
On the coupling of models and numerical methods

for two-phase flows

Nicolas Seguin
Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie – Paris 6

Micro-Macro Modelling and Simulation of Liquid-Vapour Flows
Strasbourg

Interface coupling of different models for multiphase flows – p.1/27



Context of the work

Collaboration between

Laboratoire Jacques-Louis Lions (Université Paris 6 & Pari s 7, CNRS)
Filipa Caetano, Christophe Chalons, Frédéric Coquel,
Edwige Godlewski, Frédéric Lagoutière, Pierre-Arnaud Raviart, NS

CEA Saclay (French nuclear agency)
Annalisa Ambroso, Benjamin Boutin, Thomas Galié,
Samuel Kokh, Jacques Segré

Also participating
EDF R&D

Jean-Marc Hérard, Olivier Hurisse

Interface coupling of different models for multiphase flows – p.2/27



Coupling of numerical codes

Two systems, indexed by (L) and (R), separated by a fixed interface at {x = 0}:

CODE 1 CODE 2

∂tuL + ∂xfL(uL) = sL(uL) ∂tuR + ∂xfR(uR) = sR(uR)

x < 0 x > 0

x = 0

⊲ At x = 0: ARTIFICIAL interface coupling.

⊲ Some informations must be transmitted between uL(t, 0−) and uR(t, 0+).

⊲ No modification of the codes: use of boundary conditions.
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The models to couple

Models (L) and (R) share

⊲ the same underlying physics (thermohydraulic flows, multiphase flows...)

BUT come from different modelling

⊲ different time scales

⊲ different accuracy of description

⊲ different space dimension

⊲ ...

Need to understand the compatibility
between the models (L) and (R)

in order to couple them
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Classical Euler system

Inviscid gas dynamics





∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p) = 0

∂tρE + ∂x(u(ρE + p)) = 0

where
E = ε + u2/2 and p = p(ρ, ε)

ρ density
u velocity
p pressure
E total energy
ε specific energy
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Classical Euler system for multiphase mixture

Homogeneous equilibrium model (HEM)





∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p) = 0

∂tρE + ∂x(u(ρE + p)) = 0

where
E = ε + u2/2 and p = p(ρ, ε)

ρ density of the multiphase mixture
u velocity of the multiphase mixture
p pressure of the multiphase mixture
E total energy of the multiphase mixture
ε specific energy of the multiphase mixture
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Extended Euler system for multiphase mixture

Homogeneous relaxation model (HRM)





∂tα + u∂xα = λ(αeq − α)

∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p) = 0

∂tρE + ∂x(u(ρE + p)) = 0

where
E = ε + u2/2, p = p(ρ, ε, α) and αeq = αeq(ρ)

ρ density of the multiphase mixture
u velocity of the multiphase mixture
p pressure of the multiphase mixture
E total energy of the multiphase mixture
ε specific energy of the multiphase mixture
α mass fraction of one the phases
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Drift-Flux model

Isentropic case 



∂tρY + ∂x(ρuY+ρY(1 − Y)Φ) = 0

∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p+ρY(1 − Y)Φ
2) = 0

where
p = p(ρ) and Φ = Φ(ρY, ρ, ρu)

ρ mean density
u mean velocity
p mean pressure
Y mass fraction of one of the phase
Φ relative velocity
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Bifluid model

Isentropic case, pressure equilibrium





∂tα1ρ1 + ∂xα1ρ1u1 = 0

∂tα2ρ2 + ∂xα2ρ2u2 = 0

∂tα1ρ1u1 + ∂x(α1ρ1(u1)
2 + α1 p) − pI∂xα1 = λ|u1 − u2|(u2 − u1)

∂tα2ρ2u2 + ∂x(α2ρ2(u2)
2 + α2 p) − pI∂xα2 = λ|u1 − u2|(u1 − u2)

where
p = p1(ρ1) = p2(ρ2) and α1 + α2 = 1

αk void fraction of phase k

ρk density of phase k

uk velocity of phase k

p pressure
λ coefficient of drag force
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Bifluid model

Isentropic case, two pressures





∂tα1 + u2∂xα1 = µ(p1 − p2)

