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Abstract. The concept of t-difference operator for functions of partitions is

introduced to prove a generalization of Stanley’s theorem on polynomiality
of Plancherel averages of symmetric functions related to contents and hook

lengths. Our extension uses a generalization of the notion of Plancherel mea-

sure, based on walks in the Young lattice with steps given by the addition
of t-hooks. It is well-known that the hook lengths of multiples of t can be

characterized by the Littlewood decomposition. Our study gives some fur-

ther information on the contents and hook lengths of other congruence classes
modulo t.

1. Introduction

1.1. Goal. The purpose of this paper is to compute explicit averages over parti-
tions of some statistics of their invariants, such as contents and hook lengths, and
establish polynomiality of these averages in the size of the partitions considered. In
contrast with previous results, we restrict our attention to subsets of partitions clas-
sified by the divisibility properties of those invariants, and we modify the averaging
measures accordingly. Our main result is stated in Theorem 1.3.

1.2. Basic definitions. A partition is a finite weakly decreasing sequence of pos-
itive integers λ = (λ1, λ2, · · · , λr). The size of the partition λ is defined by the
integer |λ| =

∑
1≤i≤r λi. A partition λ could be represented by its Young diagram,

which is a collection of boxes arranged in left-justified rows with λi boxes in the
i-th row. The content of a box � = (i, j) in a partition λ is defined by c� = j − i.
With each (i, j)-box is associated its hook length, denoted by h(i,j), which is the
number of boxes exactly to the right, or exactly below, including the box itself.
The hook length multi-set of λ is denoted by H(λ). In Figure 1 is represented the
Young diagram and hook lengths of the partition (6, 3, 2, 2). For example, h(1,2) = 8
and h(3,1) = 3.

9 8 5 3 2 1
5 4 1
3 2
2 1

Figure 1. The Young diagram of the partition (6, 3, 2, 2) and the
hook lengths of corresponding boxes.
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Let t be a positive integer. A partition is called a t-core partition if none of
its hook lengths is divisible by t. For example, from Figure 1 we can see that
λ = (6, 3, 2, 2) is a 7-core partition. Let

Ht(λ) = {h ∈ H(λ) : h ≡ 0 (mod t)}
be the multi-set of hook lengths of multiples of t.

1.3. 01-sequences, Littlewood decomposition and Plancherel averages.
Each partition λ can be associated with its 01-sequence z(λ) = (zλ,i)i∈Z = (zi)i∈Z
as follows. First, consider the edges in the boundary of λ, starting at the bottom
and ending to the right. Label the vertical (resp. horizontal) edges 0 (resp. 1). We
obtain a bi-infinite 01-sequence (zi)i∈Z beginning with infinitely many 0’s and end-
ing with infinitely many 1’s. The index 0 of the bi-infinite 01-sequence is defined
by the condition #{zi = 0 : i ≥ 0} = #{zi = 1 : i < 0}. Every partition and
its 01-sequence are uniquely determined by each other (see Figure 2 for a running
example of the constructions presented in this section).

Figure 2. This is our running example for the 01-sequence and
the Littlewood decomposition of a partition. The Young dia-
gram of the partition λ = (18, 7, 6) is drawn, together with its

01-sequence · · · 0111|1110101111111111101 · · · (the | indicates the
unique location where the number of 1’s to the left equals the
number of 0’s to the right, which is between index -1 and 0 in the
01-sequence; visually this corresponds to the main diagonal in the
Young diagram). Notice the mnemonic “RGB” for the colourings,

starting after the | mark. The grey shapes indicate a sequence of
3-hooks that can be removed from λ, to finally obtain the 3-core
(3, 1) of λ. One could start with the yellow shape for instance,
and then make various choices for the order of the removals. The
process always ends with the same 3-core (3, 1), irrespective of the

order of removals. Quotients will be · · · 01|1011111 · · · (partition

(2)), · · · 0|1111111 · · · (empty partition ∅) and · · · 011|011101 · · ·
(partition (5, 2)).

The 01-sequences contain a lot of information about partitions (see [2, 12]).

Lemma 1.1. For a partition λ and its 01-sequence z(λ) = (zi)i∈Z, we have

|λ| = #{(i, j) : i < j, zi = 1, zj = 0}.
Actually, each box in λ is uniquely determined by such a pair (i, j).1 The hook length
of such box is j−i. Also, for an edge labeled by zi = 0, the box to the left has content
i; for an edge labeled by zi = 1, the box above has content i+ 1.

1 Notice that here (i, j) is not the coordinate of the box in λ.
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By Lemma 1.1 a partition λ is a t-core partition if and only if there are no i ∈ Z
satisfying zi = 1, zi+t = 0 in the 01-sequence z(λ). If zi = 1, zi+t = 0 (resp.
zi = 0, zi+t = 1) in a 01-sequence z(λ) = (zj)j∈Z, by exchanging the values of zi
and zi+t we obtain a new 01-sequence and thus a new partition. We say that this
new partition is obtained by removing (resp. adding) a t-hook from (resp. to) λ.

Starting with a partition λ, we can always remove several t-hooks until no more
t-hooks could be removed. The final partition we get by this operation is called the
t-core of λ and denoted by λt-core, which is actually independent of the ordering
of removing t-hooks from λ (see [2, 12]). For 0 ≤ i ≤ t − 1, the i-th t-quotient
of the partition λ is defined to be the partition associated with the 01-sequence
obtained by taking the subsequence (ztj+i)j∈Z of z(λ), which is denoted by λi. For
each positive integer t, we actually build a map

{partitions} → {t-core partitions} × {partitions}t

which sends a partition λ to (λt-core;λ
0, λ1, . . . , λt−1). This map is a bijection, called

the Littlewood decomposition of partitions at t [14]. In this paper, we always set
that a partition λ is identical with its image under the Littlewood decomposition,
i.e., we always write λ = (λt-core;λ

0, λ1, . . . , λt−1). The Littlewood decomposition
has the following two fundamental properties (see [14]):

|λ| = |λt-core|+ t(|λ0|+ |λ1|+ · · ·+ |λt−1|)

and

{h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

Let fλ (resp. fλ/µ) be the number of standard Young tableaux of shape λ (resp.
λ/µ) and Hλ =

∏
�∈λ h� be the product of all hook lengths of boxes in λ. For

convenience set f∅ = 1 and H∅ = 1 for the empty partition ∅. It is well known that
(see [5, 8, 13, 22])

(1.1) fλ =
|λ|!
Hλ

and
1

n!

∑
|λ|=n

f2λ = 1.

The latter identity defines a measure on partitions of size n, called the Plancherel
measure. Alternatively, we can see fλ as counting “walks” among Young diagrams
up to the shape λ (so-called hook walks, see [6, 7]).

1.4. Polynomiality of Plancherel averages and modified hook walks. Ex-
panding on a formula of Nekrasov and Okounkov on hook lengths [15], the second
author conjectured [9] that

P (n) =
1

n!

