SOME USEFUL THEOREMS FOR ASYMPTOTIC FORMULAS
AND THEIR APPLICATIONS TO SKEW PLANE PARTITIONS
AND CYLINDRIC PARTITIONS

GUO-NIU HAN AND HUAN XIONG

ABSTRACT. Inspired by the works of Dewar, Murty and KotéSovec, we es-
tablish some useful theorems for asymptotic formulas. As an application, we
obtain asymptotic formulas for the numbers of skew plane partitions and cylin-
dric partitions. We prove that the order of the asymptotic formula for the skew
plane partitions of fixed width depends only on the width of the region, not on
the profile (the skew zone) itself, while this is not true for cylindric partitions.

1. INTRODUCTION

Inspired by the works of Dewar, Murty and Kotésovec [7, 12], we establish some
useful theorems for asymptotic formulas. Define

p(L—p) ri+0-»/2

17
s sy SR

(1.1) Un(v,7,b;p) = v

forneN;v,beR, r>0,0<p<1.

Theorem 1.1. Let t1 and ta be two given positive integers with ged(ty,ta) = 1.
Suppose that

[e ] o0
Fi(q) =) annd""  and  Fa(q) =) cng™"
n=0 n=0
are two power series such that their coefficients satisfy the asymptotic formulas
(1.2) atyn ~ t1¥en(v1, 71,015 p),
(1.3) Cion ~ t2tht,n(v2, 72, bas p),

where v1,b1,v2,00 € R, r1,79 > 0, 0 < p < 1. Then, the coefficients d,, in the
product

Fi(q)Fa(q) = ) duq"
n=0

satisfy the following asymptotic formula
(1.4) dn ~ Yn(v1ve, 1 + 72,01 + b2; p).
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Some special cases of Theorem 1.1 have been established. In 2013, Dewar and
Murty [7] proved the case of p = 1/2, t; = to = 1. Later, Kotésovec [12] obtained
the case of 0 < p < 1, t; = ts = 1. We add two more parameters t; and t in order
to calculate the asymptotic formulas for plane partitions, without them Theorem
1.2 would not be proven. Our further contribution is to reformulate the asymptotic
formula in a much more simpler form (1.2), (1.3) and (1.4), so that the result of
Theorem 1.1 can be easily iterated for handling a product of multiple power series
Fi(q)Fs(q) - - - F(q) (see Theorem 2.3). We also obtain the following two theorems,
which are useful to find asymptotic formulas for various plane partitions.

Theorem 1.2. Let m be a positive integer. Suppose that x; and y; (1 < i < m)
are positive integers such that ged(x1,22, .., Tm,Y1,Y2,---,Ym) = 1. Then, the
coefficients d,, in the following infinite product

[Tt = 3 o

i=1k>0
have the following asymptotic formula
1 Tb+1/4

exp(v/nr),

where

s I(y 272 Yi 1
yz/wz — b — = .
H ‘/:m " ; 3x;’ (2:ci 4)

i=1

Theorem 1.3. Lett; € N for 1 <i <m. Suppose that

F(q) = Z ang" and F(q) H . _1qt¢ = Z dng"™
n=0 i=1 n=0

are two power series. If
an ~ 1 exp(BrP)
where 0 <p <1, a € R, 8 >0, then we have

na—i—m(l—p)

1.6 dy v
(1.6) Brp™ [, ti

exp(fn”).

An ordinary plane partition (PP) is a filling w = (w; ;) of the quarter plane
A = {(i,j) | i,7 > 1} with nonnegative integers such that rows and columns
decrease weakly, and the size |w| = > w; ; is finite. The generating function of
ordinary plane partitions is known since MacMahon [16, 17]:

o0

(1.7) D el = HH ZW -=JJa -2

wePP i=1j=1 i=1

The generating functions for various kinds of plane partitions can be found in
[1,2,3,4,5,6,9, 13, 15, 18, 19, 20, 21, 22, 24].

