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Hankel continued fraction and its applications

Guo-Niu Han

Abstract. The Hankel determinants of a given power series f can be
evaluated by using the Jacobi continued fraction expansion of f . How-
ever the existence of the Jacobi continued fraction needs that all Hankel
determinants of f are nonzero. We introduce Hankel continued fraction,
whose existence and uniqueness are guaranteed without any condition for
the power series f . The Hankel determinants can also be evaluated by
using the Hankel continued fraction.

It is well known that the continued fraction expansion of a quadratic
irrational number is ultimately periodic. We prove a similar result for
power series. If a power series f over a finite field satisfies a quadratic
equation, then the Hankel continued fraction is ultimately periodic. As
an application, we derive the Hankel determinants of several automatic
sequences, in particular, the regular paperfolding sequence. Thus we pro-
vide an automatic proof of a result obtained by Guo, Wu and Wen, which
was conjectured by Coons-Vrbik.

1. Introduction

Let F be a field and x be a indeterminate. We identify a sequence
a = (a0, a1, a2, . . .) over F and its generating function f = f(x) = a0 +
a1x+ a2x

2 + · · · ∈ F[[x]]. Usually, a0 = 1. For each n ≥ 1 and k ≥ 0 the
Hankel determinant of the series f (or of the sequence a) is defined by

(1.1) H(k)
n (f) :=
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∣

∣

∣

∣

∣

ak ak+1 . . . ak+n−1

ak+1 ak+2 . . . ak+n

...
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...

ak+n−1 ak+n . . . ak+2n−2

∣

∣

∣

∣

∣

∣

∣

∣

∈ F.

Let Hn(f) := H
(0)
n (f), for short; the sequence of the Hankel determinants

of f is defined to be:

H(f) := (H0(f) = 1, H1(f), H2(f), H3(f), . . .).

The Hankel determinants play an important role in the study of the
irrationality exponent of automatic numbers. In 1998, Allouche, Peyrière,
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Wen and Wen proved that all Hankel determinants of the Thue-Morse se-
quence are nonzero [APWW]. Bugeaud [Bu11] was able to prove that the
irrationality exponent of the Thue-Morse-Mahler number is equal to 2 by
using APWW’s result. Using Bugeaud’s method, several authors obtained
the following results: first, Coons [Co13] who proved that the irrationality
exponent of the sum of the reciprocals of the Fermat numbers is 2; then,
Guo, Wu and Wen who showed that the irrationality exponents of the
regular paperfolding numbers are exactly 2 [GWW]. However, the evalu-
ations of the Hankel determinants still rely on the method developed by
Allouche, Peyrière, Wen and Wen, which consists of proving sixteen re-
currence relations between determinants (see [APWW, Co13, GWW]). A
combinatorial proof of the results by APWW and Coons about the Han-
kel determinants is derived by Bugeaud and the author [BH14]. In our
previous paper [Ha15] short proofs of those results are presented by using
Jacobi continued fractions.

The Hankel determinants of a given power series f can be evaluated by
using the Jacobi continued fraction expansion of f (see, e.g., [Kr98, Kr05,
Fl80, Wa48, Vi83, Ha15]). However the existence of the Jacobi continued
fraction needs that all Hankel determinants of f are nonzero. In Section 2
we introduce Hankel continued fraction, whose existence and uniqueness
are guaranteed without any condition for the power series. The Hankel
determinants can also be evaluated by using the Hankel continued fraction
(see Theorem 2.1). Let p be a prime number and Fp = Z/pZ be the finite
field of size p. In Section 3 we prove the following result.

Theorem 1.1. Let p be a prime number and F (x) ∈ Fp[[x]] be a power
series satisfying the following quadratic equation

(1.2) A(x) +B(x)F (x) + C(x)F (x)2 = 0,

where A(x), B(x), C(x) ∈ Fp[x] are three polynomials with one of the
following conditions

(i) B(0) = 1, C(0) = 0, C(x) 6= 0;

(ii) B(0) = 1, C(x) = 0;

(iii) B(0) = 1, C(0) 6= 0, A(0) = 0;

(iv) B(x) = 0, C(0) = 1, A(x) = −(akx
k)2 +O(x2k+1) for some k ∈ N

and ak 6= 0 when p 6= 2.

Then, the Hankel continued fraction expansion of F (x) exists and is ul-
timately periodic. Also, the Hankel determinant sequence H(F ) is ulti-
mately periodic.

It is well known that the simple continued fraction for a real number r
is infinite and ultimately periodic if and only if r is a quadratic irrational
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number [Hal13, Theorem 2.2.2 (Euler-Lagrange)]. The first part of Theo-
rem 1.1 can be viewed as a power series analog of Lagrange’s theorem for
real number. The converse, stated in Theorem 3.6, is an analog of Euler’s
theorem. We insist that there is no similar result with traditional Jacobi
continued fraction because of that its existence is not guaranteed. The
idea of introducing the concept of the Hankel continued fractions plays a
crucial role.

Notice that the Hankel continued fraction and the Hankel determinant
sequence in Theorem 1.1 can be entirely calculated by Algorithm 3.3. By
using Theorem 1.1 we derive the Hankel determinants of several automatic
sequences.

Theorem 1.2. For each pair of positive integers a, b, let

(1.3) Ga,b(x) =
1

x2a

∞
∑

n=0

x2n+a

1− x2n+b
∈ F2[[x]].

Then H(Ga,b) is ultimately periodic.

A list of Hankel determinants for the special cases of Theorem 1.2 ob-
tained by Algorithm 3.3 is given in Corollary 4.1. When a = b = 0,
we then reprove Coons’s Theorem [Co13]. The cases, where (a, b) =
(2, 1), (2, 0), (1, 1), are obtained in [Ha15] by using the Jacobi continued
fraction expansion. The case, where a = 0 and b = 2 was conjectured
by Coons and Vrbik [CV12] and recently proved by Guo, Wu and Wen
[GWW] by using APWW’s method. The sequence G0,2 is usually called
regular paperfolding sequence [Al87].

An ultimately periodic sequence is written in contracted form by us-
ing the star sign. For instance, the sequence a = (1, (3, 0)∗) represents
(1, 3, 0, 3, 0, 3, 0, . . .), that is, a0 = 1 and a2k+1 = 3, a2k+2 = 0 for each
positive integer k. Recall that the Rudin-Shapiro sequence (un) is defined
by

(1.4)

{

u0 = 0,
u2n = un, u4n+1 = un, u4n+3 = 1− u2n+1. (n ≥ 0)

Proposition 1.3. Let (un) be the Rudin-Shapiro sequence and

f(x) =
∑

n≥0

unx
n; f1(x) =

∑

n≥0

un+1x
n;

f2(x) =
∑

n≥0

un+2x
n; f3(x) =

∑

n≥0

un+3x
n.

