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Spray in Combustion Devices

Fuel is typically injected as a liquid

@ Combustion only in the gaseous phase
@ Mixture composition pollutant formation
@ Combustion stability
o
o

Need to accurately model Spray Process
From injection to evaporation




Introduction

The Challenge of Modeling Spray

The Spray Model we have

@ Empirical nature.
@ wide range of Parameters.
@ Experiments Calibration.

The Experiments are difficult
@ complex Injection System.
@ high Pressure.
@ high Temperature.
@ Fuel Properties.

Primary Breakup, the beginning of the
spray, is particularly poorly
understood.
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Introduction

Modeling Spray Primary Breakup
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Modeling approach

@ split into primary & secondary atomization

@ track the complex phase interface geometry during primary
breakup

@ assume simple phase interface geometry for secondary breakup
@ couple with secondary atomization models




DNS of Primary Breakup in Diesel Injection

DNS Diesel Injection done by Marcus

@ Injector diameter:

D = 100 ,LLm D
@ Flow solver resolution : liquid
D/50 = 2.0 um P
@ Level Set Solver resolution: 15D
D/64 = 1.56 um
@ Injection Velocity: 100 m/s
e Inlet profile: DNS of Arizona State University
Re=5000 turbulent pipe Assistant Professor
. . /2 Mechanical and Aerospace
@ Density ratlo.. 850/25 Engineering
@ Viscosity ratio: marcus.herrmann@asu.edu
1.70E-3/1.78E-5 Phone: +1 (480) 965-7291

@ Surface tension coefficient:
0.05 N/m



Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary

DNS Diesel Injection Results

Time = 6.901 . . Time = 7.001 .




DNS of Primary Breakup in Diesel Injection

DNS Diesel Injection Results
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DNS of Primary Breakup in Diesel Injection

The Governing Equations

Navier-Stokes

ou 1 1 T 1
- tu-Vu=—-Vp+ -V (u(Vu+V'u)+g+-T,
T g (1( )+9 P
V-u=0
Level-Set VOF Modification
0G
— +u-VG=0
ot p=vp1+(1—9)p2
fluid 2 G<Go p=1pps+ (1 — )2

Surface Tension Force

fluid 1 r G> Go _ VG




DNS of Primary Breakup in Diesel Injection

Numerics and Performances of two-phase flow solver

Unstructured, Collocated, Finite
volume Navier-Stokes Solver

Ot + Udxu — Oxxu/Re =0
du

ME +C(u)u+Du=0
for D= 0, Energy ||u||? = u*Mu is
* lnear conserved if and only if
= BCGStab, constant L B % HUHZ = _u*(C(H) + c* (U))u =0
o BCGStab, constant iteratioj .
. @ Skew-symmetry of convective

derivative : C(U) + C*(U) =0
@ Symmetric, positive-definite
diffusive operator
@ DNS < do not want
numerical dissipation!
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DNS of Primary Breakup in Diesel Injection

Numerics and Performances of two-phase flow solver

Refined Level Set Grid Method

@ Introduce equidistant Cartesian
super-grid (blocks)

=] § @ Activate (store) only narrow band of
blocks

7 7 @ Active blocks consist of an equi-distant
100 |- °- Cartesian fine G-grid

° @ Activate (store) only narrow band of fine
* G-grid
= Advantages: low cost of storage, efficient
domain decomposition, straightforward
parallelization, fast and accurate cartesian
1 ' : solution mothods (5th order WENO, FMM)

speed-up




Phase Transition Modeling

Phase Transition Diagram
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Phase Transition Modeling

Phase Transition Models

Introduce a Surface Regression Velocity sp

New Term in Navier-Stokes New Term in Level-Set

St
1 1. | e
@+Uvu:fzvp+g+;TU e

ot

1 T 1 Xt
phase interface
where T, is the balance force for
evaporation. % — Ut sph,
Tp = (p1 — p2)spd(X — xr)u

§ is the delta-function. 5f TU VG+splVG =0




Phase Transition Modeling

G field of evaporating Droplet
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Phase Transition Modeling

