
Three-Field versus Three-Phase Flow Models

Jean-Marc Hérard

EDF, R&D, MFEE, 6 quai Watier, 78400, Chatou, France

DFG CNRS Workshop, Strasbourg, France, January 23-25, 2008

0



Context

The NEPTUNE Project prepares a new generation of tools for multi-scale
thermal-hydraulics computations in French PWR. A brief summary of NEPTUNE
activities is available in the paper by Guelfi et al (NEPTUNE: a new software
platform for advanced nuclear thermal-hydraulics, Nuclear Science Engineering,
vol. 156, 2007). These codes will involve the system scale (real-time
computation of the whole primary coolant circuit), the component scale
(computation in cores and steam generators including obstacles, or equivalently
CFD in porous medium) and the local CFD scale. Computations include safety
analysis and thus predictions of severe accidents, such as the Loss Of Coolant
Accident, and the Reflooding Phase. The latter case requires the computation
of three-field models (in order to account for the dispersed liquid phase, the
continuous liquid phase and the vapour phase, which is useful for instance for
the reflooding phase). Up to now, the basic strategy to predict these unsteady
three-field flows relies on the computation of three-phase single-pressure
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models (see for instance: Jayanti and Valette, Prediction of the dryout and post
dry-out heat transfer at high pressure using a one-dimensional three-field
model, IJHMT, vol. 47, pp. 4895-4910, 2004). This approach is actually the
straightforward counterpart of the standard two-fluid formalism, which implicitely
assumes some local instantaneous pressure equilibrium between phases.

Since the lack of hyperbolicity of standard two-fluid models may lead to a
blow-up of codes on fine meshes, and owing to the increasing capacities of
computers, it seems necessary to anticipate this annoying trend. Thus we must
propose new models -and associated numerical techniques- in order to deal
with (expected well-posed) initial-value problems. We thus have a three-fold
purpose, since we would like to:

• propose a class of well-posed IVP for three-phase flows;

• propose algorithms to compute unsteady approximations of the latter;

• propose a simple way to handle both standard and new three-field models.
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The standard Three-Fluid Model

Notations: Void fractions αk > 0 (for k = 1, 2, 3) comply with α1 + α2 + α3 = 1.
Partial masses are noted mk = αkρk. Phase velocities Uk, mean densities ρk

and the mean pressure P enable to define internal energies ek(P, ρk) and the
total energy within each phase Ek = ρkek(P, ρk) + ρkU2

k/2. We omit mass and
energy transfer terms herein. Once interfacial momentum transfer terms Ik are
given, the governing equations of the standard Three-Fluid Model are:



























∂t(mk) + ∂x(mkUk) = 0

∂t(mkUk) + ∂x(mkU2
k + αkP ) − P∂x(αk) = Ik

∂t(αkEk) + ∂x(αkUk(Ek + P )) + P∂t(αk) = ViIk

I1 + I2 + I3 = 0
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We define sk(P, ρk) in agreement with: c2
k∂P (sk)|ρk

+ ∂ρk
(sk)|P = 0, and the

entropy-entropy flux pair (η, fη) as follows:






η = Σk(mksk)

fη = Σk(mkskUk)

For regular solutions of the TFM, the governing equation for η is:

∂t(η) + ∂x(fη) = Σk(akIk(Vi − Uk))

noting : ak =
(

∂ek
(sk)|ρk

)

. Admissible closures for the interfacial momentum

transfer terms are:






I2 = C2
2 (a1(U1 − Vi) + a2(Vi − U2))

I3 = C2
3 (a1(U1 − Vi) + a3(Vi − U3))

since in that case : ∂t(η) + ∂x(fη) > 0.
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An hyperbolic Three-Phase Flow Model

We consider the following Three-Phase Flow Model :






































α1 + α2 + α3 = 1

∂t(αk) + Vi∂x(αk) = φk

∂t(αkρk) + ∂x(αkρkUk) = 0

∂t(αkρkUk) + ∂x(αkρkU2
k + αkPk) +

∑3
l=1,l 6=k Pkl∂x(αl) = Ik

∂t(αkEk) + ∂x(αkUk(Ek + Pk)) −
∑3

l=1,l 6=k Pkl∂t(αl) = ViIk

noting: Ek = ρkek(Pk, ρk) + ρk
U2

k

2 for k = 1, 2, 3. Some closure laws are required
for φk and Pkl, which should obey :







