−1 = −1. By exchanging the
values of P and Q, J and K, the program Apwen.py yields
other relations which express U, V,W in terms of X,Y, Z by
enumerating a list of 26 types of permutations.

Lemma 2.4. For each n ≥ 1 we have

U3n+0 ≡ Xn, V3n+0 ≡ Xn + Yn,

U3n+1 ≡ Zn+1Yn, V3n+1 ≡ Zn+1Xn,

U3n+2 ≡ Zn+1Yn+1, V3n+2 ≡ Zn+1Xn+1,

W3n+0 ≡ Zn(Xn +XnYn + Yn),

W3n+1 ≡ Zn+1(Xn +XnYn + Yn),

W3n+2 ≡ Zn+1.

From Lemmas 2.3 and 2.4 we obtain the following “simpli-
fied” recurrence relations based on some elementary calcu-
lations.

Corollary 2.5. For each positive integer n we have

Z3n+0 ≡ WnRn, W3n+0 ≡ ZnTn,

Z3n+1 ≡ Wn+1Rn, W3n+1 ≡ Zn+1Tn,

Z3n+2 ≡ Wn+1, W3n+2 ≡ Zn+1,

T3n+0 ≡ Rn, R3n+0 ≡ Tn,

T3n+1 ≡ Wn+1Rn, R3n+1 ≡ Zn+1Tn,

T3n+2 ≡ Wn+1Rn+1, R3n+2 ≡ Zn+1Tn+1.

Since Z1 = 1, T1 = 3,W1 = 1, R1 = 1, Z2 = 1, T2 = 1,W2 =
1 and R2 = 7, Corollary 2.5 yields Zm ≡ Tm ≡ Wm ≡ Rm ≡
1 (mod 2) for every positive integer m by induction. Hence,
F3(x) is Apwenian.

Duo to space constraints, we defer the proofs for F5(x)
and F11(x) to the full version.

3. ALGORITHM FOR FINDING THE RE-

CURRENCES
Keep the same notations as in Section 2. We will show

how to find and also prove a list of recurrence relations be-
tween the quantities Xn, Yn, Zn, Un, Vn,Wn. The set N of
nonnegative integers is partitioned into d disjoint subsets
A0, A1, . . . , Ad−1 according to the value modulo d:

Ai = {dn+ i | n ∈ N} (i = 0, 1, . . . , d− 1). (10)

For an infinite set S let S|m be the set composed of the m
smallest integers in S. Let β : N → N denote the transfor-
mation k 7→ ⌊ k

d
⌋. In other words,

β(k) = (k − i)/d if k ∈ Ai. (11)

For simplicity, write

J̄ =

{

J if vd−1 = 1,

K if vd−1 = −1,
and K̄ =

{

K if vd−1 = 1,

J if vd−1 = −1.

Then J̄m,ℓ, X̄n, Ȳn, Z̄n mean Jm,ℓ, Xn, Yn, Zn (resp. Km,ℓ,
Un,Vn,Wn) if vd−1 = 1 (resp. vd−1 = −1). It is not hard to
verify the following lemma.

Lemma 3.1. For each p ∈ P and q ∈ Q we have
(i). Ap−1 ⊂ J and Aq−1 ⊂ K;
(ii). Aq−1 ∩ J = ∅ and Ap−1 ∩K = ∅;
(iii). β(Ad−1 ∩ J) = J̄ and β(Ad−1 ∩K) = K̄.

Let i, j ∈ [0, d − 1] and x ∈ Ai, y ∈ Aj . For determining
the condition of i and j such that the sum x+ y belongs to
J or K, there are three cases to be considered.

(S1) If i+ j + 1 (mod d) ∈ P , then, x+ y ∈ J ;
(S2) If i+ j + 1 (mod d) ∈ Q, then, x+ y ∈ K;
(S3) If i+ j +1 (mod d) = 0, then, x+ y ∈ Ad−1. In this

case, the sum x+ y may belong to J or K.

Let m ≥ ℓ ≥ 0. We want to enumerate the permutations
in Jm,ℓ modulo 2. Each permutation σ = σ0σ1 · · ·σm−1 ∈
Sm may be written as the two-line representation

(

0 1 2 · · · m− 1
σ0 σ1 σ2 · · · σm−1

)

.