∑
|λ|=n

f2λ
∑
�∈λ

h2k�

is always a polynomial of n for any k ∈ N. This conjecture was generalized and
proved by Stanley [20] (see also [1], [4], [10] and [18]), and later generalized in [11].
Let Q be a symmetric function in infinitely many variables and E be a finite set
with n elements. The symbol Q(x : x ∈ E) means that n of the variables are
substituted by x for x ∈ E, and all other variables by 0.
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Theorem 1.2 (Stanley [20]). Let Q be a symmetric function in infinitely many
variables. Then

(1.2) P (n) =
1

n!

∑
|λ|=n

f2λ Q(c� : � ∈ λ)

and

(1.3) P ′(n) =
1

n!

∑
|λ|=n

f2λ Q(h2� : � ∈ λ)

are polynomials in n.

Olshanski [17] also proved the content case of Theorem 1.2.

Let λ and µ be two partitions. We say that λ ≥t µ if λ could be obtained
by adding some t-hooks to µ. Then, the set of all partitions becomes a partially
ordered set under this relation. If λ ≥t µ, define Fλ/µ to be the number of ways of
removing t-hooks:

(1.4) Fµ/µ := 1 and Fλ/µ :=
∑

λ≥tλ
−≥tµ

|λ/λ−|=t

Fλ−/µ (for λ 6= µ).

It is easy to see that Fλ/µ = #{(P0, P1, . . . , Pt−1) : Pi is a Young tableau of shape

λi/µi, the union of entries in P0, P1, . . . , Pt−1 are 1, 2, . . . ,
∑t−1
i=0 |λi/µi|}. Hence,

Fλ/µ =

( ∑t−1
i=0 |λi/µi|

|λ0/µ0|, |λ1/µ1|, . . . , |λt−1/µt−1|

) t−1∏
i=0

fλi/µi .

These Fλ/µ can be seen as counting hook walks distributed among the quotient
partitions of λ. Let

(1.5) Fλ := Fλ/λt-core
=

(
n

|λ0|, |λ1|, · · · , |λt−1|

) t−1∏
i=0

fλi = n!tnGλ,

where n = |λ0|+ |λ1|+ . . .+ |λt−1| and

Gλ :=
1∏

h∈Ht(λ)
h
.

When t = 1, then Fλ = fλ and Gλ = 1/Hλ. Also, when λ is a t-core partition,
we have Fλ = Gλ = 1.

1.5. Difference operators and main result. Let g be a function of partitions
and λ a partition. The difference operator D for partitions was defined in [11] as

Dg(λ) =
∑

|λ+/λ|=1

g(λ+)− g(λ).

In this paper, we introduce a generalization of D. For every integer t, let

(1.6) Dtg(λ) =
∑
λ+≥tλ
|λ+/λ|=t

g(λ+)− g(λ).

Accordingly, D1 = D.
The higher-order difference operators for Dt are defined by induction:

D0
t g := g and Dk

t g := Dt(D
k−1
t g) (k ≥ 1).



DIFFERENCE OPERATORS UNDER THE LITTLEWOOD DECOMPOSITION 5

These operators also fit in Stanley’s theory of differential posets, although this is a
language we will not use here [21]. The following theorem is our main result, which
will be proved in Section 5.

Theorem 1.3. Suppose that t is a positive integer, u′, v′, ju, j
′
v, ku, k

′
v are non-

negative integers and µ is a given t-core partition. Then, there exists some fixed
r ∈ N such that

Dr
t

(
Gλ

(
u′∏
u=1

∑
�∈λ

h�≡±ju(mod t)

h2ku�

)(
v′∏
v=1

∑
�∈λ

c�≡j′v(mod t)

c
k′v
�

))
= 0

for every partition λ with λt-core = µ. Moreover,

P (n) =
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ

(
u′∏
u=1

∑
�∈λ

h�≡±ju(mod t)

h2ku�

)(
v′∏
v=1

∑
�∈λ

c�≡j′v(mod t)

c
k′v
�

)

is a polynomial in n (n is a nonnegative integer).

Let Q1 and Q2 be two symmetric functions. By Theorem 1.3, there exists some
fixed r ∈ N such that

Dr
t

(
GλQ1(h2� : � ∈ λ)Q2(c� : � ∈ λ)

)
= 0

for every partition λ with λt-core = µ. Moreover,

(1.7) P (n) =
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλQ1(h2� : � ∈ λ)Q2(c� : � ∈ λ)

is a polynomial of n. When t = 1, µ = ∅, we have (1.7) implies Theorem 1.2.

1.6. Specialisation for square case. We now focus on expressions of square sum
of contents or hook lengths, and thereby obtain explicit results. Details of the proofs
are given in Section 6. We start by considering individual partitions.

Theorem 1.4. Let 0 ≤ k ≤ t− 1. For every partition λ with λt-core = ∅ we have∑
�∈λ

h�≡k(mod t)

h2� +
∑
�∈λ

h�≡t−k(mod t)

h2� −

( ∑
�∈λ

c�≡k(mod t)

c2� +
∑
�∈λ

c�≡t−k(mod t)

c2�

)
(1.8)

= 2t2
(t−1−k∑

i=0

nini+k +

k−1∑
i=0

nini+t−k

)
,

where ni = |λi|.

By summing identity (1.8) over 0 ≤ k ≤ t−1, we obtain the following well-known
result (see [14]).

Corollary 1.5. For every partition λ we have∑
�∈λ

h2� −
∑
�∈λ

c2� = |λ|2.
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Notice that the above identity can also be obtained from Theorem 1.4 with t = 1.

We now turn to t-Plancherel averages, introducing Fλ/µ and Gλ as weights in the
previous results and summing over λ. The results are stated in two cases according
to the divisibility of the hook lengths by t.

Theorem 1.6. Suppose that µ is a given t-core partition and 1 ≤ k ≤ t− 1. Then
we have ∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ

( ∑
�∈λ

h�≡k(mod t)

h2� +
∑
�∈λ

h�≡t−k(mod t)

h2�

)

= 6t

(
n

2

)
+
(

2k(t− k) + 4t|µ(k)|+ 4t|µ(t− k)|
)
n

+

( ∑
�∈µ

h�≡k(mod t)

h2� +
∑
�∈µ

h�≡t−k(mod t)

h2�

)
,

where µ(k) = {h ∈ H(µ) | h ≡ k (mod t)}, viewed as a multiset. In particular, let
µ = ∅. Then we have∑

λt-core=∅
|λ|=nt

FλGλ

( ∑
�∈λ

h�≡k(mod t)

h2� +
∑
�∈λ

h�≡t−k(mod t)

h2�

)

= 6t

(
n

2

)
+ 2k(t− k)n.

Theorem 1.7. Suppose that µ is a given t-core partition. Then we have∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

h�≡0(mod t)

h2� = nt2 + 3t

(
n

2

)
.

By Theorems 1.6 and 1.7 we obtain the following result.

Corollary 1.8. Suppose that µ is a given t-core partition. Then∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

h2� =
3t2n2

2
+
nt(t2 − 3t− 1 + 24|µ|)

6
+
∑
�∈µ

h2�.

