Numerical simulation of turbulent jet primary breakup in Diesel engines

Peng Zeng1 \hspace{1cm} Marcus Herrmann 2 \hspace{1cm} Bernd Binninger1 \hspace{1cm} Norbert Peters1

1Institute for Combustion Technology
RWTH-Aachen

2Mechanical and Aerospace Engineering
Arizona State University

"Micro-Macro Modelling and Simulation of Liquid-Vapour Flows"
Spray in Combustion Devices

- Fuel is typically injected as a liquid
- Combustion only in the gaseous phase
- Mixture composition pollutant formation
- Combustion stability
- Need to accurately model Spray Process
- From injection to evaporation
The Challenge of Modeling Spray

The Spray Model we have
- Empirical nature.
- wide range of Parameters.
- Experiments Calibration.

The Experiments are difficult
- complex Injection System.
- high Pressure.
- high Temperature.
- Fuel Properties.

Primary Breakup, the beginning of the spray, is particularly poorly understood.
Modeling Spray Primary Breakup

Modeling approach

- split into primary & secondary atomization
- track the complex phase interface geometry during primary breakup
- assume simple phase interface geometry for secondary breakup
- couple with secondary atomization models
DNS Diesel Injection done by Marcus

- Injector diameter: \(D = 100 \, \mu m \)
- Flow solver resolution: \(D/50 = 2.0 \, \mu m \)
- Level Set Solver resolution: \(D/64 = 1.56 \, \mu m \)
- Injection Velocity: 100 m/s
- Inlet profile: DNS of \(\text{Re}=5000 \) turbulent pipe
- Density ratio: 850/25
- Viscosity ratio: \(1.70E-3/1.78E-5 \)
- Surface tension coefficient: 0.05 N/m

Dr. Marcus Herrmann
Arizona State University
Assistant Professor
Mechanical and Aerospace Engineering
marcus.herrmann@asu.edu
Phone: +1 (480) 965-7291
DNS Diesel Injection Results

Time = 6.901

Time = 7.001

Time = 7.100

Time = 7.302
DNS Diesel Injection Results

Drop velocity PDF

Drop size PDF
The Governing Equations

Navier-Stokes

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot (\mu(\nabla \mathbf{u} + \nabla^T \mathbf{u})) + \mathbf{g} + \frac{1}{\rho} \mathbf{T}_\sigma \]
\[\nabla \cdot \mathbf{u} = 0 \]

Level-Set

\[\frac{\partial G}{\partial t} + \mathbf{u} \cdot \nabla G = 0 \]

VOF Modification

\[\rho = \psi \rho_1 + (1 - \psi) \rho_2 \]
\[\mu = \psi \mu_1 + (1 - \psi) \mu_2 \]

Surface Tension Force

\[\mathbf{T}_\sigma(\mathbf{x}) = \sigma \kappa \delta(\mathbf{x} - \mathbf{x}_f) \mathbf{n} \]
\[\mathbf{n} = \frac{\nabla G}{|\nabla G|}, \quad \kappa = \nabla \cdot \mathbf{n} \]
Numerics and Performances of two-phase flow solver

Unstructured, Collocated, Finite volume Navier-Stokes Solver

\[\partial_t u + \bar{u} \partial_x u - \partial_{xx} u / Re = 0 \]

\[M \frac{d\mathbf{u}}{dt} + C(\bar{u})\mathbf{u} + D\mathbf{u} = 0 \]

for \(D = 0 \), Energy \(\| \mathbf{u} \|^2 = \mathbf{u}^* M \mathbf{u} \) is conserved if and only if
\[\frac{d}{dt} \| \mathbf{u} \|^2 = -\mathbf{u}^* (C(\bar{u}) + C^*(\bar{u})) \mathbf{u} = 0 \]

- Skew-symmetry of convective derivative: \(C(\bar{u}) + C^*(\bar{u}) = 0 \)
- Symmetric, positive-definite diffusive operator
- DNS \(\Leftrightarrow \) do not want numerical dissipation!
Numerics and Performances of two-phase flow solver

Refined Level Set Grid Method

- Introduce equidistant Cartesian super-grid (blocks)
- Activate (store) only narrow band of blocks
- Active blocks consist of an equi-distant Cartesian fine G-grid
- Activate (store) only narrow band of fine G-grid