Then,

H(f) ≡ (1, 0, 0, 0, 1, 0)∗ (mod 2);

H(f1) ≡ (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1)∗ (mod 2);
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H(f2) ≡ (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1)∗ (mod 2);

H(f3) ≡ (1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0)∗ (mod 2).

Recall that Stern’s sequence (an)n=0,1,... is defined by (see [St58])

{

a0 = 0, a1 = 1
a2n = an, a2n+1 = an + an+1. (n ≥ 1)

The twisted version of Stern’s sequence (bn) is defined by (see [BV13,
Ba10, Al12])

{

b0 = 0, b1 = 1,
b2n = −bn, b2n+1 = −(bn + bn+1). (n ≥ 1)

Let

S(x) =
∞
∑

n=0

an+1x
n and B(x) =

∑

n≥0

bn+1x
n

be the generating function for Stern’s sequence and twisted Stern’s se-
quence.

Proposition 1.4. The Hankel determinants of the Stern’s sequence and
the twisted Stern’s sequence verify the following relations

Hn(S)/2
n−2 ≡ Hn(B)/2n−2 ≡ (0, 0, 1, 1)∗ (mod 2).

The proofs of Theorem 1.2 and Propositions 1.3-4 are given in Section 4.
The results obtained in the paper about Hankel determinants can be used
for studying irrationality exponents [BHWY].

2. Hankel continued fractions

Let u = (u1, u2, . . .) and v = (v0, v1, v2, . . .) be two sequences. Recall
that the Jacobi continued fraction attached to (u,v), or J-fraction, for
short, is a continued fraction of the form

f(x) =
v0

1 + u1x− v1x
2

1 + u2x− v2x
2

1 + u3x− v3x
2

. . .

.

The basic properties on J-fractions, we now recall, can be found in [Kr98,
Kr05, Fl80, Wa48, Vi83, Ha15]. The J-fraction of a given power series f
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exists if and only if all the Hankel determinants Hn(f) are nonzero. The
first values of the coefficients un and vn in the J-fraction expansion can
be calculated by the Stieltjes Algorithm. Also, Hankel determinants can
be calculated from the J-fraction by means of the following fundamental
relation:

Hn(f) = vn0 v
n−1
1 vn−2

2 · · · v2n−2vn−1.

The Hankel determinants of a power series f can be calculated by the
above fundamental relation if the J-fraction exists, which is equivalent to
the fact that all Hankel determinants of f are nonzero. In this section we
define the so-called Hankel continued fraction expansion (Hankel fraction
or H-fraction, for short) whose existence and uniqueness are guaranteed
without any condition for the power series. The Hankel determinants can
also be evaluated by using the Hankel continued fraction.

The relation between continued fractions and Hankel determinants are
widely studied. See [Kr05, Vi83, Fl80] for S- and J-fractions; [Bu10] and
[Ci13] for C-fraction. The following table shows that the Hankel continued
fraction has some advantage over any other type of continued fractions.

Fraction Parameters Fraction Fraction Hankel det.
type existence uniqueness formula

S, J-fraction δ = 1, 2; kj = 0 No Yes Yes

C-fraction δ = 1, uj(x) = 0 Yes Yes No

H-fraction δ = 2 Yes Yes Yes

Definition 2.1. For each positive integer δ, a super continued fraction
associated with δ, called super δ-fraction for short, is defined to be a
continued fraction of the following form

(2.1) F (x) =
v0x

k0

1 + u1(x)x− v1x
k0+k1+δ

1 + u2(x)x− v2x
k1+k2+δ

1 + u3(x)x− . . .

where vj 6= 0 are constants, kj are nonnegative integers and uj(x) are
polynomials of degree less than or equal to kj−1 + δ − 2. By convention,
0 is of degree −1.

When δ = 1 (resp. δ = 2) and all kj = 0, the super δ-fraction (2.1) is
the traditional S-fraction (resp. J-fraction). A super 2-fraction is called
Hankel continued fraction. When δ = 1 and uj(x) = 0, the super 1-
fraction is a special C-fraction (set bj = k0 + k1 + · · ·kj−1 + ⌊j/2⌋ in
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[Ci13]). Notice that every power series has a unique C-fraction expansion,
but not all C-fractions have Hankel determinant formula, and only those
who are also super 1-fractions have.

Theorem 2.1. (i) Let δ be a positive integer. Each super δ-fraction
defines a power series, and conversely, for each power series F (x), the
super δ-fraction expansion of F (x) exists and is unique.

(ii) Let F (x) be a power series such that its H-fraction is given by (2.1)
with δ = 2. Then, all non-vanishing Hankel determinants of F (x) are
given by

(2.2) Hsj (F (x)) = (−1)ǫv
sj
0 v

sj−s1
1 v

sj−s2
2 · · · vsj−sj−1

j−1 ,

where ǫ =
∑j−1

i=0 ki(ki + 1)/2 and sj = k0 + k1 + · · ·+ kj−1 + j for every
j ≥ 0.

The first part of Theorem 2.1 is a consequence of Definition 2.1 and
can be proved by using an algorithm. In fact, if F (x) = v0x

k0 +O(xk0+1)
with v0 6= 0, then, F (x)/(v0x

k0) = 1 + O(x). The polynomial u1(x) can
be calculated by

v0x
k0

F (x)
= 1 + u1(x)x− xk0+δF1(x).

We repeat the same operation for F1(x) and get v1, k1, u2(x), etc. The
second part of Theorem 2.1 follows from the next lemma.

Lemma 2.2. Let k be a nonnegative integer and let F (x), G(x) be two
power series satisfying

(2.3) F (x) =
xk

1 + u(x)x− xk+2G(x)
,

where u(x) is a polynomial of degree less than or equal to k. Then,

(2.4) Hn(F ) = (−1)k(k+1)/2Hn−k−1(G).

Proof. Let F (x) =
∑

j fjx
j . We have fj = 0 for j ≤ k − 1 and fk = 1.

Let xk/F (x) =
∑

j bjx
j and G(x) =

∑

j gjx
j . We have gj = −bj+k+2 for

j ≥ 0. Let bj = fj = 0 when j < 0. We define four matrices by

F1 = (fi−j+k)0≤i,j≤n−1,

G = Diag
(

(bi+j−k)0≤i,j≤k, (gi+j)0≤i,j≤n−k−1

)

,

F = (fi+j)0≤i,j≤n−1,

B = (bj−i)0≤i,j≤n−1,
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and show that

(2.5) F1 ×G = F×B.