In particular, let µ = ∅. Then we have∑
λt-core=∅
|λ|=nt

FλGλ
∑
�∈λ

h2� =
3t2n2

2
+
nt(t2 − 3t− 1)

6
.

Similar results for contents can also be obtained.

Theorem 1.9. Let 0 ≤ k ≤ t− 1. We have∑
λt-core=∅
|λ|=nt

FλGλ
∑
�∈λ

c�≡k(mod t)

c2� = t

(
n

2

)
+ k(t− k)n.



DIFFERENCE OPERATORS UNDER THE LITTLEWOOD DECOMPOSITION 7

Theorem 1.9 implies the following identity.∑
λt-core=∅
|λ|=nt

FλGλ
∑
�∈λ

c2� = t2
(
n

2

)
+

(t3 − t)n
6

.(1.9)

In fact we will derive a more general result in Theorem 6.3 by replacing ∅ by a
general t-core partition.

2. Partitions and t-difference operator

We now turn our attention to preliminary lemmas on the t-difference opera-
tors Dk

t , and in particular a theorem outlining how polynomiality of t-Plancherel
averages can be deduced from the vanishing of Dk

t for large enough k. It is known
[11] that

(2.1) D
( 1

Hλ

)
= 0.

We establish a similar result for the t-difference operator.

Lemma 2.1. Suppose that λ is a partition. Then

Dt(Gλ) = 0.

In other words,

Gλ =
∑
λ+≥tλ
|λ+/λ|=t

Gλ+ .

Proof. Suppose that

λ = (λt-core;λ
0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and

λ+ = (λt-core;λ
0, λ1, . . . , λi−1, (λi)+, λi+1, . . . , λt−1)

where |(λi)+/λi| = 1. Then, by the definition of Gλ we have

Gλ+

Gλ
=

Hλi

tH(λi)+
.

By (2.1) we have ∑
|(λi)+/λi|=1

G(λt-core;λ0,λ1,...,λi−1,(λi)+,λi+1,...,λt−1)

Gλ
=

1

t
.

Summing the above equality over 0 ≤ i ≤ t− 1, we prove our claim. �

We now prove a commutation relation between the averaging over partitions of
a given weight and the Dt operator.

Lemma 2.2. Suppose that µ is a given partition and g is a function of partitions.
For every n ∈ N, let

Pg(n) :=
∑
λ≥tµ
|λ/µ|=nt

Fλ/µg(λ).

Then

Pg(n+ 1)− Pg(n) = PDtg(n).
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Proof. The proof is straightforward and follows from expanding definitions:

Pg(n+ 1)− Pg(n) =
∑
ν≥tµ

|ν/µ|=(n+1)t

Fν/µg(ν)−
∑
λ≥tµ
|λ/µ|=nt

Fλ/µg(λ)

=
∑
ν≥tµ

|ν/µ|=(n+1)t

∑
ν≥tν

−≥tµ
|ν/ν−|=t

Fν−/µg(ν)−
∑
λ≥tµ
|λ/µ|=nt

Fλ/µg(λ)

=
∑
λ≥tµ
|λ/µ|=nt

Fλ/µ
( ∑
λ+≥tλ
|λ+/λ|=t

g(λ+)− g(λ)
)

= PDtg(n). �

Example. Let g(λ) = Gλ. Then Dtg(λ) = 0 by Lemma 2.1, which means that
PDtg(n) = 0. Consequently, Pg(n+ 1) = Pg(n) = · · · = Pg(0) = Gµ, or

(2.2)
∑
λ≥tµ
|λ/µ|=nt

Fλ/µGλ = Gµ.

Recall that when µ is a t-core partition, we have Gµ = 1. This implies

(2.3)
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ = 1.

In particular, let µ = ∅, we obtain a generalization of the second identity of (1.1):

(2.4)
∑

λt-core=∅
|λ|=nt

FλGλ = 1,

or equivalently,

(2.5)
∑

|λ0|+|λ1|+···+|λt−1|=n

(
n

|λ0|, |λ1|, · · · , |λt−1|

) t−1∏
i=0

f2λi

|λi|!
= tn.

Formulas such as this one can be used to create new measures on partitions, called
t-Plancherel.

Recall that the higher-order difference operators for Dt are defined by induction
D0
t g := g and Dk

t g := Dt(D
k−1
t g) (k ≥ 1). We write Dtg(ν) := Dtg(λ)|λ=ν for a

fixed partition ν.

Theorem 2.3. Let g be a function of partitions and µ be a given partition. Then,

(2.6) Pg(n) =
∑
λ≥tµ
|λ/µ|=nt

Fλ/µg(λ) =

n∑
k=0

(
n

k

)
Dk
t g(µ)

and

(2.7) Dn
t g(µ) =

n∑
k=0

(−1)n+k
(
n

k

)
Pg(k).

In particular, if there exists some positive integer r such that Dr
t g(λ) = 0 for every

partition λ ≥t µ, then Pg(n) is a polynomial in n.
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Proof. Identity (2.6) will be proved by induction. The case n = 0 is obvious.
Assume that (2.6) is true for some nonnegative integer n. By Lemma 2.2 we obtain

Pg(n+ 1) = Pg(n) + PDtg(n)

=

n∑
k=0

(
n

k

)
Dk
t g(µ) +

n∑
k=0

(
n

k

)
Dk+1
t g(µ)

=

n+1∑
k=0

(
n+ 1

k

)
Dk
t g(µ).

Identity (2.7) follows from the famous Möbius inversion formula [19]. �

3. Corners of partitions

Now we introduce the concept of corners in a partition. For a partition λ, the
outer corners (see [3, 11]) are the boxes which can be removed in such a way that
after removal the resulting diagram is still a Young one. The coordinates of outer
corners are denoted by (α1, β1), . . . , (αm, βm) such that α1 > α2 > · · · > αm.
Let yj := βj − αj (1 ≤ j ≤ m) be the contents of outer corners. Set αm+1 =
β0 = 0. The inner corners of λ are defined to be the boxes whose coordinates are
(α1, β0), (α2, β1), . . . , (αm+1, βm). Let xi = βi − αi+1 be the contents of the inner
corners for 0 ≤ i ≤ m.

Example. For λ = (6, 3, 2, 2) (see Figure 1) we have m = 3, (α1, β1) = (4, 2),
(α2, β2) = (2, 3) and (α3, β3) = (1, 6). Therefore (x0, x1, x2, x3) = (−4, 0, 2, 6)
and (y1, y2, y3) = (−2, 1, 5). Also note that

∑
0≤i≤3 xi −

∑
1≤j≤3 yj = 0 and∑

0≤i≤3 xi
2 −

∑
1≤j≤3 yj

2 = 26 = 2|λ|.
Let λ be a partition and xi, yj be the quantities associated to λ defined above.

Define (see [11])

(3.1) qk(λ) :=
∑

0≤i≤m

xi
k −

∑
1≤j≤m

yj
k

for each integer k, and

(3.2) qν(λ) :=
∏̀
k=1

qνk(λ)

for each partition ν = (ν1, ν2, . . . , ν`).
2

We need the following results developed in [11] (see (6.3), (6.6), Theorem 6.1
and Lemma 6.4 in [11] respectively).