⇒ Advantages: low cost of storage, efficient domain decomposition, straightforward parallelization, fast and accurate cartesian solution methods (5th order WENO, FMM)
Phase Transition Diagram

Liquid Phase

Without Phase Transition

With Phase Transition

Gaseous Phase

Without Phase Transition

With Phase Transition
Phase Transition Models

Introduce a **Surface Regression Velocity** s_P

New Term in Navier-Stokes

\[
\frac{\partial \bm{u}}{\partial t} + \bm{u} \cdot \nabla \bm{u} = -\frac{1}{\rho} \nabla p + \bm{g} + \frac{1}{\rho} \bm{T}_\sigma \\
+ \frac{1}{\rho} \nabla \cdot (\mu(\nabla \bm{u} + \nabla^T \bm{u})) + \frac{1}{\rho} \bm{T}_p
\]

where \bm{T}_p is the balance force for evaporation.

\[
\bm{T}_p = (\rho_1 - \rho_2)s_P \delta(x - x_f) \bm{u}
\]

δ is the delta-function.

New Term in Level-Set

phase interface

\[
\frac{dx_f}{dt} = \bm{u} + s_P \bm{n},
\]

\[
\frac{\partial G}{\partial t} + \bm{u} \cdot \nabla G + s_P |\nabla G| = 0
\]
G field of evaporating Droplet
Numerics for Balance Force Term

Predictor

\[
\rho_{c}^{n+1} \mathbf{u}_{c}^{*} = \rho_{c}^{n} \mathbf{u}_{c}^{n} - \Delta t \sum_{f} \mathbf{u}_{c}^{n} \left(\sum_{k} \rho_{k} f_{k} \right) (\mathbf{u}_{f} \cdot \mathbf{n}_{f}) A_{f}
\]

\[
- \Delta t \rho_{c}^{n+1} \left\langle \frac{\nabla P}{\rho_{f}} - \frac{T_{f}}{\rho_{f}} \right\rangle_{f \rightarrow c}^{n}
\]

(1)

Projection

\[
\mathbf{u}_{f}^{*} = \left\langle \mathbf{u}_{c}^{*} + \Delta t \left\langle \frac{(\nabla P)_{f}}{\rho_{f}} - \frac{T_{f}}{\rho_{f}} \right\rangle_{t \rightarrow c}^{n} \right\rangle_{c \rightarrow f} - \frac{\Delta t}{\rho_{f}^{n+1}} [((\nabla P)_{f}^{n} - T_{f}^{n+1})]
\]

(2)

Corrector

\[
\nabla \cdot \left(\frac{(\nabla \delta P_{c}^{n+1})_{f}}{\rho_{f}^{n+1}} \right) = - \nabla \cdot \left(\frac{\mathbf{u}_{f}^{*}}{\Delta t} \right).
\]

(3)

\[
\mathbf{u}_{f}^{n+1} = \mathbf{u}_{f}^{*} - \Delta t \left(\frac{(\nabla \delta P_{c}^{n+1})_{f}}{\rho_{f}^{n+1}} \right),
\]

(4)

\[
\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{*} + \Delta t \left\langle \frac{(\nabla P)_{f} - T_{f}}{\rho_{f}} \right\rangle_{f \rightarrow c}^{n} - \Delta t \left\langle \frac{(\nabla P)_{f} - T_{f}}{\rho_{f}} \right\rangle_{f \rightarrow c}^{n+1}
\]

(5)
Stability Analysis of Phase Transition

Equation of Perturbation Motion

\[\nabla \cdot \mathbf{u}' = 0, \quad \partial \mathbf{u}' / \partial t + \mathbf{u} \cdot \nabla \mathbf{u}' = -1 / \rho \nabla p' \]

Boundary Conditions

\[p'_1 - p'_2 = s_L (\rho_1 - \rho_2) \zeta (y, t), \]
\[u'_1 - \partial \zeta / \partial t = u'_2 - \partial \zeta / \partial t, \]
\[v'_1 + v_1 \partial \zeta / \partial t = v'_2 + v_2 \partial \zeta / \partial t \]