The columns
(

i

σi

)

are called bi-letters. Let {a0, a1, . . . , ad−1}

be an alphabet of d letters. For each σ ∈ Jm,ℓ a bi-letter
(

i

σi

)

in σ is said to be of (normal) form
(

aj

ak

)

(resp. specific

form
(

ℓ

ak

)

) if i 6= ℓ and (i, σi) ∈ Aj × Ak (resp. i = ℓ and

σi ∈ Ak). To count the permutations from Jm,ℓ modulo 2,
we proceed in several steps. In most cases the calculations
are illustrated with d = 5.

Step 1. Occurrences of bi-letters. Since we want to enu-
merate permutations modulo 2, we can delete suitable pairs
of the permutations and the result will not be changed. Let
i ∈ N|d, if a permutation σ ∈ Jm,ℓ contains more than two
bi-letters of form

(

ai

aj

)

such that i+j+1 (mod d) ∈ P , select

the first two such bi-letters
(

i1
j1

)

and
(

i2
j2

)

. We define another
permutation τ obtained from σ by exchanging j1 and j2 in
the bottom line. This procedure is reversible. By (S1), it is
easy to verify that τ is also in Jm,ℓ, so that we can delete
the pair σ and τ . Then, there only remain the permutations
containing 0 or 1 bi-letter of form

(

ai

aj

)

such that i + j + 1

(mod d) ∈ P .
Let J′

m,ℓ be the set of permutations σ ∈ Jm,ℓ which, for

each i ∈ N|d, contains 0 or 1 bi-letter of form
(

ai

aj

)

such that

i + j + 1 (mod d) ∈ P . We have jm,ℓ = #Jm,ℓ ≡ #J′
m,ℓ

(mod 2). By (S2), each permutation σ ∈ J′
m,ℓ does not con-

tain any bi-letter of form
(

ai

aj

)

such that i+ j+1 (mod d) ∈

Q. Thus, most of the bi-letters are of form
(

ai

ad−i−1

)

. In con-

clusion, the number of occurrences of each form is summa-
rized in Table 1. A bi-letter of form

(

ai

aj

)

such that i+ j +1

(mod d) ∈ P is said to be unsociable. A bi-letter of form
(

aj

ad−j−1

)

is said to be friendly. By Table 1, each permuta-

tion in J′
m,ℓ contains only a few unsociable bi-letters.

form total times

{
(

ak
aj

)

| k + j + 1 (mod d) ∈ Q} 0

{
(

ai

aj

)

| i+ j + 1 (mod d) ∈ P} ∀i ∈ N|d 0, 1

{
(

aj

ad−j−1

)

| j ∈ N|d} 0, 1, 2, 3, . . .

{
(

ℓ

aj

)

| j ∈ N|d} (ℓ = m) 0

{
(

ℓ

aj

)

| j ∈ N|d} (0 ≤ ℓ ≤ m− 1) 1

Table 1: Number of occurrences of bi-letters

Step 2. Form and type. The two-line representation of a
permutation can be seen as a word of bi-letters. In fact, the
order of the bi-letters does not matter. Let m ≥ 2d. The
form f(σ) of a permutation σ ∈ J′

m,ℓ is obtained from σ by



replacing each bi-letter of σ by its (normal or specific) form.
From Table 1, the form f(σ) of a permutation σ ∈ J′

m,ℓ is
(

a0 · a0 a0 a1 · a1 a1 · · · ad−1 · ad−1 ad−1

ad−1 · ad−1 s0 ad−2 · ad−2 s1 · · · a0 · a0 sd−1

)

,

for ℓ = m, or
(

a0 · a0 a0 a1 · · · · · · ad−1 · ad−1 ad−1 ℓ
ad−1 · ad−1 s0 · · · · · · · a0 · a0 sd−1 sd

)

,

for 0 ≤ ℓ ≤ m− 1, where
{

si ∈ {aj | i+ j + 1 (mod d) ∈ P ∪ {0}}, (i < d)

sd ∈ {a0, a1, . . . , ad−1}.
(12)

Consequently, it can be characterized by a word t(σ) =
s0s1 . . . sd−1 or s0s1 . . . sd−1sd, of length d or d + 1 respec-
tively. The word t(σ) is called the type of the permutation
σ. We classify the permutations from the set J′

m,ℓ according
to the type t = s0s1 . . . sd−1 (resp. t = s0s1 . . . sd−1sd) by
defining

J
t
m,ℓ = {σ ∈ J

′
m,ℓ | t(σ) = t}. (13)

Hence,

jm,ℓ ≡
∑

t

#J
t
m,ℓ (mod 2). (14)

Some types do not have any contribution for counting the
permutations modulo 2, as stated in the following two lem-
mas.