For two partitions A and u, We write A > p or u < A if A/p is a horizontal strip
(see [15, 25]). When reading an ordinary plane partition w along the diagonals from
left to right, we obtain a sequence of partitions (A%, A1, ..., \") such that A\i=1 < X!
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or Xi=1 = X\ for 1 < i < h. For simplicity, we identify the ordinary plane partition
w and the sequence of partitions by writing

w= A% AL,

A +1-sequence ¢ is called a profile. Let ||y (resp. |6|-1) be the number of letters
1 (resp. —1) in §. A skew plane partition (SkewPP) with profile 6 = (d1,02,...,d5)
is a sequence of partitions w = (A%, A!, ..., A") such that \° = \* = (), and A"~ < X!
(resp. Nim1 = N) if §; = 1 (vesp. §; = —1). Its size is defined by |w| = Y27 [N,
For example, w = (0, (2), (3,2), (2), (3), (4, 3), (3,2), (3),0) is a skew plane partition
with profile § = (1,1,—1,1,1,—1,—1,—1) and size 27. This skew plane partition
can also be visualized as the following:

w W
N W

3
2

NN W

The generating function for skew plane partitions with profile § is (see [6, 21, 23])

(1.8) oo =11 ﬁ

wESkewPPyg 1<j
6i>5j
A
A
A: Ordinary PP B: Skew PP C: Cylindric PP

Fig. 1. Skew plane partitions and cylindric partitions.

Cylindric partitions (CP) were first introduced by Gessel and Krattenthaler [9],
see also [6] for an equivalent definition. A cylindric partition with profile § =
(81,02,...,05) is a sequence of partitions w = (A%, AL ... \") such that \O = \",
and A7t < X\ (resp. AL o= AY)if §; = 1 (vesp. §; = —1). Its size is defined
by |w| = Z?;ol |X?| (notice that A" is not counted here, which is a little different
from skew plane partitions). For example, w = ((2,1),(3,1), (4,1), (3), (4,2),(2,1))
is a cylindric partition with profile § = (1,1, —1,1, —1) and size 21. This cylindric
partition can be visualized as the following;:
2
2 1

w
—o= =W
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Borodin obtained the generating function for cylindric partitions with profile
6= (5i)1§i§h (see [6, 14, 26]):

. 1 1 1
(1.9) > =11 1_ Shkth 11 1 hhti—i 11 1 _ hkthti—j

weCPs k>0 i<j i<y
;>0 6;<d;

By using Theorems 1.2 and 1.3 we obtain the asymptotic formulas for the num-
bers of skew plane partitions and cylindric partitions with size n for fixed widths in
Sections 3 and 4 respectively. Let us reproduce the asymptotic formulas for some
special cases below:

PPa ~ 17.333 e4.44\/5 PPb ~ 57.L831 64.44\/5 PPc ~ 11;362 e4.44\/5

CPa ~ 0.114462.56\/5 CPb ~ 0.1161 62.86\/5 CPc ~ 0.111462.86\/5

Fig. 2. Asymptotic formulas for skew PP and CP of fixed widths.

We see that the order of the asymptotic formula for skew plane partitions of
fixed width depends only on the width, not on the profile (the skew zone) itself.
We may think that this is natural by intuition. However, the case for cylindric
partitions shows that this is not always true.

The rest of the paper is arranged in the following way. First, in Section 2 we
prove our main theorems on asymptotic formulas. Later, we compute the asymp-
totic formulas for the numbers of skew plane partitions and cylindric partitions in
Sections 3 and 4 respectively.

2. PROOFS OF MAIN ASYMPTOTIC FORMULAS

In this section we prove the three main asymptotic formulas stated in Theo-
rems 1.1, 1.2 and 1.3. The basic idea of the proofs comes from the work of Dewar
and Murty [7]. First let us recall Laplace’s method (see, for example, [8, p. 36]).

Lemma 2.1 (Laplace’s method). Assume that f(z) is a twice continuously dif-
ferentiable function on [a,b] with xo € (a,b) the unigque point such that f(xg) =
maxiq ) f(x). Assume additionally that f"(xo) < 0. Then

b /
21
nf (@) g ~ " (®0) )
/a e T~ e Tl (20)

The sign ~ means that the quotient of the left-hand side by the right-hand side tends
tol as n — +o00.

