NUMERICAL SIMULATION OF LASER-INDUCED CAVITATION BUBBLES

Mathieu Bachmann
Institut für Geometrie und Praktische Mathematik,
RWTH Aachen

Joint work with:
Josef Ballmann, Siegfried Müller, RWTH Aachen.
Dennis Kröninger, Thomas Kurz, Universität Göttingen.
Philippe Helluy, Hélène Mathis, Université de Louis Pasteur Strasbourg.
Outline

1. Introduction
2. Experiments
3. Mathematical Model
4. Discretization
5. Initial data
6. Numerical simulation and validation
7. Conclusion and Outlook
Introduction

- **Goal**: Investigation of flow phenomena caused by a collapsing bubble.

- **Need**: Mathematical model + Initial data

 ⇒ Focus on the modelling and the simulation of a single bubble.
Experiments

- Bubbles induced by laser pulses in a container of size $50 \times 50 \times 50 \text{ mm}^3$.

- $R_{\text{max}} = 1 \text{ mm}$.

- $R_{\text{min}} = 10 \text{ µm}$.

- The experiment lasts $200\mu s$.

Mathematical Model

- The 1d-Euler equations in spherical coordinates

\[
\frac{\partial}{\partial t} (r^2 \rho) + \frac{\partial}{\partial r} (r^2 (\rho v_r)) = 0
\]

\[
\frac{\partial}{\partial t} (r^2 \rho v_r) + \frac{\partial}{\partial r} (r^2 (\rho v_r^2 + p)) = 2 \rho r
\] \((1) \)

\[
\frac{\partial}{\partial t} (r^2 \rho E) + \frac{\partial}{\partial r} (r^2 (\rho v_r (E + p/\rho))) = 0
\]

- The stiffened gas pressure law is used to close the system.

\[
p(\rho, e, \varphi) = (\gamma(\varphi) - 1) \rho e - \gamma(\varphi) \pi(\varphi).
\] \((2) \)

\(\varphi \) is the phase indicator function (gas fraction, level set function).
Saurel Abgrall Approach

• The two phases (gas and liquid) are distinguished by the mass fraction φ which satisfies a transport equation without mass transfer.

$$\frac{\partial \varphi}{\partial t} + v_r \frac{\partial \varphi}{\partial r} = 0.$$

• For the pure phases, the coefficients γ and π are obtained by measurements.

• A linear interpolation between the two phases is used for the mixture,

$$\beta_1(\varphi) = \varphi \beta_1(1) + (1 - \varphi) \beta_1(0),$$

$$\beta_2(\varphi) = \varphi \beta_2(1) + (1 - \varphi) \beta_2(0).$$

where β_1 and β_2 are defined by $\beta_1 = 1/(\gamma - 1)$ and $\beta_2 = \gamma \pi / (\gamma - 1)$.
Level Set Method

- This approach represents the interface as a zero level set of a smooth function ϕ which is the signed distance from the interface.

\[
\phi(r, t) = \begin{cases}
 r_I - r, & r < r_I \\
 0, & r = r_I \\
 r - r_I, & r > r_I
\end{cases}
\]

- The evolution of this function ϕ is governed by a transport equation,

\[
\frac{\partial \phi}{\partial t} + v_r \frac{\partial \phi}{\partial r} = 0 \quad \text{with} \quad \left| \frac{\partial \phi}{\partial r} \right| = 1.
\]

- The level set is reinitialized to keep ϕ a distance function,

\[
\frac{\partial \tilde{\phi}}{\partial \tau} = S(\tilde{\phi}) \left(1 - \left| \frac{\partial \tilde{\phi}}{\partial r} \right| \right) \quad S(\tilde{\phi}) = \begin{cases}
 -1, & \tilde{\phi} < 0 \\
 0, & \tilde{\phi} = 0 \\
 1, & \tilde{\phi} > 0
\end{cases}
\]
Discretization Fluid Equations

- The Euler equations are solved by a finite volume scheme

\[
\mathbf{v}_i^{n+1} = \mathbf{v}_i^n - \frac{\Delta t}{\Delta r_i^3} \left(r_{i+\frac{1}{2}}^2 \mathbf{F}_{i+\frac{1}{2}}^{n,-} - r_{i-\frac{1}{2}}^2 \mathbf{F}_{i-\frac{1}{2}}^{n,+} \right) + \frac{\Delta r_i \Delta t}{\Delta r_i^3} \mathbf{S}_i^n
\]

with
\[
\mathbf{v} = (\rho, \rho v_r, \rho E)^T,
\]
\[
\Delta r_i := r_{i+\frac{1}{2}} - r_{i-\frac{1}{2}}, \quad \Delta r_i^3 := \frac{1}{3} \left(r_{i+\frac{1}{2}}^3 - r_{i-\frac{1}{2}}^3 \right), \quad \hat{r}_i := \frac{1}{2} \left(r_{i+\frac{1}{2}} + r_{i-\frac{1}{2}} \right),
\]
\[
\mathbf{S}_i^n := (0, 2\hat{r}_i p_i^n, 0).
\]

- Multiscale grid adaptation (Müller)
Numerical Flux: Saurel Abgrall Method

- Second order ENO reconstruction of primitive variables ρ, v_r, p, φ

- Exact Riemann solver for the flux

 \Rightarrow 1D contact discontinuities are preserved
Numerical Flux: Real Ghost Fluid Method (Wang, Liu, Khoo)

- A Riemann problem is defined at the interface and solved for predicting the interfacial states (ρ_{IL}, ρ_{IR}, p_I and u_I).

- This state redefines the real fluid next to the interface and the ghost cells as boundary conditions.