Lemma 3.2. Let ℓ = m and t = s0s1s2 . . . sd−1 (resp. ℓ ∈
N|m and t = s0s1s2 . . . sd−1sd ). If there are i < j ∈ [0, d−1]
(resp. i < j ∈ [0, d] ), such that si = sj, si 6= ad−i−1 and
sj 6= ad−j−1, then

#J
t
m,ℓ ≡ 0 (mod 2). (15)

Proof. If Jt
m,ℓ = ∅, then (15) holds. Otherwise, each

permutation σ ∈ Jt
m,ℓ has two bi-letters

(

i1
i2

)

and
(

j1
j2

)

of

forms
(

ai

ak

)

and
(

aj

ak

)

, respectively, where ak = si = sj . We

define another permutation τ obtains from σ by exchanging
i2 and j2 in the bottom line. This procedure is reversible.
By Lemma 3.1(i) or Table 1, it is easy to verify that τ is also
in Jt

m,ℓ. Thus, the transformation σ ↔ τ is an involution on

Jt
m,ℓ. Hence, #Jt

m,ℓ ≡ 0 (mod 2).

Lemma 3.3. Let ℓ ∈ N|m and t = s0s1s2 . . . sd. If there
is i ∈ N|m such that si 6= ad−i−1, then

∑

ℓ∈N|m∩Ai

#J
t
m,ℓ ≡ 0 (mod 2). (16)

Proof. For any ℓ ∈ N|m∩Ai, each permutation σ ∈ Jt
m,ℓ

contains two bi-letters
(

i1
i2

)

and
(

ℓ

σℓ

)

of forms
(

ai

aj

)

and
(

ℓ

ak

)

,

respectively. We define another permutation τ by exchang-
ing i2 and σℓ in the bottom line. This procedure is reversible.
By Lemma 3.1(i) it is easy to verify that τ ∈ Jt

m,ℓ′ , where

ℓ′ = i1 ∈ N|m ∩ Ai. Thus, the transformation σ ↔ τ is an
involution on

∑

ℓ∈N|m∩Ai
Jt
m,ℓ. Hence, (16) holds.

Let m = dn+ h (n ≥ 2, h ∈ N|d), k ∈ N|d and










PY (m; t) := Jt
m,m,

PZ(m; t) := Jt
m,m−1,

PX(m; t, k) :=
∑

ℓ∈N|m∩Ak
Jt
m,ℓ.

(17)

From Definition 2.2, we have











Ydn+h :=
∑

t
#PY (dn+ h; t)

Zdn+h :=
∑

t
#PZ(dn+ h; t)

Xdn+h :≡
∑

t

∑

k∈N|d
#PX(dn+ h; t, k).

(18)

By using relation (18), the recurrence relations listed in
Lemmas 2.3 and 2.4, can be generated by Algorithm 1. The
procedure EvalAtoms(P,t, h,k) appearing in Algorithm 1
evaluates the cardinality of the set P := PY , PZ or PX for
each type t, and will be discussed in Section 4 (see Algo-
rithm 2). Actually, Algorithm 1 delivers a recurrence rela-
tion because the output of EvalAtoms(P,t,h,k) is an alge-
bra expression in terms of Xn, Xn+1, Yn, Yn+1, Zn, Zn+1.

Algorithm 1 Finding the recurrences

for P in [’PX’, ’PY’, ’PZ’]:

for h in range(d):

Val=0

for k in range(d) if P==’PX’ else range(1):

for t in PossibleTypes(P,h,k):

Val=Val+EvalAtoms(P,t,h,k)

print P,h,k,Val

Step 3. Counting permutations. Throughout this step we
fix m = dn + h (h ∈ N|d). Counting permutations from
Jt
m,ℓ is lengthy; it is made in several substeps. We illustrate

the entire calculations by means of four well-selected exam-
ples, using some compressed and intuitive notation. Then,
we explain the maining of this compressed notation mean
in full detail. The examples are given for d = 5. We write
A,B,C,D,E instead of A0, A1, A2, A3, A4 and a, b, c, d, e in-
stead of a0, a1, a2, a3, a4, respectively.