For example, when k = 3, n = 7, the four matrices and (2.5) are repro-
duced as follows.


















1 . . . . . .
f4 1 . . . . .
f5 f4 1 . . . .
f6 f5 f4 1 . . .
f7 f6 f5 f4 1 . .
f8 f7 f6 f5 f4 1 .
f9 f8 f7 f6 f5 f4 1





































. . . 1 . . .

. . 1 b1 . . .

. 1 b1 b2 . . .
1 b1 b2 b3 . . .
. . . . g0 g1 g2
. . . . g1 g2 g3
. . . . g2 g3 g4



















=



















. . . 1 f4 f5 f6

. . 1 f4 f5 f6 f7

. 1 f4 f5 f6 f7 f8
1 f4 f5 f6 f7 f8 f9
f4 f5 f6 f7 f8 f9 f10
f5 f6 f7 f8 f9 f10 f11
f6 f7 f8 f9 f10 f11 f12





































1 b1 b2 b3 b4 b5 b6
. 1 b1 b2 b3 b4 b5
. . 1 b1 b2 b3 b4
. . . 1 b1 b2 b3
. . . . 1 b1 b2
. . . . . 1 b1
. . . . . . 1



















Relations (2.5) are trivial for the entry (i, j) when 0 ≤ j ≤ k and when
j ≥ k + 1, i ≤ k. For i, j ≥ k + 1, the entries of the two sides of (2.5) are
respectively

LHS = fi−1gj−k−1 + fi−2gj−k + · · ·+ fi−n+k−1gj+n−2k−1

= −(fi−1bj+1 + fi−2bj+2 + · · ·+ fi−n+k−1bj+n−k+1);

RHS = fibj + fi+1bj−1 · · ·+ fi+n−1bj−n+1.

Since F (x)
∑

bjxj = xk, we have RHS − LHS = 0. Moreover, detF1 =
1, detG = (−1)k(k+1)/2Hn−k−1(G), detF = Hn(F ), detB = 1. This
completes the proof of (2.4).

Example 2.1. Let

(2.6) f(x) =
1−

√

1− 4x4

1+x

2x4
∈ Q[[x]].

Then the H-fraction (i.e. the super 2-fraction) of f(x) is equal to

(2.7) f(x) =
1

1 + x− x4

1− x4

1 + x− x4

1− x4

. . .

.
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In view of (2.1) we have vi = 1, k2i = 0, k2i+1 = 2 for all i and
(sj)j=0,1,... = (0, 1, 4, 5, 8, 9, 12, 13, . . .) where sj is defined in Theorem 2.1.
By Theorem 2.1 the Hankel determinant sequence is (see also [Ha15,
Proposition 3.7]) H(f) = (1, 1, 0, 0,−1,−1, 0, 0)∗.

Example 2.2. Let g(x) be the generating function for the number of
distinct partitions

g(x) =
∏

k≥1

(1 + xk) ∈ Q[[x]]

= 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + 8x9 + · · ·
Then the H-fraction of g(x) is equal to

g(x) =
1

1− x− x3

1 + x+
x5

1− x+ x2 − x3 − x5

1 + x+ x2 +
x3

1− x+
x3

. . .

.

We have

(kj)j=0,1,... = (0, 1, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, . . .),

(vj)j=0,1,... = (1, 1,−1, 1,−1,−1,−1, 1,−4,−1
4
, 1

4
,−8, . . .),

(sj)j=0,1,... = (0, 1, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, . . .),

(Hj(g))j=0,1,... = (1, 1, 0,−1, 0, 0,−1, 0, 1, 1, 0,−1,−1, 0, 1,−4, . . .).

Example 2.3. Let h(x) = (1 − x)1/3 ∈ F2[[x]]. Then the H-fraction of
h(x) is equal to

h(x) =
1

1 + x+
x4

1 + x+ x2 + x3 +
x4

1 + x+
x8

1 + x+ x2 + x3 +
x16

. . .

.

We have

(kj)j=0,1,... = (0, 2, 0, 6, 8, 22, 40, . . .),

(vj)j=0,1,... = (1,−1,−1,−1,−1,−1,−1, . . .),

(sj)j=0,1,... = (0, 1, 4, 5, 12, 21, 44, 85, . . .),

(Hj(h))j=0,1,... = (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, . . .).
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Example 2.4. Let f(x) ∈ Q[[x]] be the power series defined by (2.6) in
Example 2.1. The super 2-fraction of f(x) is periodic, as shown in (2.7)
with (kj)j=0,1,... = (0, 2)∗. Note that the super 3-fraction of f(x) is also
periodic and given by (2.7) with (kj)j=0,1,... = (0, 1)∗. Finally, the super
5-fraction (resp. 7-fraction) is ultimately periodic and equal to

f(x) =
1

1 + x− x4 − x8

1 + x− 2x4 − x8

1 + x− 2x4 − x8

. . .

with (kj)j=0,1,... = (0, 3)∗ (resp. (kj)j=0,1,... = (0, 1)∗).

3. The periodicity

In this section we prove Theorem 1.1. Let δ ∈ N
+ and F be a field.

With condition (i) in Theorem 1.1, the quadratic equation (1.2) has the
unique solution

F (1)(x) =
−B +

√
B2 − 4AC

2C

= −A

B

∞
∑

k=0

Ck

(CA

B2

)k

= −A

B
− CA2

B3
− 2C2A3

B5
− 5C3A4

B7
− · · · ,(3.1)

where Ck = (2k)!
k!(k+1)!

is the k-th Catalan number. The above power series

shows that F (1) is well-defined even the characteristic of F is equal to 2.
Under condition (iii), there are two solutions, F (1)(x) and

F (2)(x) =
−B −

√
B2 − 4AC

2C

= −B

C
+

A

B

∞
∑

k=0

Ck

(CA

B2

)k

= −B

C
+

A

B
+

CA2

B3
+

2C2A3

B5
+ · · · .

The power series F (x) satisfying (1.2) can be uniquely determined by the
constant term F (0).

Algorithm 3.1 [NextABC].

Prototype: (A∗, B∗, C∗; k, Ak, D) = NextABC(A,B,C; δ)

Input: A(x), B(x), C(x) ∈ F[x] three polynomials such that B(0) = 1,
A(0)C(0) = 0, C(x) 6= 0, A(x) 6= 0;
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Output: A∗(x), B∗(x), C∗(x) ∈ F[x], k ∈ N
+, Ak 6= 0 ∈ F, D(x) ∈ F[x] a

polynomial of degree less than or equal to k + δ − 1 such that D(0) = 1.