We also need the following lemma.
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Lemma 2.2. Suppose that n is a positive integer. Let f(x) be a non-negative
Lebesgue integrable function on [a,b] with xo € (a,b) the unique point such that
f(wo) = maxy,y f(x). Assume additionally that f(x) increases on (a,xo) and
decreases on (xg,b). Then,

D [ e 22

b
/ f(x)dm—@ < l

Proof. Let f(x) =0 for x ¢ [a,b]. Since f(x) increases on (a,xq), we have
k htn k+1
10 [ g < 04D
n k n
when a < k < k+ 1 <. Since f(z) decreases on (z9,b), we obtain
k+1 s k
n k n

whenx0§k<kz—|—%§b.
Let ko be the integer such that %" <xo < k"il, we have

Ko+1
ko n
Therefore
b [nb]+1
/f(x)dmﬁ/( - f(z)dx
Lon ko+1 [nb+1
:/ £ )dm—i—/ Fla)de + F(@)dz
[nal—1 k ot
1 ko . [nb]
S—Zf(n)+nf$0 Zf =)
i=[na] i=ko+1
[nb]

IN
|
~
~.
+
=
8
N

On the other hand,

;;0 ko+1 [nb]
:/n dx+/ ! f(x)d:c+/k :1 f(z)dzx
ko—1 k Lnb]
PN —< o) + (5 + g ) 1 1S )
i=[na] 1=ko+2
[nb)

v
SIH
g,‘
\
S|
-
=
N
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Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we can assume that vy,vy > 0.
ForO0<z<1,let

fla) = Pa? +ry ML 2)?

and
glz) = a5 (1 — g) b2t s
Then
fl(@) = pry et —pry P(1—a)P !
and

() =p(p— 1)7’}7}’:0”72 +p(p— 1)7"%7’9(1 —z)P72 <.
The function f’(x) has only one zero point
1
Ty

o =
Therefore f(z) is increasing on (0, zp), has a maximum of (ry + r9)!=? at xq, and
is decreasing on (g, 1).

Let 0 < € < 1 be a given constant. By continuity, there exists 0 < § <
min{1xg, 1(1 — zo)} such that if |z — x| < 26, then

(2.1) (1 = €)g(zo) < g(x) < (14 €)g(wo)-

From (1.2) and (1.3), for large enough n we have

(2:2) (1 = )t1vt,n(v1,71,b15p) < atyn < (14 €)t194,n(v1,71,b1;p)
and

(2.3) (1 — €)tateyn(v2,72,b2;p) < Ctyn < (1 4 €)tathe,n(v2, 72, ba; p).

Suppose that 0 < i < 1t — 1 is a given integer. We just need to prove that (1.4)
is true for n = mtits + ¢ where m € N. By Bézout’s identity, there exists some
ai,ﬁi S Nzo,o < a; <ty — 1 such that

tray + 123 = 1.
For large enough n = mtits + ¢, let
. [(xo — 0N — ity
jin) = | Woznzaiti |
ti1to
(.CCO + 5)n — Oéitl

jaln) = —J

tito
. n — oty
Jja(n) = _ﬁJ
We have
dn = Hl(n) + HQ(TL) + Hg(?’b),
where

j1 (n)—l

Hl (TL) = Z Q(a;+jt2)t1 C(mty —jt1+B8i)tas
7=0
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Jz(n)

HQ(n) = Z Aai+jta)ts C(mts—jt1+B:i)tas
J=j2(n)+1

Jj2(n)

H3(n): Z Aai+jta )t C(mty—jt1+Bi)ta-
Jj=j1(n)

For Hi(n), we have

Ji(n)—1 .
P P i to)t
Hi(n) = O | nlorFi=gl+lbar1-5] E exp (npf ((a +jt2) 1))

- n
j=0

= O (1= BB o (0 (g — 6)) )

= o (n " exp (07 f(20)))

Similarly, we have
Hy(n) = o (™"~ exp (n? f(x0)) ) .