Theorem 3.1. Let λi+ = λ ∪ {�i} with c�i
= xi for 0 ≤ i ≤ m.

(1) For k = 0, 1, 2, we have

q0(λ) = 1, q1(λ) = 0 and q2(λ) = 2 |λ|.
(2) Suppose that k is a nonnegative integer. Then we have

qk(λi+)− qk(λ) =
∑

1≤j≤k/2

2

(
k

2j

)
xk−2ji .

2We need to be careful here: in general, qν(λ) =
∏
i qνi (λ) 6=

∏
i qνi (λ), which was used in

Theorem 3.4 and commented on in footnote 3. Writing qν allows for a convenient access to |ν|.
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(3) Let ν be a partition. Then, there exist some bδ ∈ Q such that

D

(
qν(λ)

Hλ

)
=

∑
|δ|≤|ν|−2

bδ
qδ(λ)

Hλ

for every partition λ.
(4) Let k be a nonnegative integer. Then there exist some bδ ∈ Q such that∑

0≤i≤m

Hλ

Hλi+

xi
k =

∑
|δ|≤k

bδqδ(λ)

for every partition λ.

The next result is easy to prove by Theorem 3.1(4).

Theorem 3.2. Let λi+ = λ ∪ {�i} with c�i
= xi for 0 ≤ i ≤ m. Then,∑

0≤i≤m

Hλ

Hλi+

xi = 0

and ∑
0≤i≤m

Hλ

Hλi+

xi
2 = |λ|

for every partition λ.

We obtain the following result, which is a generalization of Theorem 3.1(3).

Theorem 3.3. Let ν be a given partition. Then, there exist some bδ0,δ1,...,δt−1 ∈ Q
such that

(3.3) Dt

(
Gλ

t−1∏
i=0

qνi(λi)

)
=
∑
(∗)

bδ0,δ1,...,δt−1Gλ

t−1∏
i=0

qδi(λ
i)

for every partition λ, where (∗) ranges over all partitions δ0, δ1, . . . , δt−1 such that∑t−1
i=0 |δi| ≤

∑t−1
i=0 |νi| − 2. Notice that bδ0,δ1,...,δt−1 is independent of λ.

Furthermore, if r ≥ 1
2

∑t−1
i=0 |νi|+ 1, then

Dr
t

(
Gλ

t−1∏
i=0

qνi(λi)

)
= 0

for every partition λ.

Proof. We have

Dt

(
Gλ

t−1∏
i=0

qνi(λi)

)

=
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

t−1∏
i=0

qνi

(
(λ+)i

)
−Gλ

t−1∏
i=0

qνi(λi)

= Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
t−1∏
i=0

qνi((λ+)i)−
t−1∏
i=0

qνi(λi)

)
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=
1

t
Gλ

t−1∑
j=0

∏
0≤i≤t−1
i 6=j

qνi(λi)
∑

|(λj)+/λj |=1

Hλj

H(λj)+

(
qνj ((λj)+)− qνj (λj)

)

=
1

t
Gλ

t−1∑
j=0

∏
0≤i≤t−1
i 6=j

qνi(λi)HλjD

(
qνj (λj)

Hλj

)

=
∑
(∗)

bδ0,δ1,...,δt−1Gλ

t−1∏
i=0

qδi(λ
i)

for some bδ0,δ1,...,δt−1 ∈ Q, where (∗) ranges over all partitions δ0, δ1, . . . , δt−1 such

that
∑t−1
i=0 |δi| ≤

∑t−1
i=0 |νi| − 2. The last equality is due to Theorem 3.1(3). �

Definition 3.1. Let µ be a t-core partition. A function g of partitions is called
µ-admissible, if there exist some functions of partitions ηs (here ηs depends on

t, g, i, µ) such that g(λ+) − g(λ) =
∑s′

s=0 ηs(λ)cs�i
is a polynomial of c�i

for every
pair of partitions

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1),

where each coefficient ηs(λ) is a linear combination of some
∏t−1
j=0 qτj (λj) for some

partition τ ,3 and for every partition λ with λt-core = µ.

By Theorem 3.1(2), λ 7→
∏t−1
i=0 qνi(λi) is µ-admissible for any partition ν and

any t-core partition µ. As can be seen in Section 5, the following two functions of
partitions

g(λ) =
∑
�∈λ

h�≡±j(mod t)

h2k�

and

g(λ) =
∑
�∈λ

c�≡j(mod t)

ck�

are µ-admissible for any t-core partition µ, any nonnegative integer k, and 0 ≤ j ≤
t− 1. This is a consequence of Lemmas 5.2 and 5.4.

Theorem 3.4. Let t be a given integer, ν be a partition, and µ be a t-core partition.
Suppose that g1, g2, . . . , gv are µ-admissible functions of partitions. Then, there
exists some r ∈ N such that

Dr
t

(
Gλ

v∏
u=1

gu(λ)

t−1∏
i=0

qνi(λi)

)
= 0

3We really need here a t-tuple of partitions. We decide to reuse the quotient notation for
this purpose. Different τ with the same t-core would give the same tuple, but the surjectivity is

inconsequential here.



12 PAUL-OLIVIER DEHAYE, GUO-NIU HAN AND HUAN XIONG

for every partition λ with λt-core = µ. Furthermore, by Theorem 2.3,

(3.4) P (n) =
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ

v∏
u=1

gu(λ)

is a polynomial in n.

Proof of Theorem 3.4. Notice that this theorem is true for v = 0 by Theorem 3.3.
We will prove it by induction. First, we have

Dt

(
Gλ

v∏
u=1

gu(λ)

t−1∏
i=0

qνi(λi)

)

= Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
v∏

u=1

gu(λ+)

t−1∏
i=0

qνi((λ+)i)−
v∏

u=1

gu(λ)

t−1∏
i=0

qνi(λi)

)

= Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
A ·∆B +B ·∆A+ ∆A ·∆B

)
,

where

A =

v∏
u=1

gu(λ),

∆A =

v∏
u=1

gu(λ+)−
v∏

u=1

gu(λ),

B =

t−1∏
i=0

qνi(λi),

∆B =

t−1∏
i=0

qνi((λ+)i)−
t−1∏
i=0

qνi(λi).

Next,

Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
A ·∆B

)

=
1

t
Gλ

v∏
u=1

gu(λ)

t−1∑
j=0

( ∏
0≤i≤t−1
i 6=j

qνi(λi)

)
HλjD

(
qνj (λj)

Hλj

)
,

Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
B ·∆A

)

=
1

t
Gλ

t−1∏
i=0

qνi(λi)

t−1∑
j=0

∑
|(λj)+/λj |=1

Hλj

H(λj)+
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v∏

u=1

gu
(
(µ;λ0, . . . , (λj)+, . . . , λt−1)

)
−

v∏
u=1

gu(λ)

)
,

Gλ
∑
λ+≥tλ
|λ+/λ|=t

Gλ+

Gλ

(
∆A ·∆B

)

=
1

t
Gλ

t−1∑
j=0

∑
|(λj)+/λj |=1

Hλj

H(λj)+

( ∏
0≤i≤t−1
i 6=j

qνi(λi)

)(
qνj ((λj)+)− qνj (λj)

)
(

v∏
u=1

gu
(
(µ;λ0, . . . , (λj)+, . . . , λt−1)

)
−

v∏
u=1

gu(λ)

)
.