Step 1 [Define k, Ak]. Since A(x) 6= 0, let A(x) = Akx
k + O(xk+1) with

Ak 6= 0.

Step 2. Let

(3.2) F (x) = F (1)(x) =
−A(x)

B(x) + C(x)F (x)
.

Using (3.1) or (3.2) to get the first terms of F (x), F (x)/(−Akx
k) and of

−Akx
k/F (x):

F (x) = −Akx
k + · · ·+O(x2k+δ);

F (x)

−Akxk
= 1 + · · ·+O(xk+δ);

−Akx
k

F (x)
= 1 + · · ·+O(xk+δ).(3.3)

Step 3 [Define D]. Define D(x), G(x) by

(3.4)
−Akx

k

F (x)
= D(x)− xk+δG(x)

where D(x) is a polynomial of degree less than or equal to k+ δ − 1 such
that D(0) = 1 and G(x) is a power series. The value of D(x) is obtained
by (3.3).

Step 4 [Define A∗, B∗, C∗]. Let

A∗(x) =
(

−D2A/Ak +BDxk − CAkx
2k
)

/x2k+δ;

B∗(x) = 2AD/(Akx
k)−B;(3.5)

C∗(x) = −Axδ/Ak.

We will prove in Lemma 3.2 that A∗, B∗, and C∗ are polynomials.

Notice that in Step 2 we always take the solution F (1)(x). The case
of condition (iii) and the solution F (2)(x) is discussed in the proof of
Theorem 1.1 (see (3.12-13)).

Lemma 3.2. Let A(x), B(x), C(x) ∈ F[x] be three polynomials such that
B(0) = 1, C(0) = 0, C(x) 6= 0, A(x) 6= 0 and

(A∗, B∗, C∗; k, Ak, D) = NextABC(A,B,C; δ)
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obtained by Algorithm 3.1. If F (x) is the power series defined by (1.2),
then, F (x) can be written as

(3.6) F (x) =
−Akx

k

D(x)− xk+δG(x)

where G(x) is a power series satisfying

(3.7) A∗(x) +B∗(x)G(x) + C∗(x)G(x)2 = 0.

Furthermore, A∗(x), B∗(x), C∗(x) are three polynomials in F[x] such that
B∗(0) = 1, C∗(0) = 0, C∗(x) 6= 0 and

(3.8) deg(A∗) ≤ d; deg(B∗) ≤ d+ 1; deg(C∗) ≤ d+ δ,

where

d := d(A,B,C) = max(deg(A), deg(A) + δ − 2, deg(B)− 1, deg(C)− δ).

Proof. From (1.2) and (3.6), we have

A(D − xk+δG)2 +B(−Akx
k)(D − xk+δG) + C(−Akx

k)
2
= 0.

Thus, G(x) satisfies

(3.9) Ā(x) + B̄(x)G(x) + C̄(x)G(x)2 = 0

where

Ā = AD2 −BAkx
kD + CA2

kx
2k;

B̄ = −2ADxk+δ +BAkx
2k+δ;

C̄ = Ax2k+2δ.

By (1.2) and (3.6) the polynomial A is divisible by xk. Hence, C̄ and
B̄ are divisible by x2k+δ. Thanks to (3.9), Ā is also divisible by x2k+δ.
Consequently, (3.5) defines three polynomials A∗, B∗, C∗. Since A(x) =
Akx

k + O(xk+1), we have A(x)/(Akx
k)|x=0 = 1. By (3.3) and (3.4),

D(0) = 1. Hence

B∗(0) =
(

2AD/(Akx
k)−B

)

|x=0 = 2 · 1 ·D(0)−B(0) = 2− 1 = 1;

C∗(x) = −Axδ/Ak = −xk+δ +O(xk+δ+1) 6= 0;

C(0) = 0.

Moreover,

deg(A∗) ≤ max(deg(A) + δ − 2, deg(B)− 1, deg(C)− δ);

deg(B∗) ≤ max(deg(A) + δ − 1, deg(B));

deg(C∗) = deg(A) + δ.
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Let dA = deg(A), dB = deg(B)− 1, dC = deg(C)− δ and d∗A = deg(A∗),
d∗B = deg(B∗)− 1, d∗C = deg(C∗)− δ. The above inequalities become

d∗A ≤ max(dA + δ − 2, dB, dC);

d∗B ≤ max(dA + δ − 2, dB);

d∗C = dA.

So that d∗A, d
∗
B, d

∗
C ≤ max(dA, dA + δ − 2, dB, dC).

Keep the same notation as in Lemma 3.2 and let

d∗ := d(A∗, B∗, C∗)

= max(deg(A∗), deg(A∗) + δ − 2, deg(B∗)− 1, deg(C∗)− δ).

By Lemma 3.2, we have

d∗ ≤ max(d, d+ δ − 2, d, d) = max(d, d+ δ − 2).

Hence,

(3.10) d(A∗, B∗, C∗) ≤ d(A,B,C) for δ = 1, 2.

Algorithm 3.3 [HFrac].

Prototype: (ak, dk, Dk)k=0,1,... = HFrac(A,B,C; p, δ)

Input: δ = 1 or 2;

p a prime number;

A(x), B(x), C(x) ∈ Fp[x] three polynomials such that B(0) = 1,
C(0) = 0 and C(x) 6= 0;

Output: a finite or infinite sequence (ak, dk, Dk)k=0,1,...

Step 1. j := 0, A(j) := A, B(j) := B, C(j) := C.

Step 2. If A(j) = 0, then return the finite sequence (ak, dk, Dk)k=0,1,...,j−1.
The algorithm terminates.

Step 3. If A(j) 6= 0, then let

(A(j+1), B(j+1), C(j+1); dj, aj, Dj) := NextABC(A(j), B(j), C(j); δ).

Let j := j + 1.

Step 4. If there exists i with 0 ≤ i < j such that

(A(i), B(i), C(i)) = (A(j), B(j), C(j)),

then return the infinite sequence

((ak, dk, Dk)k=0,1,...,i−1, (ak, dk, Dk)
∗
k=i,i+1,...,j−1).

The algorithm terminates. Else, go to Step 2.

12



Remarks. (i) In Step 3 the conditions

B(j)(0) = 1, C(j)(0) = 0, C(j)(x) 6= 0

are guaranteed by Lemma 3.2. Algorithm 3.1 can be applied repeatedly.
(ii) The loop Steps 2-4 will be broken at Step 2 or Step 4, since the degrees
of the polynomials A(i), B(i), C(i) are bounded (see (3.10)), and the coeffi-
cients are taken from Fp. The number of different triplets (A(i), B(i), C(i))
is finite.