Next we just need to estimate Hs(n). For large enough n, we can assume that
eVETY G(a,+4jto)t, AN Clmity —jt, +8,)t, 10 H3(n) satisfy (2.2) and (2.3). Let

A, = 20D

b1+(1-p)/2, ba+(1—p)/2
2 1 "2

tltg’Ul’UgT y

J2(n) ' . . )
Avn) = Agnhte=r 3 g(%)exp (npf (w))

n
j=ji1(n)
Jj2(n) .
b by i+ jta)t
Ao(n) — A —br—b2—2+p pp (@
2(n) = g(zo)Aon Z( )eXP n®f - ;
J=71(n

(zo+d)n—ojty

As(n) = nen exp <npf(w)) dx.

(zg—8)n—oayty n
t1ton

Therefore
(1 — 6)2A1(n) < H3(7’L) < (1 + 6)2A1(7’L).
Then by (2.1), we obtain
(2.4) (1 —€)*Aa(n) < Hz(n) < (1+€)*Aa(n).

Replace f(x) by exp (npf(%)) in Lemma 2.2, we have

(2.5)  As(n) — exp (n7f(wo)) _ % jZ(Zn) exp <npf ((041' +jt2)t1)>

n £ n
j=j1(n)
exp (nP f(xo))

< Az(n) + -

Put (2.4) and (2.5) together, we obtain
P I U CD)) Hj(n)
(2.6) (1—¢) (Ag( ) ) < e

n A0n7b17b271+p
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SO

n

<(14¢)?3 <A3(n) +

Notice that when n is large enough,

(2 7) Zo — % (.’L'O - (S)?’L st o — g
’ tito t1tan tito ’

) 39

(2.8) xo + 3 (:L'O + 5)71 — oty XTo + 5

ti1ts titan t1to
Also we have

i+ nata)t _ -
n? f (%) = P (i + nata)tr)” + 7P (1= (i + nata)ts)”

=nP f(xtita) + o(1).
Then by (2.7), (2.8) and Lemma 2.1 (Laplace’s method) we have

(zo+d)n—ajty

tyton

Asz(n) ~ Ceosmess, XD (nP f(xtita)) dx
2m
(2.9) ~ exp(n? f (zg))

—nPtits f (z0)

This means that when n is large enough,

(1= exp(nf (20)y| —rmprrams < A5(n)

2

< (1 +¢€)exp(n”f (x0)) Zr 22 ()

Therefore
_p 27 _p
(1- e)4n 2 exp(n f (70))4/ m +o0 (n 2 exp (npf(zo)))
< H3(7’L)

g(xO)AOTL*bl*l&*l“rp
p 2 P
1+e)in% P N — -5 P .
< (14 e)*n~zexp(n?f (x0)) PR (o) +o0 (n exp (n f(xo)))
Finally we obtain
dy, = Hl(n) + Hg(n) + Hg(n) ~ Hg(n)
21

~ A —b1—ba—14+% D - -
g(ﬂﬁo) on exp(n f(wo)) 7t%t%f” (SCO)

But , ,
— 1 —b1—1+% 2 —by—1+42
€T frd 2 ( — 27
g( 0) (Tl + 79 1 +T2)
f(zo) = (r1 +72)' 77,

_ 3
F"(w0) = p(p 1)£71’1T2+ r2)"P
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Therefore
dy ~ Yn(v1v2, 71 + 72,01 + ba; p). U

Our asymptotic formula can be easily iterated for handling a product of multiple
power series F1(q)Fz(q) - - - Fi(q).