P12 + P32 = P13 + P23 = P21 + P31

φ1 + φ2 + φ3 = 0
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• A first key point concerns the definition of the interface velocity Vi. For
two-phase flow models, it is known that meaningful candidates are :
Vi = Uk0

, or : Vi = Σk(mkUk)
Σkmk

. Actually, a straightforward consequence is
that the field associated with the eigenvalue λ = Vi happens to be linearly
degenerated (see [CGHS02, Her03, GHS04]). Beyond this, a unique set of
jump conditions holds through each isolated field. This is completely
different from what occurs for the standard TFM, which involves ”true”
non-conservative products, which inhibits the establishment of a unique set
of meaningful jump conditions. Actually , a similar result holds for the
TPFM.

• The second key stone is that, given the above mentionned closure for Vi,
one can exhibit a unique set of functions Pkl such that a meaningful
entropy inequality holds, which is precisely the one discussed above:

∂t(η) + ∂x(fη) > 0

for the standard TFM, using the same notations !
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Remark : When restricting to two-phase flows, we recall that the well-known
Baer-Nunziato model belongs to this class.

Hence, if we choose Vi = U1, the corresponding -unique- set of Pkl will be:

P12 = P23 = P21 = P2

P13 = P31 = P32 = P3

And therefore, admissible closures for momentum transfer terms are (for
k = 2, 3):

φk = f1−k
α1αk

P1+P2+P3

(PK − P1)

Ik = ψk(U1 − Uk)

The reader is referred to (see [Her06, Her07A]) for more details on the TPFM.
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A unified method to compute

approximations of both models

1. A first evolution step computes approximations of first-order differential
terms of the Three-Phase Flow Model.

2. A relaxation step computes physical source terms (drag effects here).

3. A second relaxation step either enforces the assumed instantaneous local
pressure equilibrium between phases (for the TFM), or computes a true
pressure relaxation (for the hyperbolic TPFM).

Each step in the above mentionned fractional step method complies with the
entropy inequality. This procedure has also been applied for the computation of
two-fluid models, and for the coupling of a two-fluid model with an homogeneous
model through a thin interface (see AIAA paper 2007-4458 for instance).
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Computing the evolution step

For given values Zn at time tn, compute Z̃ as an approximation of Z solution of:


























∂t(αk) + Vi∂x(αk) = 0

∂t(αkρk) + ∂x(αkρkUk) = 0

∂t(αkρkUk) + ∂x(αkρkU2
k + αkPk) +

∑3
l=1,l 6=k Pkl∂x(αl) = Ik

∂t(αkEk) + ∂x(αkUk(Ek + Pk)) −
∑3

l=1,l 6=k Pkl∂t(αl) = ViIk

This may be achieved using the non-conservative version of the Rusanov

scheme, or the approximate Godunov scheme VFRoe-ncv ([BGH00]), or any

Riemann solver. Owing to the well-posedness of jump conditions, all mesh

refinements provide the same converged solution, whatever the scheme is. This

is not true for the standard Three-Field Model.
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Computing the pressure relaxation step -TFM-

For given values Z̃, compute Zn+1 as an approximation of the relaxation step
which enforces the pressure equilibrium for the standard Three Fluid Model:



























φk = 0

∂t(αkρk) = 0

∂t(αkρkUk) = 0

∂t(αkEk) −
∑3

l=1,l 6=k Pkl∂t(αl) = 0

The last equation may be rewritten as:

∂t(mkek) −

3
∑

l=1,l 6=k

Pkl∂t(αl) = 0

An admissible discrete version to compute approximations is as follows:
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For given Z̃:

• Compute: (Uk)n+1
i = ˜(Uk)i and: (mk)n+1

i = ˜(mk)i.