Proof of Theorem 1.1. There are several cases to be considered.

(i) If B(0) = 1, C(0) = 0, C(x) 6= 0, let

(ak, dk, Dk)k=0,1,... = HFrac(A,B,C; p, 2).

By Lemma 3.2,

(3.11) F (x) =
−a0x

d0

D0(x) +
a1x

d0+d1+2

D1(x) +
a2x

d1+d2+2

D2(x) +
a3x

d2+d3+2

. . .

and the above H-fraction is ultimately periodic (see Steps 2 and 4 in Algo-
rithm 3.3). Note that if A(x) = 0, then the output sequence ((ak, dk, Dk))
(k = 0, 1, 2, . . .) is the empty sequence. In this case F (x) = 0.

(ii) If B(0) = 1, C(x) = 0, then F (x) = −A(x)/B(x) is rational.

(iii) If B(0) = 1, C(0) 6= 0 and A(x) = 0, then F (x) is rational. If
B(0) = 1, C(0) 6= 0 and A(x) = Akx

k +O(xk+1) with k ≥ 1 and Ak 6= 0,
then equation (1.2) has two solutions, namely, F (1)(x) and F (2)(x). Note
that F(1)(x) = −Akx

k +O(xk+1) and F (2)(x) = −1/C(0) +O(x).

(iii.1) In the case of F (1)(x), let

F (1)(x) =
−Akx

k

D(x)− xk+2G(x)
.

Then, G(x) satisfies (3.7) with polynomials A∗, B∗, C∗ defined by (3.5)
(see the proof of Lemma 3.2). Since B∗(0) = 1, C∗(0) = 0, C∗(x) 6= 0, the
H-fraction expansion of G(x) exists and is ultimately periodic by case (i),
the same property holds for the H-fraction expansion of F (1)(x).
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(iii.2) In the case of F (2)(x), let

(3.12) F (2)(x) =
−1/C(0)

D(x)− x2G(x)
.

Then, G(x) satisfies (3.7) with polynomials A∗, B∗, C∗ defined (same proof
as Lemma 3.2):

A∗(x) =
(

D2AC(0)−BD + C/C(0)
)

/x2;

B∗(x) = −2ADC(0) +B;(3.13)

C∗(x) = C(0)Ax2.

Since B∗(0) = 1, C∗(0) = 0, C∗(x) 6= 0, the H-fraction expansion of G(x)
exists and is ultimately periodic by case (i), the same property holds for
the H-fraction expansion of F (2)(x).

(iv) If B(x) = 0, C(0) = 1 (or C(0) 6= 0) and A(x) = −(akx
k)2+O(x2k+1)

for some k ∈ N and ak 6= 0, then F (x) exists

F (x) =

√

−A(x)

C(x)
=

√

(akxk)2 + · · ·
C(x)

= akx
k

√

1 + · · ·
C(x)

Let

F (x) =
akx

k

D(x)− xk+2G(x)
.

Then, G(x) satisfies (3.7) with A∗, B∗, C∗ defined (same proof as Lemma
3.2):

A∗(x) = (D2A+ Ca2kx
2k)/x3k+2;

B∗(x) = −2ADxk+2/x3k+2;(3.14)

C∗(x) = Ax2k+4/x3k+2.

If p 6= 2, then A∗, B∗, C∗ are polynomials such that B∗(0) 6= 0, C∗(0) =
0, C∗(x) 6= 0. The H-fraction expansion of G(x) exists and is ultimately
periodic by case (i), the same property holds for the H-fraction expansion
of F (x).

The periodicity of the Hankel determinant sequence H(F ) is a conse-
quence of Lemma 3.4 stated below.

Lemma 3.4. Let p be a prime number. If the H-fraction expansion
of a power series F (x) ∈ Fp[[x]] is ultimately periodic, then the Hankel
determinant sequence H(F ) is ultimately periodic.

Proof. Using the notation of Theorem 2.1 the two sequences (vi) and
(ki) can be written as

(vi) = (v0, v1, . . . , vm−1, (vm, vm+1, . . . , vm+t−1)
∗);

(ki) = (k0, k1, . . . , km−1, (km, km+1, . . . , km+t−1)
∗).
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Let

γ1 =

m+t−1
∏

i=m

(−1)ki(ki+1)/2, γ2 =

m+t−1
∏

i=m

vsm−si
i , γ3 =

m−1
∏

i=0

vi,

β =
m+t−1
∏

i=m

vi, r = sm+t − sm,

γ = γ1γ
r
3γ2β

r−sm , η = ⌈ℓ−m

t
⌉, ρ = ℓ−m− ηt.

For each ℓ ≥ m we have

Hsℓ(F ) =

ℓ−1
∏

i=0

(−1)ki(ki+1)/2vsℓ−si
i

and

(3.15) Hsℓ+r(F ) =
ℓ+t−1
∏

i=0

(−1)ki(ki+1)/2vsℓ+r−si
i .

If p = 2, then Hsℓ(F ) = Hsℓ+r(F ) = 1. Hence H(F ) is ultimately peri-
odic. For general p we need to evaluate (3.15).

Hsℓ+r(F ) =

ℓ−1
∏

i=0

(−1)ki(ki+1)/2vsℓ+r−si
i ×

ℓ+t−1
∏

i=ℓ

(−1)ki(ki+1)/2vsℓ+r−si
i

= Hsℓ(F )
ℓ−1
∏

i=0

vri × γ1

ℓ+t−ρ−1
∏

i=ℓ

vsℓ+r−si
i

ℓ+t−1
∏

i=ℓ+t−ρ

vsℓ+r−si
i

= Hsℓ(F )
ℓ−1
∏

i=0

vri × γ1

ℓ+t−ρ−1
∏

i=ℓ

vri

ℓ+t−ρ−1
∏

i=ℓ

vsℓ−si
i

ℓ−1
∏

i=ℓ−ρ

vsℓ−si
i

= Hsℓ(F )γ1

ℓ+t−ρ−1
∏

i=0

vri

ℓ+t−ρ−1
∏

i=ℓ

vsℓ−si
i

ℓ−1
∏

i=ℓ−ρ

vsℓ−si
i

= Hsℓ(F )γ1γ
r
3

ℓ+t−ρ−1
∏

i=m

vri

ℓ+t−ρ−1
∏

i=ℓ−ρ

vsℓ−si
i

= Hsℓ(F )γ1γ
r
3

m+ηt+t−1
∏

i=m

vri

m+t−1
∏

i=m

v
sm+ρ−si
i

= Hsℓ(F )γ1γ
r
3

m+ηt+t−1
∏

i=m

vri

m+t−1
∏

i=m

v
sm+ρ−sm
i × γ2

= Hsℓ(F )γ1γ
r
3γ2β

(η+1)rβsm+ρ−sm

= Hsℓ(F )βsℓγ.(3.16)

15



We apply (3.16) recursively and get

Hsℓ+2θr(F ) = Hsℓ(F )β2θsℓβθ(2θ−1)γ2θ.