Theorem 2.3. Suppose that m >0, 1 < i <m, t = ged(z1, 22,...,2m). Let

Fi(q) =) alq™"
n=0
and
Gla) =[] Fila) =D _ dng™
i=1 n=0

where

(2.10) alf) ~ z; 1z n (Vi 7i, bis p).
Then

(2.11) d ~ b P ([T vin Y ri > bisp).

i=1 =1 i=1
Proof. Without loss of generality, we can assume that m = 2. For ¢ = 1, 2, we have

o0

Fi(g) =Y alP (¢

n=0
where
(i) oy —r s g
ap ~ 2 - Yo (Vi T, bisp) = 77/)zm/t(vit =7, 1t -7, b p).

Replace ¢ by ¢', t; by % in Theorem 1.1 we have
_b1tbo P
dn ~ Py (v1v2t™ TP, (11 +712)t TP by + bas p)

=ty (v1v2, 71 + 12, b1 + b2; p). U

Hardy-Ramanujan [10] have discovered the asymptotic formula for the number
of integer partitions, which was extended by Ingham [11] in 1941.

Lemma 2.4 (Ingham). Let x and y be two positive integers with ged(x,y) = 1.

Suppose that
1 oo
H 1— qszry = Z a"qn'
n=0

k>0
Then
1
n ~ Pn\U, ab;_ )
a (v, 7 2)
where
2
po LW Eyyye 2, L
rem 2 3z 2c 4

Ingham’s result can be further generalized as follows, which will be useful for
finding the asymptotic formula for skew plane partitions.
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Theorem 2.5. Suppose that m > 0, z; > 0,y; > 0, z; = ged(x;, y;) for 1 <i<m,

t =ged(z1, 22, ..., 2m) and
P . 2 .
v = F(yz/xz) (ﬂ)yl/xl, ry = 2T , b; = Yi l
v 2 3z; 2, 4
Let
m 1 B [e%s) ; o
H H 1— qukeri - Z ngd -
i=1k>0 n=0
Then

m m m 1
(2.12) dnwt.wtn(Hvi,Zri,Zbi;§).
i=1 i=1 =1
Proof. Let
1 o (i
_ (i) ,zin
H 1— qukeri - Z an"q :
k>0 n=0
It is easy to check that
_u 1 1
Yn(viz; " irizisbis5) = 2 Ve (Vi Ti, bis 5)-
¢ 2 ‘ 2
Replace ¢ by ¢%, « by z;/2;, y by y;/z; in Lemma 2.4 we obtain

N[=

_Yi

| L 1 1
aD ~ by (vizk T iz, b 5) ~ Zi Yy (Ui, 73, bi; 5)

Thus (2.12) follows from Theorem 2.3.

O

The above result implies Theorem 1.2 by letting ¢ = 1. Next we give the proof

of Theorem 1.3.

Proof of Theorem 1.3. By induction, it is easy to see that we just need to prove
the case m = 1, t; = t. Notice that (2% exp(B2P)) = (BpxP + a)z* ! exp(BaP).
Let 0 < € < 1. Then there exists some N > 0 such that for any > N, we have

(z*exp(BzP))’ > 0; and for any n > N, we have
(2.13) (1 —e)n®exp(Bn?) < an < (1 + e)n” exp(BnP).
But

%) [ ] 2]
dn = Qp—t; = Z Qn—tj + Z Qp—tj-
)

7=0 j:Ln;NJ+1

First we have
| %]
> a4y =0().

On the other hand, we have

\_n7NJ \_n—tNJ
(2.14) (1-¢) (n—tj)* exp(B(n — tj)P) < D an_y
; =
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[ 2= ]
(2.15) <(1+e) > (n—tj)*exp(B(n — tj)").
j=0

Since z% exp(fBzP) increases for x > N, we have

|2~

1 n
" z® exp(fa?)dr < (n —tj)* exp(B(n — t5)7)
t /ntt—"i’ﬂ =
n+t
< %/n-:L”tNJ % exp(Ba?)dx.