• Then compute ((P )n+1
i , (αk)n+1

i ) solution of :







(Pk)n+1
i = (P )n+1

i

(mkek)n+1
i − ˜(mk)i

˜(ek)i + (P )n+1
i ((αk)n+1

i − ˜(αk)i) = 0

Remark : For perfect gas EOS, we get:

(Pk)n+1
i = Pn+1

i =
γ2γ3( ˜α1P1)i + γ1γ3( ˜α2P2)i + γ1γ2( ˜α3P3)i

γ2γ3(α̃1)i + γ1γ3(α̃2)i + γ1γ2(α̃3)i

(αk)n+1
i = (α̃k)i(

γk − 1

γk

+
(P̃k)i

γkPn+1
i

)
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Computing the pressure relaxation step -TPFM-

In that case we need to compute a true pressure relaxation step. Hence, for
given values Z̃, we compute Zn+1 as an approximation of the solution of:



























∂t(αk) = φk

∂t(αkρk) = 0

∂t(αkρkUk) = 0

∂t(αkEk) −
∑3

l=1,l 6=k Pkl∂t(αl) = 0

The last equation may be rewritten as:

mk∂t(ek(Pk, ρk)) −

3
∑

l=1,l 6=k

Pklφl = 0

where φl = f1−l
α1αl

P1+P2+P3

(Pl − P1), for l = 2, 3.
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Once again, both mk and Uk remain frozen through the relaxation step. Noting
π = α1α2α3, we have :

∂t(π) =
π

P1 + P2 + P3
(
∑

l=2,3

f1−l(Pl − P1)(α1 − αl))

Thus, we expect that void fractions remain within their bounds, and that the total
energy (summed over the three phases) is conserved. We may at least propose
two methods:

• The counterpart of the method introduced in [GHS04], which ensures
0 ≤ αk ≤ 1, and preserves positive pressures (at least when focusing on
perfect gas EOS). It enables to manage many EOS. However, in that case
the discrete conservative form of total energy does not hold;

• A second method yields both requirements, by enforcing global
conservation of total energy, but the existence and uniqueness of solutions
may be difficult to obtain for complex EOS.
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Main properties of the schemes

Property 1 (evolution step):

The Rusanov scheme enables to maintain positive values of the void fractions
and partial masses, assuming a standard CFL condition. The VFRoe-ncv
scheme does not.

Property 2 (relaxation step):

• The first substep in the relaxation process ensures positive values of void
fractions, mass fractions and pressures Pk.

• For perfect gas EOS, the second substep (pressure relaxation step)
guarantees positive values for void fractions -and mass fractions-, and
positive cell values of the equilibrium presssure, when focusing on the
standard TFM. The counterpart is more difficult to obtain when turning to
the hyperbolic TPFM. (see [HeHprep]).
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Numerical results

1. Test case 1 : An impinging jet on a wall ;

2. Test case 2 : A 1D Riemann problem with no mass transfer.
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The wall is located at x=10000

Figure 1: Standard TFM - Velocity fields when the flow hits a wall
boundary. U1 (plain line), U2 (dotted line), U3 (circles)
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Figure 2: Standard TFM - Mean pressure field P when the flow hits
a wall boundary.
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Figure 3: Standard TFM - Void fraction distribution when the flow
hits a wall boundary. α1 (plain line), α2 (dotted line), α3 (circles)
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Computation of a shock tube with both models 
Coarse mesh including 200 cells (CFL=0.5)

Figure 4: Shock tube experiment. Both approaches are compared
using large pressure and velocity relaxation time scales.
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Conclusions and further work :

• The present algorithm, which combines a new formulation for three-phase
flows and the relaxation procedure, handles both the Three-Phase Flow
Model and the standard Three-Field Model (see [Her07a, Her07b]);

• The algorithm is stable: when the initial-value problem is well-posed, a
mesh refinement provides a - unique - converged approximation ; moreover
it does not hide deficiencies of the TFM when h tends to 0 (see [HeH05]);

• We need to extend these results for flows in a porous medium (following
[Hersub], [AGGHsub] for instance) ;

• We also work on some accurate and stable enough algorithms based on
approximate Riemann solvers.
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