Since β 6= 0 and γ 6= 0, there exists θ such that βθ = 1 ∈ Fp and
γ2θ = 1 ∈ Fp. Hence,

Hsℓ+2θr(F ) = Hsℓ(F ).

So thatH(F ) is an ultimately periodic sequence. Moreover, 2θr is a period
with offset sm. If p = 2, then r is a period with offset sm. The least period
is a divisor of 2θr (or r when p = 2) and the least offset is less than or
equal to sm.

For convenience, the following notation is used for continued fraction

v0
u1 +

v1
u2 +

v2
u3 +

v3
u4 +

· · · =
v0

u1 +
v1

u2 +
v2

u3 +
v3

u4 +
.. .

.

Example (i.1). Let p = 5 and

F =
1−

√

1− 4x
1−x4

2x
∈ F5[[x]]

or

−1 + (1− x4)F + (−x+ x5)F 2 = 0.

By Algorithm 3.3 [HFrac], we successively get

k A(k) B(k) C(k) dk αk

0 4 1 + 4x4 4x+ x5 0 4
1 4 + 4x2 + 2x3 1 + 3x+ x4 4x2 0 4
2 3 + x+ 4x2 + x3 1 + 3x+ 2x2 + 2x3 + 2x4 4x2 + 4x4 + 2x5 0 3
3 4x+ 4x3 1 + 3x+ 3x2 + 3x3 + 2x4 4x2 + 3x3 + 2x4 + 3x5 1 4
4 4 + 3x+ 2x2 + 3x3 1 + 3x+ 3x2 + 3x3 + 2x4 4x3 + 4x5 0 4
5 3 + 3x2 + 4x3 1 + 3x+ 2x2 + 2x3 + 2x4 4x2 + 3x3 + 2x4 + 3x5 0 3
6 4 1 + 3x+ x4 4x2 + 4x4 + 2x5 0 4
7 4 1 + 3x+ 4x4 4x2 0 4
8 4 + 4x2 + 2x3 1 + 3x+ x4 4x2 0 4

We see (A(1), B(1), C(1)) = (A(8), B(8), C(8)). The output of Algorithm 3.3
is reproduced next:

(

(4, 0, 4x+ 1)
)

,
(

(4, 0, 3x+ 1), (3, 0, x+ 1), (4, 1, 2x2 + 3x+ 1),

(4, 0, x+ 1), (3, 0, 3x+ 1), (4, 0, 3x+ 1), (4, 0, 3x+ 1)
)∗
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In view of (3.11), the H-fraction expansion of the power series F is equal
to

F =
1

1 + 4x +

( 4x2

1 + 3x +

3x2

1 + x +

4x3

1 + 3x+ 2x2

+

4x3

1 + x +

3x2

1 + 3x +

4x2

1 + 3x +

4x2

1 + 3x +

)∗

.

Hence, m = 1, t = 7, (ki)i≥0 = (0, (0, 0, 1, 0, 0, 0, 0)∗),

(si)i≥0 = (0, 1, 2, 3, 5, 6, 7, 8, 9, 10, . . .),

r = sm+t − sm = 8, and β = 4, γ1 = −1, γ2 = 4, γ3 = 1, γ = 4, θ = 2.
So that 2θr = 32 is a period with offset sm = 1. Checking the first
32+1 = 33 terms, we observe that the least period is equal to 16 with the
least offset 0. Hence

H(g) = (1, 1, 1, 2, 0, 2, 4, 1, 4, 1, 4, 2, 0, 2, 1, 1)∗.

Example (i.2). Let p = 2 and

(3.17) F =
1−

√

1− 4x
1−x4

2x
∈ F2[[x]]

or

(3.18) − 1 + (1− x4)F + (−x+ x5)F 2 = 0.

By Algorithm 3.3 [HFrac], we get the following H-fraction expansion

F =
1

1 + x +

(x2

1 +

x4

1 +

x6

1 +

x4

1 +

x2

1 +

x2

1 +

)∗

.

Hence, m = 1, t = 6, (ki)i≥0 = (0, (0, 2, 2, 0, 0, 0)∗),

(si)i≥0 = (0, 1, 2, 5, 8, 9, 10, 11, . . .),

r = s7− s1 = 10. Since p = 2, 10 is a period with offset sm = 1. Checking
the first 10+1 = 11 terms inH(f), which are (1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, . . .),
we see that the least period is equal to 10 with offset 0. Finally,

H(f) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)∗.

Example (iii.1). Let p = 2 and G = xF where F is defined in Example
(i.2) by (3.17) or (3.18). We have

G =
1−

√

1− 4x
1−x4

2
∈ F2[[x]]

and
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(3.19) − x+ (1− x4)G+ (−1 + x4)G2 = 0 with G(0) = 0.

Since the coefficient of G2 has constant term, we cannot apply Algo-
rithm 3.3 directly. Let

G =
x

1 + x+ x2 + x3G1
.

Equation (3.19) becomes

x3 + (1 + x4)G1 + x3G2
1 = 0.

By Algorithm 3.3 [HFrac], we get the following H-fraction expansion

G1 =
x3

1 + x4 +

(x6

1 +

x4

1 + x2 +

x4

1 +

x6

1 + x4 +

)∗

.

Hence

G =
x

1 + x+ x2 +

( x6

1 + x4 +

x6

1 +

x4

1 + x2 +

x4

1 +

)∗

.

Example (iii.2). Let p = 2 and

G =
1 +

√

1− 4x
1−x4

2
∈ F2[[x]].

We have

(3.20) − x+ (1− x4)G+ (−1 + x4)G2 = 0 with G(0) = 1.

Since the coefficient of G2 has constant term, we cannot apply Algo-
rithm 3.3 directly. Let

G =
1

1 + x+ x2G1
.

Equation (3.20) becomes

(3.21) (x+ x3) + (1 + x4)G1 + x3G2
1 = 0.

By Algorithm 3.3 [HFrac], we get the following H-fraction expansion

(3.22) G1 =
x

1 + x2 +

(x4

1 +

x6

1 + x4 +

x6

1 +

x4

1 + x2 +

)∗

.