∂tα1ρ1 + ∂xα1ρ1u1 = 0

∂tα2ρ2 + ∂xα2ρ2u2 = 0

∂tα1ρ1u1 + ∂x(α1ρ1(u1)
2 + α1 p1) − p1∂xα1 = λ|u1 − u2|(u2 − u1)

∂tα2ρ2u2 + ∂x(α2ρ2(u2)
2 + α2 p2) − p1∂xα2 = λ|u1 − u2|(u1 − u2)

where
p1(ρ1), p2(ρ2) and α1 + α2 = 1

αk void fraction of phase k

ρk density of phase k

uk velocity of phase k

pk pressure of phase k

λ coefficient of drag force
µ coefficient for the pressure equilibrium
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Compatibility between the different multiphase models

Need to understand the compatibility
between the models (L) and (R)

in order to couple them

⊲ Understanding of asymptotic behaviours
⊲ Relaxation process Chen, Liu, Levermore, Yong...
⊲ Local expansions Hilbert, Chapman, Enskog...
⊲ Long-time behaviour s = εt...

⊲ Compatibility between the asymptotics for the coupling pro blem ?
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Compatibility between the different multiphase models

Need to understand the compatibility
between the models (L) and (R)

in order to couple them

⊲ Understanding of asymptotic behaviours
⊲ Relaxation process Chen, Liu, Levermore, Yong...
⊲ Local expansions Hilbert, Chapman, Enskog...
⊲ Long-time behaviour s = εt...

⊲ Compatibility between the asymptotics for the coupling pro blem ?
NO ! The coupling problem is ARTIFICIAL !

⊲ All the models are based on the same Eulerian structure
⊲ How to couple two Euler models coming from different asymptotics ?
⊲ How to recover the asymptotic compatibility at the interface coupling ?
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Coupling of Euler systems with different pressure laws

CODE 1 CODE 2





∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + pL) = 0

∂tρE + ∂x(u(ρE + pL)) = 0





∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + pR) = 0

∂tρE + ∂x(u(ρE + pR)) = 0

x < 0 x > 0

x = 0

The only difference comes from pL(.) 6≡ pR(.)
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Coupling condition at the interface

∂tu + ∂xfL(u) = 0 ∂tu + ∂xfR(u) = 0

x < 0 x > 0

x = 0

Different strategies of interface coupling:

Conservative coupling fL(u(t, 0−)) “=” fR(u(t, 0+))

State coupling u(t, 0−) “=” u(t, 0+)

Nonconservative state coupling v(t, 0−) “=” v(t, 0+)

where v = φL(u) if x < 0 and v = φR(u) if x > 0. For instance:

(ρ, ρu, ρE) 7−→ (ρ, ρu, pα).
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Riemann problem and boundary conditions

Riemann problem:





∂tu + ∂xf(u) = 0

u(0, x) =

{
ul if x < 0

ur if x > 0 uL uR
x

t

W(x/t; ul , ur)

Weak boundary condition:





∂tu + ∂xf(u) = 0, x > 0

u(0, x) = u0(x)

u(t, 0) “ = ” ub

u(0+, t)

ub ū
x

t

u(0+, t) ∈ O(ub) := {W(0+; ub, ū), ∀ū}
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Weak coupling conditions

∂tu + ∂xfL(u) = 0 ∂tu + ∂xfR(u) = 0

x < 0 x > 0

x = 0





∂tu + ∂xfL(u) = 0,

u(0, x) = u0(x)

u(0−, t) ∈ OL(u(0+, t))





∂tu + ∂xfR(u) = 0,

u(0, x) = u0(x)

u(0+, t) ∈ OR(u(0−, t))

Weak coupling conditions for the state coupling

u(0−, t) “ = ” u(0+, t) becomes

{
u(0−, t) ∈ OL(u(0+, t))

u(0+, t) ∈ OR(u(0−, t))
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Weak coupling conditions

∂tu + ∂xfL(u) = 0 ∂tu + ∂xfR(u) = 0

x < 0 x > 0

x = 0





∂tu + ∂xfL(u) = 0,

u(0, x) = u0(x)

v(0−, t) ∈ ÕL(v(0+, t))





∂tu + ∂xfR(u) = 0,

u(0, x) = u0(x)

v(0+, t) ∈ ÕR(v(0−, t))