But when n is large enough, we have

n+t n—+t a + 1 —p B
« PVdx ~ a crTr" P a-p P\d
/ntL"tNJ x® exp(Ba?)dx /ntL"’tNJ (m + B x )exp(ﬁx )dx

n+t xa-‘,—l—p , /d
_/nthN ( B exp(Ba?)) da

t

(n +t)ati=p
Bp

naJrlfp
5 exp(Bn”),

where the last ~ is guaranteed by the condition 0 < p < 1.
Similarly, we have

! x® exp(BaP)dx ~
/ntL"i“J

exp(B(n +1)")

~

a+l—p

Bp

exp(Bn?).
Therefore when n is large enough, we have

n

=)
naJrlfp naJrlfp
(1—¢)? Bt exp(fnP) < Z an—1; < (1+€)? Gt exp(pn?).
j=0
Finally we obtain
naJrlfp
n ™~ pt exp(pn?). O

3. ASYMPTOTIC FORMULAS FOR SKEW PLANE PARTITIONS

Various plane partitions have been widely studied since MacMahon [16, 17]. In
particular, the generating function for skew plane partitions with profile § has been
derived (see [6, 21, 23]). In this section, first we obtain the asymptotic formula for
ordinary plane partitions of fixed width. We say that a (skew) plane partition w
has a width m if w; ; = 0 for i > m.

Theorem 3.1. Let PP,,(n) be the number of plane partitions w of width m and
size n. Then,

m—1

(3.1) PPn(n) ~ 2™ *i’"”(%)“ﬁlw’"z”" [T &t xn= ™5 exp(ry/2mn/3).
i=1
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Proof. Let § =1™(—1)* in (1.8) we have

>, M= HH e

wePP,, k>01= 1

Therefore by Theorem 1.2 the number of plane partitions with profile § and size n
is asymptotic to

ﬁ (i—1! 1, 2mr? m? 1)
iy 3 42
which is equal to the right-hand side of (3.1). O

When m = 1, the above theorem gives the Hardy-Ramanujan asymptotic formula
for the number of integer partitions

(3.2) PPi(n) ~ ﬁexp(wﬂQn/S).

When m = 3, this is the example (PPa) illustrated in Fig. 2. Actually we have

w 1
Z 2l = H (1 — 2FFL)(1 — 2FF2)(1 — F48)

wePPa k>0

Therefore the number of plane partitions of width 3 and size n is asymptotic to

2743073 exp(mv/2n).

More generally, we can derive the asymptotic formula for the number of skew
plane partitions with fixed width.

Theorem 3.2. Let 6 = (&', (—1)>) = (81,05,...,0! (—=1)°) be a profile, and

yYm—1
SkewPPs(n) be the number of skew plane partitions with profile § and size n. Then
2 { 2 2
SkewPPjs(n) ~ 2~ H2“5( e || —H i)
1<j d=1
8;>6;

€2

(3.3) xn~ A exp(my/2¢n/3),
where £ :=|d'|;.

Proof. By (1.8) we have

> =T s I =

w€SkewPPyg i<j k>0 6’—1
§;>6

By Theorem 1.2 the coefficient of 2™ in
H H Zker i
k>0 5’—1
is asymptotic to
(m—i—1)! 1., , 207 1 L 1
%(I_{l QT g X m) - g).

i
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Denote by inv(d’) the number of pairs (7, j) such that i < j,d; > d”. Notice that
Zagzl(m — i) —inv(d) = (4‘51). Then by Theorem 1.3 the number SkewPPs(n) is
asymptotic to

273/2+inv(5’)ﬂ.7%(2£ﬂ-2 # H 1 H (m —i— 1)' (l)mfi

) —
3 i<i I T eo VT 2
8;>6
2 -
X~ d exp(my/26n/3),
which is equal to the right-hand side of (3.3). O

The two examples (PPb) and (PPc) for ¢ = |¢'|; = 3 illustrated in Fig. 2
correspond to the following special cases of Theorem 3.2.
(PPb) Let 6 = (1,1,—1,1,(—1)*°) we have

I e | : -
1—21-—22 (1 — 2k+1)(1 — 2h+3) (1 — 2k+4)
wEPPb k>0

Therefore by Theorems 1.2 and 1.3 the number of skew plane partitions with profile
¢ and size n is asymptotic to

327433 exp(mv/2n).
(PPc) Let 6 = (1,1,—1,—1,1,(—1)*) we have

Soaeo L1 1 1 1
2@ = )
1—21—221—221-23 (1 — 2k+1)(1 — 2h+4)(1 — kD)
wEPPc k>0

Therefore the number of skew plane partitions with profile § and size n is asymptotic
to

32737803 exp(mv/2n).
4. ASYMPTOTIC FORMULA FOR CYLINDRIC PARTITIONS

First we recall Borodin’s formula (1.9) written in the following form.