Hence

G =
1

1 + x +

x3

1 + x2 +

(x4

1 +

x6

1 + x4 +

x6

1 +

x4

1 + x2 +

)∗

.
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Example (iv). Let p = 3 and

F =

√

x2 − x3

1 + x3
∈ F3[[x]]

or

(3.23) (−x2 + x3) + (1 + x3)F 2 = 0.

Since the coefficient of F is zero, we cannot apply Algorithm 3.3 directly.
Let

F =
x

1 + 2x+ x3F1
.

Equation (3.23) becomes

2 + (1 + x+ x2)F1 + (2x3 + x4)F 2
1 = 0.

By Algorithm 3.3 [HFrac], we get the following H-fraction expansion

F1 =
1

1 + x +

( x2

1 + x +

2x2

1 + x +

x2

1 + x +

2x3

1 + 2x +

2x3

1 + x +

)∗

.

Hence, the H-fraction expansion of F is

x

1 + 2x +

x3

1 + x +

( x2

1 + x +

2x2

1 + x +

x2

1 + x +

2x3

1 + 2x +

2x3

1 + x +

)∗

.

Algorithm 3.3 and the proof of Theorem 1.1 are also valid for super
1-fractions with δ = 1. Consequently, the following theorem holds.

Theorem 3.5. Let p be a prime number and let F (x) ∈ Fp[[x]] be a
power series satisfying the following quadratic equation

A(x) +B(x)F (x) + C(x)F (x)2 = 0,

where A(x), B(x), C(x) ∈ Fp[x] are three polynomials with one of the
following conditions

(i) B(0) = 1, C(0) = 0, C(x) 6= 0;

(ii) B(0) = 1, C(x) = 0;

(iii) B(0) = 1, C(0) 6= 0, A(0) = 0;

(iv) B(x) = 0, C(0) = 1, A(x) = −(akx
k)2 +O(x2k+1) for some k ∈ N

and ak 6= 0 when p 6= 2.
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Then, the super 1-fraction expansion of F (x) exists and is ultimately pe-
riodic.

For example, take the power series G1(x) ∈ F2[[x]] defined by (3.21),
we have

G1 =
x

1 + x2 +

(x4

1 +

x6

1 + x4 +

x6

1 +

x4

1 + x2 +

)∗

[H-fraction]

=
x

1 +

(x2

1 +

x2

1 +

x2

1 +

x4

1 +

x6

1 +

x4

1 +

)∗

. [Super 1-frac.]

The converse of Theorem 3.5 and of the first part of Theorem 1.1 is
stated next, which can be viewed as a power series analog of Euler’s the-
orem for quadratic irrational number.

Theorem 3.6. Let δ be a nonnegative integer and F (x) a power series.
If the super δ-continued fraction expansion of F (x) is ultimately periodic,
then F (x) satisfies the quadratic equation (1.2).

Proof. Without lost of generality, we suppose that the super δ-continued
fraction of F (x) is ultimately periodic of periodic 3 with offset 3. So that

F (x) =
v0x

k0

1 + u1(x)x− v1x
k0+k1+δ

1 + u2(x)x− v2x
k1+k2+δ

1 + u3(x)x− xk2+δG(x)

,(3.24)

where

G(x) =
v3x

k3

1 + u4(x)x− v4x
k3+k4+δ

1 + u5(x)x− v5x
k4+k5+δ

1 + u6(x)x− xk5+δG(x)

.(3.25)

The right-hand side of the above two equalities is always of form

P (x) +Q(x)G(x)

R(x) + S(x)G(x)
,

where P,Q,R, S are four polynomials. From (3.25) and (3.24), G(x) and
F (x) satisfy the quadratic equation (1.2).

Note that the converse of the second part of Theorem 1.1 is not true.
For example, the Hankel determinant sequence H(f), where

(3.26) f(x) =
1

1− x −
x2

1− 2x −
x2

1− 3x −
x2

1− 4x − · · ·

is periodic of period 1, but the J-fraction expansion of f is not ultimately
periodic.
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4. Application to automatic sequences

Proof of Theorem 1.2. Let f(x) = Ga,b(x) ∈ F2[[x]]. Then

x2a

f(x) =

∞
∑

n=0

x2n+a

1− x2n+b
;

x2a+1

f(x2) =

∞
∑

n=1

x2n+a

1− x2n+b
;

x2a

f(x2) = f(x)− 1

1− x2b
;

1 + (1 + x2b

)f(x) + x(1 + x2b

)x2a−1f(x)2 = 0.

The above equation is of type (1.2). By Theorem 1.1 the Hankel determi-
nant sequence H(f) is ultimately periodic.

The following corollary is obtained by Algorithm 3.3. The case for the
regular paperfolding sequence, i.e., a = 0, b = 2, is verified in Section 3,
Example (i.2).

Corollary 4.1. Let Ga,b(x) be the power series in F2[[x]] defined by (1.3).
Over the field F2 we have

H(G0,0) = (1)∗; [APWW 1998; Coons 2013]

H(G0,1) = 1, 1, (0)∗;

H(G1,0) = (1)∗;

H(G0,2) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)∗; [Guo-Wu-Wen 2013]

H(G1,1) = (1, 1, 0, 0, 1, 1)∗;

H(G2,0) = (1, 1, 0, 0)∗;

H(G0,3) = (1502110613021202120411041102110211

041104120212021306110214)∗; [least period is 74]

H(G1,2) = 1, 1, 1, (0)∗;

H(G2,1) = (1, 1, 1, 1, 1, 1, 0, 0)∗;

H(G3,0) = (1, 1, 0, 0, 0, 0, 0, 0)∗;

H(G0,4) = (19021102 · · ·110218)∗; [least period is 1078]

H(G1,3) = (1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1)∗;

H(G2,2) = (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)∗;

H(G3,1) = (1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)∗;

H(G4,0) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∗.
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Proof of Proposition 1.3. Let f(x) =
∑

n≥0 unx
n ∈ F2[[x]] where (un)

is the Rudin-Shapiro sequence defined by (1.4). Then

(4.1) x3 + (1 + x)4f(x) + (1 + x)5f2(x) = 0.

Since u0 = u1 = u2 = 0, the following divisions yield power series:

f1(x) = f(x)/x; f2(x) = f(x)/x2; f3(x) = f(x)/x3.

From (4.1) we derive

x2 + (1 + x)4f1(x) + (1 + x)5xf2
1 (x) = 0;

x+ (1 + x)4f2(x) + (1 + x)5x2f2
2 (x) = 0;

1 + (1 + x)4f3(x) + (1 + x)5x3f2
3 (x) = 0.