Example 3.1. Consider m = ℓ = 5n + 1 and the type
‘adbca’ which satisfies condition (12). We have

J
adbca
5n+1,5n+1

w
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3̃ 8 13
c b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3̃ 8 13
c b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c c c

∣

∣

∣

∣

3̃ 8 13
b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1 6 11
d d d

)(

2 7̃ 12
c c c

)(

3̃ 8 13
b b b

)(

4 9 14 19
a a a a

)

b
= Zn+1 × Yn ×Xn ×Xn × Zn+1.

Example 3.2. Consider m = 5n+ 2, ℓ = 5n+ 1 and the
type ‘dcbbaa’ which satisfies condition (12). We have

J
dcbbaa
5n+2,5n+1

w
=

(

0 5̃ 10 15
e d e e

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3 8 13
b b b

∣

∣

∣

∣

4 9 14
a a a

)



a
=

(

0 5̃ 10 15
e d e e

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3 8 13 18
b b b 18

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

2 7̃ 12
c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1̃ 6 11 16
d d d 18

)(

2 7̃ 12
c c c

)(

3 8 13 18
b b b b

)(

4 9 14 19
a a a a

)

b
= Zn+1 ×Xn ×Xn × Zn+1 × Zn+1.

Example 3.3. Consider m = 5n + 4, ℓ ∈ C|n+1 and the
type ‘adcbac’ which satisfies condition (12). We have

∑

ℓ∈C|n+1

J
adcbac
5n+4,ℓ

w
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1 6 11 16
d d d d

)(

2 7̃ 12 17
c c c c

)(

3 8 13 18
b b b b

)(

4 9 14 19
a a a a

)

b
= Zn+1 × Yn+1 ×Xn+1 × Yn+1 × Zn+1.

Example 3.4. Consider m = 5n+1, ℓ = 5n and the type
‘edcaab’ which satisfies condition (12). We have

J
edcaab
5n+1,5n

w
=

(

0 5 10 15
e e e b

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
a b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5 10 15
e e e b

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
a b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5 10 15
e e e 19

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5 10 15
e e e 19

)(

1 6 11
d d d

)(

2 7 12
c c c

)(

3̃ 8 13
b b b

)(

4 9 14 19
a a a a

)

b
= Yn × Yn × Yn ×Xn × Zn+1.

Notation 1. In the above compressed writing, the letter
w, a, e, d, b over the symbol “ = ” means that the equality is
obtained by substep 3(w), 3(a), 3(e), 3(d), 3(b) respectively.

Notation 2. In the compressed writing the integer n is rep-
resented by the explicit value 3. Hence, the second block in
the first equality in Example 3.1 has the following meaning:

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16 · · · 5n− 4
d d d d · · · d

∣

∣

∣

∣

.

Also, the added bi-letter
(

19
19

)

(see Substep 3(a)) in the sec-

ond equality in Example 3.1 means
(

5n+4
5n+4

)

.

Substep 3(w). Rewrite the set. For each permutation σ
from Jt

m,ℓ, we reorder the bi-letters of σ such that
(

i

σi

)

is on

the left of
(

j

σj

)

if i mod d < j mod d, or if i ≡ j mod d

and i < j. Then, we replace each letter y ∈ ak in the
bottom line by ak. To facilitate readability, vertical bars
are inserted between the bi-letters

(

i

σi

)

and
(

j

σj

)

such that

i 6≡ j (mod d). We get a biword w, denoted by ρ(σ) = w,
called shape of σ.

Applying this operation to the following permutation σ ∈
Jadbca
5n+1,5n+1 considered in Example 3.1

σ =

(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 3 2 7 15 0 13 1 11 10 14 8 12 6 5 9

)

, (19)

we get the shape ρ(σ) = w, where

w =

(

0 5 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

3 8 13
c b b

∣

∣

∣

∣

4 9 14
a a a

)

. (20)

Notation 3. In the compressed writing, the above shape
w also represents the set ρ−1(w) of all the permutations σ
such that ρ(σ) = w.