Lemma 4.1 (Borodin [6]). Let 6 = (0;)1<i<n be a profile. Then the generating
function for the cylindric partitions with profile § is

1
Z ZM:H H 1 _ Shktt’

weCPs k>0teWs

where
W(;:{h}U{j—’L'Z’L'<j, (5i>6j}U{h+’i—jZ’i<j, 51<6J}

In this section we derive the asymptotic formula for the number of cylindric
partitions.

Theorem 4.2. Let 6 = (§;)1<<n be a profile. When 1 < |81 < h — 1, the number
of cylindric partitions with profile § is asymptotic to

rd = T rhticd) VIF2K 1 oy [0 2B)n )
h

X — exp
i<j i<y h 4V3-(2mK n 3h
57;>5]‘ 5i<6j

where K = |6|1]0]-1/2.
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Proof. We have

h j—i hti—j
Z =5t 2 Y T
ceWs i<j, 8;>6; i<j, 8;<6;
(4.1) =1+ Y 1+-—- |5|1 > U
h
1<J 5i=—1 0;=1
0;<0;

If we exchange any two adjacent letters in 0, the right-hand side of (4.1) doesn’t
change. Therefore, the above summation is independent of 6 when h and |d]; are
given. Hence we have

t
—=1+K.
> =+
teWs
On the other hand, #Ws = 1 + 2K. Then we obtain
t 1 1
4.2 — — =)= -,
(4.2) > (5p 7 =1
teWs

By Lemma 4.1 , Theorem 1.2 and Identity (4.2) the number of cylindric partitions
with profile 6 and size n is asymptotic to

1
wn(’va T, b7 5)3
where
_ H (F(t/h t/h) H 1" ) 2 1K 3K
tews NV hm teWs
272 27r
teWs
t 1 1
b= — ==
> (7
teWs
The proof is achieved by the definition (1.1) of 1. O

Notice that in the above theorem, the profile  contains both steps “1” and “—1”.
In fact, when 6 = (—1)" or § = (1"), the number of cylindric partitions with profile
0 is 0 if n is not a multiple of h. If n = hnq, it is equal to the number of integer
partitions of size n;.

The three examples (CPa)-(CPc) for h = 4 (here we say that these cylindric
partitions have width h=4) illustrated in Fig. 2 correspond to the following special
cases of Theorem 4.2.

(CPa) Let § = (1 —1,—1,—1). By Lemma 4.1 we have

1
lw| —
Z 2= H (1 — 24+1) (1 — 24h+2) (1 — z4k+3) (1 — z4k+4) H 1— Zk+1

weCPa k>0 k>0

Therefore the number of such cylindric partitions with size n is asymptotic to

ey
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(CPb) Let § = (1 —1,1,—1). By Lemma 4.1 we have

wl 1
Z 2l = ]._.[ (1 — 24+1)2(1 — 24k+3)2(] — p4k+4)

wECPD k>0

1
- 1];[0 (1 _ sz+1>2(1 _ Z4k+4)'

Therefore the number of such cylindric partitions with size n is asymptotic to

Th

[1]
2]

3]
[4]
[5]

[6]

L2 Loy [22),

(CPc) Let § = (1 —1,—1,1). By Lemma 4.1 we have

€CPc g (L= 2 F)(1 = 280 42)2 (1 — 24043)2(1 — 24444)

1
- H (1 — 2F1)(1 — 23k+2)"

k>0

erefore the number of such cylindric partitions with size n is asymptotic to

L2 Lo 20,
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