By Theorems 3.1 and 3.3 each of the last three terms could be written as a

linear combination of some Gλ
∏v′

u′=1 g
′
u′(λ)

∏t−1
i=0 q(ν′)i(λ

i) where, either v′ = v

and simultaneously
∑t−1
i=0(ν′)i ≤

∑t−1
i=0 ν

i − 2, or v′ < v. Then, by Theorem 3.3
and induction we prove the claim. �

4. Further properties of Littlewood decomposition

In this section, we always assume that µ is a given t-core partition with 01-
sequence z(µ) = (zµ,j)j∈Z. For 0 ≤ i ≤ t − 1, we have µi = ∅. Thus, µi has a

01-sequence equal to · · · 0000|11111 · · · , which means that zµi,j = 0 for j < 0 and
zµi,j = 1 for j ≥ 0. Let

bi := bi(µ) = min{j ∈ Z : j ≡ i(mod t), zµ,j = 1}.

Then, there exist some di ∈ Z such that bi = tdi + i for 0 ≤ i ≤ t − 1. Therefore,
zµ,tj+i = 0 for j < di and zµ,tj+i = 1 for j ≥ di.

Example. The 01-sequence of the 3-core partition (5, 3, 1, 1) is

· · · 001001|1011011 · · · .

Therefore, b0 = 0, b1 = 7, b2 = −4, d0 = 0, d1 = 2, and d2 = −2. Notice that
d0 + d1 + d2 = 0.

Let

Bk = {(i, i+ k) : 0 ≤ i ≤ t− 1− k}
⋃
{(i, i+ t− k) : 0 ≤ i ≤ k − 1},

viewed as multisets for 1 ≤ k ≤ t − 1 (i.e., if k equals t − k, we keep two copies).
We have

(4.1)
∑

(i,j)∈Bk

(j − i)2 = tk(t− k).

Lemma 4.1. Suppose that µ is a given t-core partition and let bi and di be defined
as above. Then

t−1∑
i=0

di = 0.
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Proof. Let 0 ≤ i ≤ t − 1. First, the fact that µ is a t-core partition implies that
zµ,tj+i = 0 for j < di and zµ,tj+i = 1 for j ≥ di. By the definition of 01-sequence
we have #{zµ,j = 0 : j ≥ 0} = #{zµ,j = 1 : j < 0}. Thus,

t−1∑
i=0

di = #{zµ,j = 0 : j ≥ 0} −#{zµ,j = 1 : j < 0} = 0.

�

For every partition λ and 0 ≤ k ≤ t − 1, recall that λ(k) = {h� ≡ k(mod t) :
� ∈ λ}, viewed as a multiset.

Lemma 4.2. Suppose that µ is a given t-core partition and 1 ≤ k ≤ t− 1. Then,
|µ(0)| = 0 and

|µ(k)|+ |µ(t− k)| =
∑

(i,j)∈Bk

(
di − dj

2

)
.

Proof. First, |µ(0)| = 0 since µ is a t-core partition. By Lemma 1.1 we have

|µ(k)| = #{(i′, j′) : i′ < j′, j′ − i′ ≡ k(mod t), zµ,i′ = 1, zµ,j′ = 0}.

Now we just need to consider the right hand side of the above identity. Notice that
for 0 ≤ i ≤ t − 1 we have zµ,tj+i = 0 for j < di and zµ,tj+i = 1 for j ≥ di. Then,
for each (i, j) ∈ Bk, we have

#{(i′, j′) : i′ ≡ i(mod t), j′ ≡ j(mod t), i′ < j′, zµ,i′ = 1, zµ,j′ = 0}
+ #{(i′, j′) : i′ ≡ j(mod t), j′ ≡ i(mod t), i′ < j′, zµ,i′ = 1, zµ,j′ = 0}

= 1 + 2 + · · ·+ (di − dj − 1) =

(
di − dj

2

)
=

(
dj − di + 1

2

)
whenever di > dj or di ≤ dj . This means that

|µ(k)|+ |µ(t− k)| =
∑

(i,j)∈Bk

(
di − dj

2

)
.

�

By Lemmas 4.1 and 4.2 we obtain∑
(i,j)∈Bk

(2j − 2i)(di − dj) = t
∑

(i,j)∈Bk

(di − dj),(4.2)

t
∑

0≤i≤t−1

d2i =
∑

0≤i<j≤t−1

(di − dj)2,(4.3)

−2
∑

0≤i≤t−1

idi =
∑

0≤i<j≤t−1

(di − dj),(4.4)

and

|µ| =
∑

0≤i<j≤t−1

(
di − dj

2

)
(4.5)

=
t

2

∑
0≤i≤t−1

d2i +
∑

0≤i≤t−1

idi
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=
1

2t2

∑
0≤i<j≤t−1

(
(bi − bj)2 − (i− j)2

)
.

Lemma 4.3. Suppose that µ is a given t-core partition and 0 ≤ k ≤ t − 1. Let λ
be a partition with λt-core = µ and |λ| = |µ|+ nt. Then,

|λ(k)|+ |λ(t− k)| − |µ(k)| − |µ(t− k)| = 2n.

Proof. Adding a t-hook to a partition λ means that we change some (zi = 0,
zi+t = 1) to (zi = 1, zi+t = 0) in the 01-sequence of λ. Then, the lemma follows
directly from Lemma 1.1 and induction on the size of λ. �

5. Contents, Hook lengths and t-difference operators

By the construction of 01-sequences and Lemma 1.1, the following lemma is
obvious.

Lemma 5.1. Let z(λ) = (zλ,i)i∈Z be the 01-sequence of a partition λ. Then, λ has
an inner (resp. outer) corner with content k if and only if zλ,k−1 = 0, zλ,k = 1
(resp. zλ,k−1 = 1, zλ,k = 0).

For each partition λ let C(λ) be the multiset of its contents. We explicitly
compute how contents change when adding a box to one of the quotients in the
Littlewood decomposition.

Lemma 5.2. Suppose that µ is a given t-core partition. Let

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1).

Then,

C(λ+) \ C(λ) = {c�i
t+ bi, c�i

t+ bi − 1, . . . , c�i
t+ bi − (t− 1)}.