Each permutation σ ∈ Jadbca
5n+1,5n+1 contains exactly three

unsociable bi-letters of form
(

a

a

)

,
(

c

b

)

,
(

d

c

)

, denoted by
(

i0
j0

)

,
(

i1
j1

)

,
(

i2
j2

)

, respectively. So that, for example, in the block
∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

there is exactly one letter ‘b’ in the bottom line. All other
letters are ‘c’. However, the position of the letter ‘b’ is not
fixed. The shape of another permutation may contain the
block

∣

∣

∣

∣

2 7 12
b c c

∣

∣

∣

∣

or

∣

∣

∣

∣

2 7 12
c c b

∣

∣

∣

∣

.

Notation 4. The underlined bi-letters
(

i

aj

)

in the shape of

a permutation σ means that there is no constraint i+σi ∈ J
for the corresponding bi-letters

(

i

σi

)

of σ. All other bi-letters

of σ must satisfy the latter constraint.
In the first equality of each calculation, there is no un-

derlined bi-letter if m = ℓ (Example 3.1) or exactly one un-
derlined bi-letter if 0 ≤ ℓ ≤ m − 1 (Examples 3.2 and 3.3).
In the latter case, the underscore sign indicates the position
of ℓ.

Notation 5. The shape w, with a tilde sign˜over a bi-letter
(

ı̃

aj

)

, represents the sum of all shapes w′ which are obtained

from w by moving the letter aj , including the underscore
sign if it is underlined, to other non-underlined position in
the block. For example, we write (see Example 3.1)

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

:=

∣

∣

∣

∣

2 7 12
b c c

∣

∣

∣

∣

+

∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

+

∣

∣

∣

∣

2 7 12
c c b

∣

∣

∣

∣

,

and (see Example 3.2)
∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16
c d d a

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d c d a

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d c a

∣

∣

∣

∣

,

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

.

Notice that there is at most one tilde in each block by
Lemma 3.3

Substep 3(a). Add bi-letters. For each σ ∈ Jt
dn+h,ℓ, we

add all bi-letters
(

i

i

)

such that max{dn + h, dn + d − h} ≤
i ≤ dn+d−1. Thus, the number of occurrences of aj in the
bottom row becomes the same as the number of occurrences
of ad−j−1 for any j ∈ N|d.

For instance, the bottom row of the right-hand side of
w
= in

Example 3.1 contains 4×a, 3×b, 3×c, 3×d, 3×e. By adding
the bi-letter

(

19
19

)

to the shape the number of occurrences of
a in the bottom row becomes the same as the number of



occurrences of e (since 19 is also an ‘e’). The added bi-
letter in the shape is still represented by

(

19
19

)

, instead of
(

19
e

)

. Notice that it is underlined (see Notation 4).

Substep 3(e). Exchange. Consider all the bi-letters of
the permutation σ, which are unsocial, or which were added
in Substep 3(a), or still which have the specific form

(

ℓ

ak

)

with 0 ≤ ℓ ≤ m − 1. Exchange the bottom letters of those
bi-letters in such a way that all the bi-letters will become
friendly. In most of the cases, each block contains zero or
one bad bi-letter. The only exception is the block containing
the specific form

(

ℓ

ak

)

with ℓ = m − 1, and another unso-

cial bi-letter
(

i

aj

)

. In such a case we put the appropriate

explicit letter, which was added in Substep 3(a), under the
letter ℓ when the exchange was made. The whole procedure
is reversible.

In Examples 3.1 and 3.2, the exchanges of the bad bi-
letters are realized respectively as follows:

(

· · ·
5̃ 7̃ 3̃ 19
a b c 19

· · ·

)

7→

(

· · ·
5̃ 7̃ 3̃ 19
19 c b a

· · ·

)

(

· · ·
5̃ 1̃ 16 7̃ 18 19
d c a b 18 19

· · ·

)

7→

(

· · ·
5̃ 1̃ 16 7̃ 18 19
19 d 18 c b a

· · ·

)

In the second example, the block
∣

∣

1̃ 16
c a

∣

∣ contains two bad

bi-letters. We put the explicit letter 18 instead of the symbol
‘d’ under the letter ℓ = 16.

Substep 3(d). Decomposition. After Substep 3(e) Ex-
change, the set Jt

dn+h,ℓ is decomposed, in a natural way,
into the Cartesian product of d sets of biwords, which are
called atoms in the sequel.