Weak coupling conditions for the nonconservative state coupling

v(0−, t) “ = ” v(0+, t) becomes

{
v(0−, t) ∈ ÕL(v(0+, t))

v(0+, t) ∈ ÕR(v(0−, t))
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The Riemann problem for the coupled problem

The Riemann problem for the coupled problem





u + ∂xfL(u) = 0, x < 0, t > 0

u(0, x) = ul , x < 0

u + ∂xfR(u) = 0, x > 0, t > 0

u(0, x) = ur, x > 0

v(0−, t) ∈ ÕL(v(0+, t)), t > 0

v(0+, t) ∈ ÕR(v(0−, t)), t > 0

Two kinds of solutions

⊲ Continuous solutions through the coupling interface
v(0−, t) = v(0+, t)

⊲ Discontinuous solutions through the coupling interface
v(0−, t) 6= v(0+, t)
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Continuous solutions

Method of resolution

⊲ Compute the set CL(ul) of states at x/t = 0− which can be connected to ul

by waves with negative speeds

⊲ Compute the set CR(ur) of states at x/t = 0− which can be connected to ur

by waves with positive speeds

⊲ Intersect them: I(ul , ur) = CL(ul) ∩ CR(ur)

If I(ul , ur) is a singleton Existence and uniqueness
If I(ul , ur) is a set Existence and non uniqueness
If I(ul , ur) is empty Non existence

Theorem

⊲ If |u| ≪ c there exists a unique continuous solution to the CRP.

⊲ If |u| ≃ c there may exist a family of continuous solutions to the CRP.

Interface coupling of different models for multiphase flows – p.19/27



Discontinuous solutions

Weak coupling conditions

{
v(0−, t) ∈ ÕL(v(0+, t)) = {ZL(0−; v̄, v(0+, t)), ∀v̄}

v(0+, t) ∈ ÕR(v(0−, t)) = {ZR(0+; v(0−, t), v̄), ∀v̄}

They can be rewritten as

{
v(0−, t) = ZL(0−; vl , v(0+, t))

v(0+, t) = ZR(0+; v(0−, t), vr)

Theorem

There exists at most one discontinuous solution to the CRP.

It appears when |u| ≃ c.
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Numerical tests with multiple solutions
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Numerical tests with multiple solutions
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Coupling of compatible models

CODE 1 CODE 2

∂tu + ∂xf(u, v) = 0,

∂tv + ∂xg(u, v) = r(u, v)/ε,
∂tu + ∂xf(u, veq(u)) = 0,

x < 0 x > 0

x = 0

where
r(u, v) = 0 ⇐⇒ v = veq(u).

Natural coupling conditions:

f(u, v)(t, 0−) = f(u, veq(u))(0+, t),

v(t, 0−) = veq(u)(0+, t).
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Coupling of compatible models – HRM and HEM





∂tα + u∂xα = λ(αeq(ρ) − α)

∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p) = 0

∂tρE + ∂x(u(ρE + p)) = 0

p = P(ρ, ε, α)





∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + p) = 0

∂tρE + ∂x(u(ρE + p)) = 0

p = P(ρ, ε, αeq(ρ))

x < 0 x > 0

x = 0

Problem:
The natural coupling does not preserve constant velocity and pressure

New coupling condition:

(α, ρ, ρu, p)(t, 0−) = (αeq(ρ), ρ, ρu, p)(0+, t)
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Coupling of compatible models – HRM and HEM

Natural coupling conditions
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Coupling of compatible models – HRM and HEM

Modified coupling conditions
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Conclusion

Theoritical understanding of the coupling

⊲ Mathematical position of the coupling problem → weak coupling condition

⊲ Partial resolution of the Riemann problem for gas dynamics

⊲ Same behaviour at the numerical point of view

⊲ Study of the coupling of HEM and HRM

Some extensions of this work

⊲ Study of the coupling of more complex models

⊲ Analysis of numerical methods

⊲ Coupling of different asymptotics:
⊲ Scalar case (Jin-Xin relaxation) by F. Caetano
⊲ Two-phase two-pressure model vs Drift-flux model

⊲ Asymptotic preserving schemes (Euler vs Darcy)
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