Proof. Suppose that the 01-sequence of λ is (zλ,j)j∈Z. For each 0 ≤ i ≤ t − 1 let
(zλi,j)j∈Z be the 01-sequence of λi. Then, zλi,j = zλ,jt+bi since λt-core = µ. Notice
that bi are determined by µ. Let c = c�i

be the content of �i. Then, by Lemma 5.1
adding the box �i to λi means that (zλi,c−1, zλi,c), which is equal to (0, 1) in the 01-

sequence of λi, is changed to (1, 0); or equivalently, (zλ,(c−1)t+bi , zλ,ct+bi) = (0, 1)
in the 01-sequence of λ is changed to (1, 0). Then by Lemma 1.1 this means that
we add boxes with contents

ct+ bi, ct+ bi − 1, . . . , ct+ bi − (t− 1)

to λ. �

By induction and Lemma 5.2 we obtain the following lemma.

Lemma 5.3. Suppose that µ is a given t-core partition. Then

C(λ) \ C(µ) =

t−1⋃
i=0

{tc�i
+ bi − j : 0 ≤ j ≤ t− 1,�i ∈ λi}

for every partition λ with λt-core = µ.

For the partition λ and 0 ≤ i ≤ t − 1, let xi,l (0 ≤ l ≤ mi) be the contents of
inner corners of λi and yi,l (1 ≤ l ≤ mi) be the contents of outer corners of λi.
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Lemma 5.4. Suppose that µ is a given t-core partition, r is a given integer, 1 ≤
k ≤ t− 1, and 0 ≤ i ≤ t− 1. Let

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and
λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1).

Then ∑
�∈λ+

h�≡0(mod t)

h2r� −
∑
�∈λ

h�≡0(mod t)

h2r� =

t2r +
∑

0≤l≤mi

(t(c�i
− xi,l))2r −

∑
1≤l≤mi

(t(c�i
− yi,l))2r

and ∑
�∈λ+

h�≡k(mod t)

h2r� +
∑

�∈λ+

h�≡t−k(mod t)

h2r� −
∑
�∈λ

h�≡k(mod t)

h2r� −
∑
�∈λ

h�≡t−k(mod t)

h2r�

=
∑

0≤l≤mi′

(tc�i
+ bi − txi′,l − bi′)2r −

∑
1≤l≤mi′

(tc�i
+ bi − tyi′,l − bi′)2r

+
∑

0≤l≤mi′′

(tc�i
+ bi − txi′′,l − bi′′)2r −

∑
1≤l≤mi′′

(tc�i
+ bi − tyi′′,l − bi′′)2r

where 0 ≤ i′, i′′ ≤ t−1 satisfy i′ ≡ i+k(mod t) and i′′ ≡ i−k(mod t). Furthermore,∑
�∈λ+

h2r� −
∑
�∈λ

h2r� = t2r +

t−1∑
j=0

( ∑
0≤l≤mj

(tc�i
+ bi − txj,l − bj)2r

−
∑

1≤l≤mj

(tc�i
+ bi − tyj,l − bj)2r

)
.

Proof. Suppose that the 01-sequence of λ is (zλ,j)j∈Z. For each 0 ≤ i ≤ t − 1,
let (zλi,j)j∈Z be the 01-sequence of λi. Then, by the Littlewood decomposition we
have zλi,j = zλ,jt+bi . Let c = c�i

= xi,wi
. By Lemma 5.1, adding the box �i to

λi means that (zλi,c−1, zλi,c) = (0, 1) in the 01-sequence of λi is changed to (1, 0),
or equivalently, (zλ,(c−1)t+bi , zλ,ct+bi) = (0, 1) in the 01-sequence of λ is changed to
(zλ+,(c−1)t+bi , zλ+,ct+bi) = (1, 0). By Lemma 1.1, to see the difference between hook

length sets of λ+ and λ, we just need to consider the different pairs (j, j′) where
j < j′, (1, 0) = (zλ,j , zλ,j′) or (zλ+,j , zλ+,j′), and {j, j′}

⋂
{(c− 1)t+ bi, ct+ bi} 6= ∅

in the 01-sequences of λ and λ+.
Case (i). First consider such pairs (j, j′) satisfying j′ − j ≡ 0(mod t). Since

(zλ,(c−1)t+bi , zλ,ct+bi) = (0, 1) and (zλ+,(c−1)t+bi , zλ+,ct+bi) = (1, 0), it follows from

Lemmas 1.1 and 5.1 that the hook lengths of λ+ for such pairs (j, j′) are

t, t(c− xi,l), t(c− xi,l − 1), · · · , t(c− yi,l+1 + 1) (0 ≤ l ≤ wi − 1),

t(xi,l − c), t(xi,l − c− 1), · · · , t(yi,l − c+ 1) (wi + 1 ≤ l ≤ mi),

and the hook lengths of λ for such pairs are

t(c− xi,l − 1), t(c− xi,l − 2), · · · , t(c− yi,l+1) (0 ≤ l ≤ wi − 1),

t(xi,l − c− 1), t(xi,l − c− 2), · · · , t(yi,l − c) (wi + 1 ≤ l ≤ mi).
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Let |a| be the absolute value for every real number a. Thus

{h� ∈ H(λ+) : h� ≡ 0(mod t)} \ {h� ∈ H(λ) : h� ≡ 0(mod t)}

=
(
{t}
⋃
{t(c− xi,l) : 0 ≤ l ≤ wi − 1}

⋃
{t(xi,l − c) : wi + 1 ≤ l ≤ mi}

)
\
(
{t(c− yi,l+1) : 0 ≤ l ≤ wi − 1}

⋃
{t(yi,l − c) : wi + 1 ≤ l ≤ mi}

)
=
(
{t}
⋃
{|t(c− xi,l)| : 0 ≤ l ≤ mi, l 6= wi}

)
\ {|t(c− yi,l+1)| : 1 ≤ l ≤ mi},

which means that∑
�∈λ+

h�≡0(mod t)

h2r� −
∑
�∈λ

h�≡0(mod t)

h2r� =

t2r +
∑

0≤l≤mi

(t(c− xi,l))2r −
∑

1≤l≤mi

(t(c− yi,l))2r

since c = xi,wi
.

Case (ii). For 1 ≤ k ≤ t − 1 consider such pairs (j, j′) satisfying j′ − j ≡
k or t−k(mod t). Let 0 ≤ i′, i′′ ≤ t−1 satisfy i′ ≡ i+k(mod t) and i′′ ≡ i−k(mod t).
Then, by the similar argument as in Case (i) we obtain(
{h� ∈ H(λ+) : h� ≡ k(mod t)}

⋃
{h� ∈ H(λ+) : h� ≡ t− k(mod t)}

)
\
(
{h� ∈ H(λ) : h� ≡ k(mod t)}

⋃
{h� ∈ H(λ) : h� ≡ t− k(mod t)}

)
=
(
{|tc− txi′,l + bi − bi′ | : 0 ≤ l ≤ mi′}

⋃
{|tc− txi′′,l + bi − bi′′ | : 0 ≤ l ≤ mi′′}

)
\
(
{|tc− tyi′,l + bi − bi′ | : 1 ≤ l ≤ mi′}

⋃
{|tc− tyi′′,l + bi − bi′′ | : 1 ≤ l ≤ mi′′}

)
,

which means that∑
�∈λ+

h�≡k(mod t)

h2r� +
∑

�∈λ+

h�≡t−k(mod t)

h2r� −
∑
�∈λ

h�≡k(mod t)

h2r� −
∑
�∈λ

h�≡t−k(mod t)

h2r�

=
∑

0≤l≤mi′

(tc+ bi − txi′,l − bi′)2r −
∑

1≤l≤mi′

(tc+ bi − tyi′,l − bi′)2r

+
∑

0≤l≤mi′′

(tc+ bi − txi′′,l − bi′′)2r −
∑

1≤l≤mi′′

(tc+ bi − tyi′′,l − bi′′)2r.