Substep 3(b). Beta transformation. The cardinalities of
the atoms can be derived by means of the transformation β
defined in (11). Applying the transformation β to each letter
in the top and bottom rows of each element, we can get a
new permutation. We defer more details to the full version.

4. ALGORITHM FOR EVALUATING THE

ATOMS
Keep the same notations as in Section 3, in particular,

m = dn + h (h ∈ N|d). For each numerical type t, nu-
merical integers h, k < d, and symbolic integer n, the car-
dinality of the set P := PY (m; t),PZ(m; t) or PX(m; t, k)
is evaluated by the substeps 3(w), 3(a), 3(e), 3(d), 3(b),
which are fully described in Section 3. As a consequence,
the latter cardinality is equal to the products of d factors
(see Examples 3.1–3.4) corresponding to the d atoms re-
spectively. The evaluation yields an algebra expression in
terms of Xn, Xn+1, Yn, Yn+1, Zn, Zn+1. In this section, we
show that the substeps in Step 3 can be combined into one
super-step. In fact, each factor can be evaluated directly by
using a prefabricated dictionary.

Definition 4.1. Let i ∈ N|d be a fixed integer. We de-
fine several parameters depending on i, k, d,m, t, where t =
s0s1 . . . sd−1 (if P = PY ) or s0s1 . . . sd−1sd (if P = PX or
PZ):

η0 =

{

1, if i+ 1 ≤ h,

0, otherwise ;
η1 =

{

1, if d− i ≤ h,

0, otherwise ;

η2 =

{

1, if si = ad−i−1,

0, otherwise ;

η3 =

{

1, if P 6= PY and sd = ad−i−1,

0, otherwise .

ν =











‘Z’, if P = PZ and m− 1 ∈ Ai,

‘X’, if P = PX and k = i,

‘G’, otherwise ;

µi =











ΨZ(η0, η1, η2, η3), if ν = ‘Z’,

ΨX(η0, η1, η2, η3), if ν = ‘X’,

ΨG(η0, η1, η2), if ν = ‘G’,

where the explicit values of the functions ΨZ ,ΨX ,ΨG are
given in Table 2.

η 000 001 010 011 100 101 110 111
ΨG(η) X̄n Ȳn 0 Z̄n+1 Z̄n+1 0 X̄n+1 Ȳn+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨZ(η) 0 Z̄n 0 0 X̄n Ȳn 0 Z̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨZ(η) 0 Z̄n 0 0 X̄n 0 0 Z̄n+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨX(η) 0 X̄n 0 0 0 Z̄n+1 0 X̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨX(η) 0 X̄n 0 0 0 0 0 X̄n+1

Table 2: Explicit values of the functions ΨZ ,ΨX ,ΨG

Notice that each permutation contains n+η0 (resp. n+η1)
letters in Ai (resp. in Ad−i−1).

Example 4.1. Consider P = Jadbca
5n+1,5n+1, studied in Ex-

ample 3.1. In this case, d = 5,m = 5n + 1, h = 1, ℓ =
m = 5n + 1, t = s0s1s2s3s4 = ‘adbca’. For i = 1 we have
η0 = 0, η1 = 0, η2 = 1. Hence, µ1 = ΨG(0, 0, 1) = Ȳn.

Example 4.2. Consider P = Jdcbbaa
5n+2,5n+1, studied in Ex-

ample 3.2. In this case, d = 5,m = 5n + 2, h = 2, ℓ =
m − 1 = 5n + 1 ∈ A1, t = s0s1s2s3s4 = ‘dcbbaa’. For
i = 1 we have η0 = 1, η1 = 0, η2 = 0, η3 = 0. So that
µ1 = ΨZ(1, 0, 0, 0) = X̄n.

Example 4.3. Consider P =
∑

ℓ∈C|n+1
Jadcbac
5n+4,ℓ, studied

in Example 3.3. In this case, d = 5,m = 5n + 4, h = 4, ℓ ∈
A2, t = s0s1s2s3s4 = ‘adcbac’. For i = 2 we have η0 = 1,
η1 = 1, η2 = 1, η3 = 1 and µ2 = ΨX(1, 1, 1, 1) = X̄n+1.