Numerics for Balance Force Term

Predictor
peHluy = pul — Aty uf (Z Pkfk> (ur - ny)As
f k
T n
-ag (VT 1)
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Projection
(VP) Tf>” > At it

ui = (U + At (—— — — - - T 2
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Corrector

(VSPI+H)g u;
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Phase Transition Modeling

Stability Analysis of Phase Transition

Equation of Perturbation Motion

Py | ps V-u'=0, ou/ot+u-Vu =—-1/pVp

Particular Solution
uq — Aeiky+kx—iwt

Boundary Conditons

T1 T2 pq — ,Dé = SL(P1 - PZ)C(}’a t)a

u = Beiky+kx—iwt +
y Ui —9C/0t = up " o¢/ot, CzeikyfiwtvLiwx/vz
vy + v10¢/0t = v + v20( /0t ¢ — Dely—it
X

€=p2/p1 <1
w has positive imaginary part

Py = —ctey/1—ete™ 1V k

Tre
The evaporation front is

unstable.




Phase Transition Modeling

Rayleigh-Taylor Instability




Turbulence Modeling

Comparison of DNS, LES and RANS

u(x,t):U+ u ux,ty=u+u

X, t
1o = [J] G(& — x)u(&, t)d¢ T(x, t) = limr_ + [, u(x, t)ot

LES Equations

ou Uy _ op  OPU 7y
ot ox; X axjx,- ox;
subgrid stress model 7; = 2417 S,
where S = J (gﬁ' + gij)

Smagorinsky eddy viscosity 17 = p(CsA)?/S;Sj,
Smagorinsky coeffcient 0.10 < Cs < 0.24




Turbulence Modeling

Background Information

Energy Cascade

u® P

. . . 2
Energy dissipation rate modeled as e ~ 4 ~ 4 ~ &

Kolmogorov Scales (Smallest) Ratio of Smallest/Largest
length n = (13 /£)"/* n/lp ~ Re=3/4

time 7, = (v/e)'/? Tn/To ~ Re—1/2

velocity u,, = (ve)'/* u,/uo ~ Re=1/4

Kolmogorov’s hypothesis

At sufficiently high Reynolds number, the small-scale turbulent motion
are statistically isotropic.

Instead of running 3D full scale DNS, we can test our model on
isotropic turbulent environment.



Turbulence Modeling

DNS of Isotropic Turbulence in Cubic Box

@ Grid: 1283 ~ 2 Million
@ Boundary Condition
e Periodic in all directions
@ Initial Condition
e Re, =120 ~ 200
@ Some Numerics

o time: Crank-Nicolson Turbulent Energy is decaying!
@ spatial: Skew-sym. Con.

e staggered p and u

° predictor-corrector Er;esrgyvs. Time at Pt: 31.5 31.5 315
@ preconditioner: Hypre '

1

@ Parallelization
e Domain-decompostion: .
ParMetlS 0 0 100 200 300 400
o Parallel I/O Time

Energy

0.5 i




Turbulence Modeling

Linear forced turbulence

Energy vs. Time at Pt: 35.5 31.5 31.5->>0002
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%+U-VU = —Vp/p+vViu+f
f=Qu where Q=¢/3L?, 12,
e=—v<u-Vu>, Time
VP=<u-u>/3

0 100 150 200

[ CDP variable | Description \ set in Subroutine \
Q Q : scalar for linear forcing | momentum_source_hook
epsilon € : mean dissipation rate | momentum_source_hook
uu 302 : velocity square momentum_source_hook

Table: New Variables

F90 implementation

do icv = 1,gp%ncv_ib
UU = dot_product (ifp%u(l:3,icv),ifpsu(l:3,1icv))



Phase Interface




Summary

Summary

@ DNS for Spray Primary Breakup
@ Introduce sp for Phase Transition Modeling

@ Terabyte DNS
@ Modeling Approach
@ Cavitation
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