From Algorithm 3.3 we obtain the following H-fractions for f1, f2, f3:

f1 =
x2

1 + x3 +

( x6

1 + x2 +

x6

1 +

x4

1 +

x2

1 +

x6

1 + x4

+

x6

1 +

x2

1 +

x4

1 +

)∗

;

f2 =
x

1 +

(x3

1 +

x3

1 + x2 +

x3

1 +

x3

1 +

x3

1 + x +

x2

1

+

x2

1 + x +

x5

1 + x4 +

x5

1 + x +

x2

1 +

x2

1 + x +

x3

1 +

)∗

;

f3 =
1

1 +

(x3

1 +

x3

1 +

x2

1 + x +

x2

1 + x +

x2

1 +

x2

1 + x +

x3

1

+

x3

1 + x +

x4

1 +

x5

1 + x+ x2 +

x4

1 + x+ x2 +

x3

1 +

)∗

.

The Hankel determinants H(f1), H(f2), H(f3) given in Proposition 1.3
follow from the above H-fractions. For the unshifted Rudin-Shapiro se-
quence f , we have

A = x3, B = (1 + x)4, C = (1 + x)5.

Since B(0) = C(0) = 1, we are in the case (iii) in the proof of Theorem 1.1.
Let

f =
x3

1 + x3 + x5g
.

Equation (4.1) becomes

(x+ x3) + (1 + x4)g + x5g2 = 0.
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By Algorithm 3.3 [HFrac], we get the following H-fraction expansion for g

g =
x

1 + x2 +

( x6

1 + x4 +

x6

1 + x2 +

)∗

.

Hence,

f =
x3

1 + x3 +

( x6

1 + x2 +

x6

1 + x4 +

)∗

.

The Hankel determinants H(f) given in Proposition 1.3 follow from the
above H-fraction of f , or Lemma 2.2.

Let k be a positive integer and fk(x) the generating function of the k-
shifted Rudin-Shapiro sequence. Then, the Hankel determinant sequence
of fk(x) is periodic of least period r(k). The first values of r(k) are listed
next.

k : 0 1 2 3 4 5 6 7 8 9 10 · · ·
r(k) : 6 18 18 18 18 36 36 36 36 72 72 · · ·

Conjecture 4.2. Let k ≥ 3. The least period of the Hankel determinant
sequence of fk(x) is equal to r(k) = 9×2m, where m is the positive integer
satisfying 2m < k ≤ 2m+1.

Conjecture 4.2 has been checked by computer for k up to 129.

Proof of Proposition 1.4. It is well known that [BV13]

(4.2) S(x) = (1 + x+ x2)S(x2) ∈ Q[[x]].

Since S(x) (mod 2) is rational, there exists a positive integer N such that
Hk(S) ≡ 0 (mod 2) for all k ≥ N . We will use the grafting technique,
introduced in [Ha15, Section 2]. First, the H-fraction of S(x) is

S(x) =
1

1− x −
x2

1 + 2x +

2x2

1 −
2x3

1− 3
2
x+ 11

4
x2 +

. . . .

The even number 2 occurs in the sequence (vj), in particular at position
v2 in view of (2.1). Define G(x) by

S(x) =
1

1− x− x2

1 + 2x+ 2x2G(x)

.

From (4.2) the power series G(x) satisfies the following relation

(1 + x+ x2) + (1 + x+ x2)G(x) + x4G(x2) ≡ 0 (mod 2).
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By Algorithm 3.3 we get H(G) ≡ (1, 1, 0, 0)∗ (mod 2). By Lemma 2.2,
Hn(S) = (−1)n2n−2Hn−2(G). Hence

Hn(S)/2
n−2 ≡ (0, 0, 1, 1)∗ (mod 2).

In the same manner, B(x) is a rational function modulo 2. We use the
grafting technique. Since [BV13]

(4.3) B(x) = 2− (1 + x+ x2)B(x2)

and

B(x) =
1

1 + x +

x2

1 +

2x2

1− 2x +

x4

. . .
we define U(x) by

B(x) =
1

1 + x+
x2

1 + 2x2U(x)

.

From (4.3) the power series U(x) satisfies the following functional equation

(1 + x+ x2) + (1 + x+ x2)U(x) + x4U(x2) ≡ 0 (mod 2).

By Algorithm 3.3 we get H(U) = (1, 1, 0, 0)∗ (mod 2). On the other
hand, the Hankel determinant Hn(B) = −2n−2Hn−2(U) by Lemma 2.2.
Hence, Hn(B)/2n−2 ≡ (0, 0, 1, 1)∗ (mod 2).

5. Some conjectures about Hankel determinant sequences

The Hankel determinants associated with a given power series f(x) are
always nonzero if and only if the Jacobi fraction of f(x) exists. This
non-vanishing property can be used for studying irrationality exponents
in Number Theory. Even some progress is made in the present paper
together with two previous papers [Ha15, FH16], the problem is still very
hard to solve in the general case. We reproduce several conjectures on this
topic, comparing with known results. Let

P1 = 3

∞
∏

n=1

(1− x3n

)− 2

1− x
, C2 = 3

∞
∏

n=1

(1 + x3n

)− 2

1− x
,

P3 =
1

x

∞
∑

n=0

x2n

1− x2n , C4 = 1 +

∞
∑

n=0

x2n

1− x2n ,

F5 =
1

x

∞
∑

n=0

x2n

1− x2n+2
,
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P7 =
∏

n≥0

(1− x5n − x2·5n − x3·5n

+ x4·5n

),

C8 =
∏

n≥0

(1− x6n − x2·6n − x3·6n

+ x4·6n − x5·6n

),

C9 =
∏

n≥0

(1− xn)3 =
∞
∑

n=0

(−1)n(2n+ 1)xn(n+1)/2,

C10 =

∞
∑

n=0

(−1)nxn(n+1)/2.

Proposition 5.1 [Ha15, Proposition 2.5]. Hk(P1) 6= 0 for all k.

Conjecture 5.2. Hk(C2) 6= 0 for all k.

Proposition 5.3 [Corollary 4.1; Co13, APWW]. Hk(P3) 6= 0 for all k.

Conjecture 5.4. Hk(C4) 6= 0 for all k.

Proposition 5.5 [Corollary 4.1; GWW]. H(F5) (mod 2) is periodic.

Conjecture 5.6. H(F5) (mod p) is not periodic for prime integer p ≥ 3.

Proposition 5.7 [FH16, Theorem 1.2 ]. Hk(P7) 6= 0 for all k.

Conjecture 5.8. Hk(C8) 6= 0 for all k.

Conjecture 5.9. Hk(C9) 6= 0 for all k.

Conjecture 5.10. Hk(C10) 6= 0 for all k.
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