Theorem 4.1. With the above notation, the cardinality
of the set P := PY ,PZ ,PX is equal to

#P = µ0 × µ1 × µ2 × · · · × µd−1. (21)

For example, the set P =
∑

ℓ∈C|n+1
Jadcbac
5n+4,ℓ, studied in

Example 3.3, is evaluated by means of Theorem 4.1 as fol-
lows:

∑

ℓ∈C|n+1

J
adcbac
5n+4,ℓ

= µ0 µ1 µ2 µ3 µ4

= ΦG(1, 0, 0)ΦG(1, 1, 1)ΨX(1, 1, 1, 1)ΨG(1, 1, 1)ΦG(0, 1, 1)

= Zn+1 Yn+1 Xn+1 Yn+1 Zn+1.



By Theorem 4.1, the procedure EvalAtoms(P,t,h,k) fig-
ured in Algorithm 1, which evaluates the cardinality of the
set P := PY , PZ or PX for each type t, is described in
Algorithm 2.

Algorithm 2 Evaluating the atoms

def EvalAtoms(P,t,h,k):

Prod=1

for i in Ch:

nu=’G’

if P==’PZ’ and i==(h+d-1)%d: nu=’Z’

if P==’PX’ and i==k: nu=’X’

eta=(i+1<=h, d-i<=h, t[i]==d-i-1)

if nu==’X’ or nu==’Z’: eta=eta+(t[d]==d-i-1,)

Prod=Prod*Psi(nu, eta)

return Prod

Proof of Theorem 4.1. When we speak of case, we re-
fer to a tuple (ν = ‘G’, η0, η1, η2), (ν = ‘Z’, η0, η1, η2, η3)
or (ν = ‘X’, η0, η1, η2, η3), which depends on i, k, d,m, t,P
by Definition 4.1. The case is reproduced without non-
significant symbols. For example, we write X1000 for the
case (‘X’, 1, 0, 0, 0).

In fact, the cases G101, Z1011, X1011 do not appear in
product (21) and can take any value, in particular, zero. In
the casesX1000 andX1001, we have #P = 0 by Lemma 3.3,
so that Identity (21) is true. In the cases (‘G’, 0, 1, 0) and
(ν, η) for

ν = ‘Z’, ‘X’;
η = (0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0),

(0, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 0, 1),

Lemma 3.2 implies that #P = 0. Hence, Identity (21) is
true. All other cases are proved as follows.

The evaluations of product (21) are explained in Section 3,
see Examples 3.1–3.4. The factors µ0, µ1, . . . , µd−1 are ob-
tained at the same time by proceeding with the substeps
3(w), 3(a), 3(e), 3(d), 3(b). In fact, we can evaluate each
sole factor µi without keeping in mind the others. For this
purpose, we extract all bi-letters such that either their top
letter are in Ai or their bottom letter are ad−i−1 in the first
two substeps 3(w) and 3(a).

Again, consider i = 1 and P = Jdcbbaa
5n+2,5n+1. We ex-

tract all bi-letters such that either their top letter are in
{1, 6, 11, 16, . . .} or their bottom letter are d in the first two
substeps 3(w) and 3(a) of Example 3.2. We have

J
dcbbaa
5n+2,5n+1

w
=

(

5̃
d

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

?

∣

∣

∣

∣

?

∣

∣

∣

∣

?

)

a
=

(

5̃
d

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

?

∣

∣

∣

∣

18
18

∣

∣

∣

∣

?

)

,

and

J
dcbbaa
5n+2,5n+1

e
=

(

5̃
19

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

?

∣

∣

∣

∣

18
b

∣

∣

∣

∣

?

)

d
=?

(

1̃ 6 11 16
d d d 18

)

?
b
=?Xn?.

It means that µ1 = Xn = X̄n. On the other hand, the case
corresponds to the tuple (‘Z’, 1, 0, 0, 0) that takes the value
X̄n, as shown in Example 4.2. Then we can verify Table 2
one by one by hand (see full version for more detail).

5. IMPLEMENTATION AND OUTPUTS
Our program Apwen.py is an implementation of Algorithms

1 and 2 in Python. 2 The proof that F13 is Apwenian takes
11 hours by using the program Apwen.py on a modern per-
sonal computer. For proving that F17a and F17b are Ap-
wenian, it was necessary to rewrite the program in the C

language with some optimizations. The running times of
the two programs are reproduced in the following table:

f F3 F5 F11 F13 F17a, F17b F19

Python < 1s < 1s 11m 11h ∞ ∞
C < 1s < 1s 16s 29m 7 days× 24CPUs ∞
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