Finally, by Cases (i) and (ii) the proof is completed. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemmas 5.2 and 5.4, the following two functions of par-
titions

gj(λ) =
∑
�∈λ

h�≡±j(mod t)

h2k�

and
g′j(λ) =

∑
�∈λ

c�≡j(mod t)

ck�

are µ-admissible for any t-core partition µ, nonnegative integer k, and 0 ≤ j ≤ t−1.
Then, the proof is achieved by Theorem 3.4. �
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6. Explicit formulas for the square case

Now we are able to deduce more explicit results.

Theorem 6.1. Suppose that µ is a given t-core partition. Recall that bi and di are
defined as in Section 4. Let 1 ≤ k ≤ t − 1. For every partition λ with λt-core = µ
we have ∑

�∈λ
h�≡k(mod t)

h2� +
∑
�∈λ

h�≡t−k(mod t)

h2� −

( ∑
�∈λ

c�≡k(mod t)

c2� +
∑
�∈λ

c�≡t−k(mod t)

c2�

)

=
∑
�∈µ

h�≡k(mod t)

h2� +
∑
�∈µ

h�≡t−k(mod t)

h2� −

( ∑
�∈µ

c�≡k(mod t)

c2� +
∑
�∈µ

c�≡t−k(mod t)

c2�

)

+
∑

(i,j)∈Bk

(
2t2ninj + t(bj + j − 2bi)djni + t(bi + i− 2bj)dinj

− 1

3
t2
(
djq3(λi) + diq3(λj)

))
,

where ni = |λi| for 0 ≤ i ≤ t− 1.

Proof. We will prove this result by induction on the size of λ. When λ = µ, we have
λi = ∅, ni = 0 and thus the identity holds. Now suppose that the identity holds for

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1).

We just need to prove it for

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1).

Let 0 ≤ i′, i′′ ≤ t−1 satisfy i′ ≡ i+k(mod t) and i′′ ≡ i−k(mod t). Set xi,wi
= c�i

.
By Lemma 5.4, we have∑

�∈λ+

h�≡k(mod t)

h2� +
∑

�∈λ+

h�≡t−k(mod t)

h2� −
∑
�∈λ

h�≡k(mod t)

h2� −
∑
�∈λ

h�≡t−k(mod t)

h2�

=
∑

0≤l≤mi′

(txi,wi
+ bi − txi′,l − bi′)2 −

∑
1≤l≤mi′

(txi,wi
+ bi − tyi′,l − bi′)2

+
∑

0≤l≤mi′′

(txi,wi
+ bi − txi′′,l − bi′′)2 −

∑
1≤l≤mi′′

(txi,wi
+ bi − tyi′′,l − bi′′)2

= (txi,wi
+ bi − bi′)2 − 2t(txi,wi

+ bi − bi′)

( ∑
0≤l≤mi′

xi′,l −
∑

1≤l≤mi′

yi′,l

)

+ t2

( ∑
0≤l≤mi′

x2i′,l −
∑

1≤l≤mi′

y2i′,l

)

+ (txi,wi
+ bi − bi′′)2 − 2t(txi,wi

+ bi − bi′′)

( ∑
0≤l≤mi′′

xi′′,l −
∑

1≤l≤mi′′

yi′′,l

)

+ t2

( ∑
0≤l≤mi′′

x2i′′,l −
∑

1≤l≤mi′′

y2i′′,l

)
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= (txi,wi
+ bi − bi′)2 + (txi,wi

+ bi − bi′′)2 + 2t2ni′ + 2t2ni′′ .

The last equality is due to Theorem 3.1(1). On the other hand, by Lemma 5.2 we
have ∑

�∈λ+

c�≡k(mod t)

c2� +
∑

�∈λ+

c�≡t−k(mod t)

c2� −

( ∑
�∈λ

c�≡k(mod t)

c2� +
∑
�∈λ

c�≡t−k(mod t)

c2�

)

= (txi,wi
+ bi − i′)2 + (txi,wi

+ bi − i′′)2.
By Theorem 3.1(3) we have

q3(λi ∪ {�i})− q3(λi) = 6xi,wi
.

Finally, after putting those identities together we know the theorem is also true
for λ+ and thus prove the claim. �

We now turn to a theorem still focused on one partition at a time, but this time
summing over contents or hook lengths divisible by t.

Theorem 6.2. Suppose that µ is a given t-core partition. For every partition λ
with λt-core = µ we have∑

�∈λ
h�≡0(mod t)

h2� −
∑
�∈λ

c�≡0(mod t)

c2�

= t2
t−1∑
i=0

(
n2i − d2ini −

1

3
diq3(λi)

)
−

∑
�∈µ

c�≡0(mod t)

c2�,

where ni = |λi| for 0 ≤ i ≤ t− 1.

Proof. We will prove this result by induction on the size of λ. Notice that µ(0) =
{h ∈ H(µ) | h ≡ 0 (mod t)} = ∅ since µ is a t-core partition. When λ = µ, we have
λi = ∅, ni = 0 and thus the identity holds. Now suppose that the identity holds for

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1).

We just need to prove it for

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1).

Let xi,wi
= c�i

. By Lemma 5.4 we have∑
�∈λ+

h�≡0(mod t)

h2� −
∑
�∈λ

h�≡0(mod t)

h2�

= t2 +
∑

0≤l≤mi

(txi,wi
− txi,l)2 −

∑
1≤l≤mi

(txi,wi
− tyi,l)2

= t2 + (txi,wi
)2 − 2t2xi,wi

( ∑
0≤l≤mi

xi,l −
∑

1≤l≤mi

yi,l

)

+ t2

( ∑
0≤l≤mi

x2i,l −
∑

1≤l≤mi

y2i,l

)
= t2 + t2x2i,wi

+ 2t2ni.
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The last equality is due to Theorem 3.1(1). Also, by Lemma 5.2 we have∑
�∈λ+

c�≡0(mod t)

c2� −
∑
�∈λ

c�≡0(mod t)

c2� = t2(xi,wi + di)
2.

By Theorem 3.1(3) we have

q3(λi ∪ {�i})− q3(λi) = 6xi,wi
.

Finally, putting these identities together, we prove the claim. �

It is clear that Theorem 1.4 is a consequence of Theorems 6.1 and 6.2 by let-
ting µ = ∅.

Theorem 1.6 is on t-Plancherel averages of square sums of congruent hook lengths.