- The solution can be advanced to the next time step.
Discretization : Indicator Function

- **Mass gas fraction:**

 Upwind discretization (Saurel/Abgrall)

 \[\varphi^{n+1}_i = \varphi^n_i - \frac{\Delta t}{\Delta r_i^3} \left(r_i^{2} \bar{v}^n_{r,i+\frac{1}{2}} (\varphi^n_{i+\frac{1}{2}} - \varphi^n_i) - r_i^{2} \bar{v}^n_{r,i-\frac{1}{2}} (\varphi^n_{i-\frac{1}{2}} - \varphi^n_i) \right) \]

- **Level set:**

 First order time discretization and a second order upwind space discretization
Initial Data

• It’s not possible to measure experimentally the state inside the bubble.

• It is possible to approximate the state inside the bubble from the equilibrium radius R_{eq} using the static equilibrium and the perfect gas law.

 – At static equilibrium we have $p_i(R_{eq}) = p_0 + \frac{2\sigma}{R_{eq}}$.

• The equilibrium radius R_{eq} is calculated from the Keller-Miksis model.
With the adiabatic law, we obtain the pressure

\[p_i(R_b) = p_0 \left(\frac{R_{eq}^3}{R_b^3} \right)^\gamma. \]

With the adiabatic law we obtain the density

\[\rho_i(R_b) = \rho_0 \left(\frac{p_i(R_b)}{p_0} \right)^{1/\gamma}. \]

With \(R_{eq} = 6.92 \times 10^{-5} \text{m} \) we compute the initial states,

<table>
<thead>
<tr>
<th>Initial data</th>
<th>Material parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) [kg/m(^3)]</td>
<td>(p) [Pa]</td>
</tr>
<tr>
<td>Gas 9.5e-4</td>
<td>4.57</td>
</tr>
<tr>
<td>Liquid 998</td>
<td>100000</td>
</tr>
</tbody>
</table>
Keller-Miksis Model

- Model for liquid motion induced by a spherical cavity in an infinite medium.

- Incompressibility, sound radiation, the van der Waals gas law, ...

\[
\left(1 - \frac{\dot{R}_b}{c}\right) R_b \ddot{R}_b + \frac{3}{2} \dot{R}_b^2 \left(1 - \frac{\dot{R}_b}{3c}\right) = \left(1 + \frac{\dot{R}_b}{c}\right) \frac{P_R - p_0}{\rho} + \frac{R_b d (P_R - p_0)}{\rho c \, dt},
\]

where \(P_R \) denotes the pressure at bubble radius \(R_b \) given by

\[
P_R = \left(p_0 - p_v + \frac{2\sigma}{R_{eq}} \right) \left(\frac{R_{eq}^3 - b \, R_0^3}{R_b^3 - b \, R_0^3} \right)^\gamma - \frac{2\sigma}{R_b} - \frac{4\mu \dot{R}_b}{R_b} + p_v.
\]
Fitting of Equilibrium Radius

Initial conditions:

- $t_{max} = 70.7 \, \mu s \, ("Exp")$
- $R_b = R_{max} \, (Exp)$
- $\dot{R}_b = 0$

$\Rightarrow R_{eq} = 6.92 \times 10^{-5} \, m$
in minimizing the least square error.
Numerical Results: Saurel-Abgrall Approach
Numerical Results: Saurel-Abgrall Approach
Numerical Results: Real Ghost Fluid Method

![Graph showing numerical results](image)
Numerical Results: Validation

Saurel-Abgrall (green)
Real GFM (blue)
Keller-Miksis model (pink)
Numerical Results: Validation

<table>
<thead>
<tr>
<th>Levels of refinement</th>
<th>Saurel-Abgrall Approach</th>
<th>Real Ghost Fluid Method</th>
<th>K-M Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L13</td>
<td>L14</td>
<td>L15</td>
</tr>
<tr>
<td>1st collapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time [µs]</td>
<td>64.1</td>
<td>65.4</td>
<td>66.3</td>
</tr>
<tr>
<td>radius [µm]</td>
<td>16.0</td>
<td>17.5</td>
<td>17.8</td>
</tr>
<tr>
<td>pressure [10^5 Pa]</td>
<td>56.6</td>
<td>87.0</td>
<td>131</td>
</tr>
<tr>
<td>1st rebound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time [µs]</td>
<td>111.5</td>
<td>114.3</td>
<td>115.4</td>
</tr>
<tr>
<td>radius [µm]</td>
<td>462</td>
<td>487</td>
<td>500</td>
</tr>
<tr>
<td>pressure [Pa]</td>
<td>0.97</td>
<td>4</td>
<td>7.6</td>
</tr>
<tr>
<td>2nd collapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time [µs]</td>
<td>159.6</td>
<td>163.8</td>
<td>164.8</td>
</tr>
<tr>
<td>radius [µm]</td>
<td>12.8</td>
<td>17.24</td>
<td>19.32</td>
</tr>
<tr>
<td>pressure [10^5 Pa]</td>
<td>27</td>
<td>41</td>
<td>59</td>
</tr>
</tbody>
</table>
Conclusion

<table>
<thead>
<tr>
<th>Saurel-Abgrall:</th>
<th>Real Ghost Fluid Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Severe numerical phase transition</td>
<td>• No phase transition</td>
</tr>
<tr>
<td>• Rebound overpredicted</td>
<td>• Rebound well-predicted</td>
</tr>
<tr>
<td>• Slow grid convergence</td>
<td>• Slow grid convergence</td>
</tr>
<tr>
<td>• Shock strength underpredicted</td>
<td>• Shock strength underpredicted</td>
</tr>
</tbody>
</table>
Future Work

• Van der Waals + Real Ghost Fluid method

• 2D/3D implementation of the Real Ghost Fluid method

• Collapse near a wall and comparison with Saurel-Abgrall