Modelling of two phase flow and application in industries

Third Workshop Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

Strasbourg, France January, 23-25, 2008

Dr. Uwe Iben Robert Bosch GmbH Dept. CR/ARH 70049 Stuttgart

Model for equilibrium procedures = source term for flow equations

Results

Non-equlibrium models

Both phase have different heat capacity $T_G \neq T_L$

$$\frac{dT_L}{dt} = -\frac{1}{(1-x-\mu)c_{pL}} \left\{ \left(h_{Bv} - h_{EL} + \frac{2\sigma}{3r_B\rho_B} \right) \frac{d\mu}{dt} + \left[\left(\frac{c_{pG}}{c_{pv}}x + \mu \right) \frac{dh_{Bv}}{dp} \right] \\ - \left(\frac{x}{\rho_G} + \frac{\mu}{\rho_v} \right) - \frac{2\sigma}{3r_B\rho_B^2} (x+\mu) \frac{d\rho_B}{dp} \right] \frac{dp}{dt} - \frac{\dot{q}}{\rho_A} + v F \right\} + \frac{T_L\alpha_L}{\rho_Lc_{pL}} \frac{dp}{dt} ,$$

$$\frac{d\mu}{dt} = \frac{3\omega_T T_L - T_G}{\left(h_{Bv} + \frac{2\sigma}{3r_B\rho_B} \right) \rho_v r_B} \left(\frac{\rho_v}{\rho_G} x + \mu \right) - \frac{1}{\left(h_{Bv} + \frac{2\sigma}{3r_B\rho_B} \right)} \left[\left(\frac{c_{pG}}{c_{pv}}x + \mu \right) \frac{dh_{Bv}}{dp} - \left(\frac{x}{\rho_G} + \frac{\mu}{\rho_v} \right) - \frac{2\sigma}{3r_B\rho_B^2} (x+\mu) \frac{d\rho_B}{dp} \right] \frac{dp}{dt} ,$$

$$\frac{dr_B}{dt} = \frac{r_B}{3(x+\mu)} \left[\frac{d\mu}{dt} - \left(\frac{x+\mu}{\rho_B} \right) \frac{d\rho_B}{dp} \frac{dp}{dt} \right] .$$

$$\boxed{\qquad \textbf{Coupling liquid-steam (heat transfer coefficient)}}$$

CR/ARH | 20/12/2007 | © Robert Bosch GmbH 2007. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

Name	Differentialgleichung
Plesset	$\frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{18}{\pi r_B^2} Ja Ja a_L \mu$
Labunzov	$\frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{18}{\pi r_B^2} Ja Ja a_L \mu \left[1 + \frac{1}{2} \left(\frac{\pi}{6 Ja } \right)^{2/3} + \frac{\pi}{6 Ja } \right]$
Dergarabedjan	$\frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{3\pi}{4r_B^2} Ja Ja a_L\mu$

CR/ARH | 20/12/2007 | © Robert Bosch GmbH 2007. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Rayleigh-Plesset equation¹

$$r_B \frac{d^2 r_B}{dt^2} + \frac{3}{2} \left(\frac{\mathrm{d}r_B}{\mathrm{d}t}\right)^2 = \frac{p_B - p_\infty}{\rho_L}$$

Linearization of the R.-P.- Model:

$$(\dot{r}_B)^2 = \frac{2}{3} \frac{p_B - p_\infty}{\rho_L}$$
 Pressure far away from cavitation (???)

No evaporation or condensation term

1: Z.B: Dissertation M. Voß: "Numerische, theoretische und experimentelle Untersuchungen zur Kavitationsblasendynamik", Uni Göttingen 2002

Flow equations

Experimental analysis of cavitating flow

Experimental validation of cavitating flow

Of interest: Critical Cavitation Point

Transmission Exposure time 10 ns with high-pressure flash lamp

Inlet pressure: 100 bar Outlet pressure: 60 bar

Experimental analysis of cavitating flow

Digital interferometry as a result of classical and holographic interferometry

Simulation of cavitating flow

Two dimensional numerical scheme based on the solution of Riemann problems

Simulation of cavitating flow

Geo_step_5 Time Elapsed: 0.00158101 [s] _m1_sst_wb_mit_res Timestep = 15810

Geo_step_5 Time_Elapsed: 0.000257002 [s]

Geo_step_5 Time Elapsed: 0.000257002 [s] _f1_des_wb2_mit Timestep = 2570

0.000

Geo step 5

_f1_sas_wb_mit_res

Geo step 5

_m1_sas_wb2_mit

 $\Gamma = f(p, p_D, R_B)$

In this case lin. Rayleigh-Plesset equation

3D commercial CFD Code CFX 11.0: Detached Eddy Simulation

Time Elapsed: 0.00233957 [s]

0.00887 0.0017 8.0026 0.0025 (w)

Time Elapsed: 0.000781006 [s]

Timestep = 7810

.

F

Timestep = 23400

Pruefoel, Volume Fraction

Simulation of cavitating flow

Summary

- Homogeneous two phase flow allows to describe cavitating flow
- Phase transition leads to multi-scale problems
- Cavitating flow leads to high transient flows
- For detailed simulation of cavitating flow are needed:
 - numerical schemes with high resolution in time and space
 - special boundary conditions to avoid reflection of pressure waves
 - a turbulence model which can handle phase transition as well as laminar-tubulent transition
- Cluster of computers