Proof of Theorem 1.6. For two partitions

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and
λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1),

by Case (ii) of Lemma 5.4 we have∑
�∈λ+

h�≡k(mod t)

h2� +
∑

�∈λ+

h�≡t−k(mod t)

h2� −
∑
�∈λ

h�≡k(mod t)

h2� −
∑
�∈λ

h�≡t−k(mod t)

h2�

=
∑

0≤l≤mi′

(tc�i
+ bi − txi′,l − bi′)2 −

∑
1≤l≤mi′

(tc�i
+ bi − tyi′,l − bi′)2

+
∑

0≤l≤mi′′

(tc�i
+ bi − txi′′,l − bi′′)2 −

∑
1≤l≤mi′′

(tc�i
+ bi − tyi′′,l − bi′′)2

where i′ ≡ i+ k(mod t) and i′′ ≡ i− k(mod t).
Let

P (n) :=
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ

( ∑
�∈λ

h�≡k(mod t)

h2� +
∑
�∈λ

h�≡t−k(mod t)

h2�

)
.

Then, by Lemma 2.2 and Theorems 3.1, 3.2 we have

P (n+ 1)− P (n)

=
1

t

∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ

t−1∑
i=0

∑
λi+=λi∪{�i}

Hλi

Hλi+

( ∑
0≤l≤mi′

(tc�i
+ bi − txi′,l − bi′)2 −

∑
1≤l≤mi′

(tc�i
+ bi − tyi′,l − bi′)2

+
∑

0≤l≤mi′′

(tc�i
+ bi − txi′′,l − bi′′)2 −

∑
1≤l≤mi′′

(tc�i
+ bi − tyi′′,l − bi′′)2

)

=
1

t

∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ

t−1∑
i=0

∑
λi+=λi∪{�i}

Hλi

Hλi+
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2t2c2�i

+ 2t2|λi
′
|+ 2t2|λi

′′
|+ (bi − bi′)2 + (bi − bi′′)2

)
= 2tn+ 2tn+ 2tn+

1

t

t−1∑
i=0

(
(bi − bi′)2 + (bi − bi′′)2

)
.

On the other hand,

1

t

t−1∑
i=0

(
(bi − bi′)2 + (bi − bi′′)2

)
=

2

t

∑
(i,j)∈Bk

(bi − bj)2

=
2

t

∑
(i,j)∈Bk

(
t2(di − dj)2 + (i− j)2 + 2t(i− j)(di − dj)

)
= 2k(t− k) + 4t(|µ(k)|+ |µ(t− k)|).

The last equality is due to (4.2) and Lemma 4.2. Finally,

P (n+ 1)− P (n) = 6nt+ 2k(t− k) + 4t|µ(k)|+ 4t|µ(t− k)|.

Thus,

P (n) = 6t

(
n

2

)
+
(
2k(t− k) + 4t|µ(k)|+ 4t|µ(t− k)|

)
n+ P (0)

= 6t

(
n

2

)
+
(
2k(t− k) + 4t|µ(k)|+ 4t|µ(t− k)|

)
n

+

( ∑
�∈µ

h�≡k(mod t)

h2� +
∑
�∈µ

h�≡t−k(mod t)

h2�

)
. �

Theorem 1.7 is analogous to Theorem 1.6 when looking at t-Plancherel averages
of square sums of hook lengths, but only the lengths divisible by t are taken into
account.

Proof of Theorem 1.7. For two partitions

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1),

by Case (i) of Lemma 5.4 we have∑
�∈λ+

h�≡0(mod t)

h2� −
∑
�∈λ

h�≡0(mod t)

h2� = t2 + t2c2�i
+ 2t2ni.

Let

P (n) :=
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

h�≡0(mod t)

h2�.
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Then,

P (n+ 1)− P (n) =
1

t

∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ

t−1∑
i=0

∑
λi+=λi∪{�i}

Hλ

Hλi+

(t2 + t2c2�i
+ 2t2ni)

= t2 + 3t

t−1∑
i=0

ni

= t2 + 3nt.

Thus, we have

P (n) = nt2 + 3t

(
n

2

)
+ P (0) = nt2 + 3t

(
n

2

)
. �

Finally, the next two theorems have similar concerns, looking at t-Plancherel
averages, but this time for squares of contents. They are differentiated by the
restriction in Theorem 6.3 or looking only at contents in one congruence class.

Theorem 6.3. Suppose that µ is a given t-core partition and 0 ≤ k ≤ t − 1. For
each 0 ≤ i ≤ t− 1 let i′ satisfy 0 ≤ i′ ≤ t− 1 and i− i′ ≡ k(mod t). Then∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

c�≡k(mod t)

c2� = t

(
n

2

)
+

1

t

t−1∑
i=0

(bi − i′)2n+
∑
�∈µ

c�≡k(mod t)

c2�.

Proof. For two partitions

λ = (µ;λ0, λ1, . . . , λi−1, λi, λi+1, . . . , λt−1)

and

λ+ = (µ;λ0, λ1, . . . , λi−1, λi ∪ {�i}, λi+1, . . . , λt−1),

by Lemma 5.2 we have∑
�∈λ+

c�≡k(mod t)

c2� −
∑
�∈λ

c�≡k(mod t)

c2� = (tc�i
+ bi − i′)2.

Let

P (n) :=
∑

λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

c�≡k(mod t)

c2�.

Then, we have

P (n+ 1)− P (n) =
1

t

∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ

t−1∑
i=0

∑
λi+=λi∪{�i}

Hλ

Hλi+

(tc�i
+ bi − i′)2

= tn+
1

t

t−1∑
i=0

(bi − i′)2.

Finally, we obtain

P (n) = t

(
n

2

)
+

1

t

t−1∑
i=0

(bi − i′)2n+ P (0)
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= t

(
n

2

)
+

1

t

t−1∑
i=0

(bi − i′)2n+
∑
�∈µ

c�≡k(mod t)

c2�. �

Theorem 6.4. Suppose that µ is a given t-core partition. Then we have∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

c2� = t2
(
n

2

)
+

(t3 − t)n
6

+ 2tn|µ|+
∑
�∈µ

c2�.

Proof. By Theorem 6.3 we have∑
λt-core=µ
|λ/µ|=nt

Fλ/µGλ
∑
�∈λ

c2�

= t2
(
n

2

)
+

1

t

t−1∑
i=0

t−1∑
j=0

(bi − j)2n+
∑
�∈µ

c2�

= t2
(
n

2

)
+

(t3 − t)n
6

+ 2tn|µ|+
∑
�∈µ

c2�.

The last equality is due to (4.3), (4.4) and (4.5). �
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[16] G. Olshanski, Anisotropic Young diagrams and infinite-dimensional diffusion processes with

the Jack parameter, Int. Math. Res. Not. IMRN 6 (2010), 1102–1166.

[17] G. Olshanski, Plancherel averages: Remarks on a paper by Stanley, Electron. J. Combin. 17
(2010), research paper 43.

[18] G. Panova, Polynomiality of some hook-length statistics, Ramanujan J. 27 (2012), no. 3,

349–356.
[19] G.-C. Rota, On the foundations of combinatorial theory: I. Theory of Möbius functions, Z.
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