Particular Solution

\[u'_1 = A e^{i k y + k x - i \omega t} \]
\[u'_2 = B e^{i k y + k x - i \omega t} + C e^{i k y - i \omega t + i \omega x / v_2} \]
\[\zeta = D e^{i k y - i \omega t} \]

Charac. Equation for Nontrivial Solution

\[
\begin{vmatrix}
\omega & -1 & 0 & 0 \\
\omega & 0 & 1 & \frac{i k v_2}{\epsilon k v_2} \\
0 & 1 + \frac{i \omega}{\epsilon k v_2} & 1 + \frac{i \omega}{k v_2} & \frac{2 \mu}{\omega k v_2} \\
- i k (\epsilon - 1) v_2 & 1 & -1 & -1
\end{vmatrix} = 0
\]

Result

\[\epsilon = \rho_2 / \rho_1 < 1 \]
\[\omega \text{ has positive imaginary part} \]
\[- i \omega = - \epsilon + \epsilon \sqrt{1 - \epsilon + \epsilon^{-1}} v_2 k \]

The evaporation front is unstable.
Rayleigh-Taylor Instability
Comparison of DNS, LES and RANS

DNS

\[u(x, t) \]

LES

\[u(x, t) = \bar{u} + u' \]
\[\bar{u}(x, t) = \int \int \int G(\xi - x)u(\xi, t)d\xi \]

RANS

\[u(x, t) = \bar{u} + u' \]
\[\bar{u}(x, t) = \lim_{T \to \infty} \frac{1}{T} \int_0^T u(x, t)dt \]

LES Equations

\[\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial \bar{u}_i \bar{u}_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} + \frac{\tau_{ij}}{\partial x_j} \]

subgrid stress model \(\tau_{ij} = 2\mu_T S_{ij} \),

where \(S_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \),

Smagorinsky eddy viscosity \(\mu_T = \rho(C_s\Delta)^2 \sqrt{S_{ij}S_{ij}} \),

Smagorinsky coefficient \(0.10 < C_s < 0.24 \)
Energy Cascade

Energy dissipation rate modeled as $\varepsilon \sim \frac{u^2}{t} \sim \frac{u^3}{l} \sim \frac{l^2}{t^3}$

Kolmogorov Scales (Smallest)

- length $\eta \equiv \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}$
- time $\tau_\eta \equiv \left(\frac{\nu}{\varepsilon}\right)^{1/2}$
- velocity $u_\eta \equiv \left(\nu \varepsilon\right)^{1/4}$

Ratio of Smallest/Largest

- $\eta/l_0 \sim Re^{-3/4}$
- $\tau_\eta/\tau_0 \sim Re^{-1/2}$
- $u_\eta/u_0 \sim Re^{-1/4}$

Kolmogorov’s hypothesis

At sufficiently high Reynolds number, the small-scale turbulent motion are statistically isotropic.

Instead of running 3D full scale DNS, we can test our model on isotropic turbulent environment.
DNS of Isotropic Turbulence in Cubic Box

- Grid: $128^3 \sim 2$ Million
- Boundary Condition
 - Periodic in all directions
- Initial Condition
 - $Re_\lambda = 120 \sim 200$
- Some Numerics
 - time: Crank-Nicolson
 - spatial: Skew-sym. Con.
 - staggered p and u
 - predictor-corrector
 - preconditioner: Hypre
- Parallelization
 - Domain-decomposition: ParMetis
 - Parallel I/O

Turbulent Energy is decaying!
Linear forced turbulence

Theory

\[
\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla p/\rho + \nu \nabla^2 u + f
\]

\[
f = Qu \quad \text{where} \quad Q = \epsilon/3U^2,
\]

\[
\epsilon = -\nu \nabla \cdot \nabla^2 u,
\]

\[
U^2 = \langle u \cdot u \rangle / 3
\]

<table>
<thead>
<tr>
<th>CDP variable</th>
<th>Description</th>
<th>set in Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>$Q : \text{scalar for linear forcing}$</td>
<td>momentum_source_hook</td>
</tr>
<tr>
<td>epsilon</td>
<td>$\epsilon : \text{mean dissipation rate}$</td>
<td>momentum_source_hook</td>
</tr>
<tr>
<td>UU</td>
<td>$3U^2 : \text{velocity square}$</td>
<td>momentum_source_hook</td>
</tr>
</tbody>
</table>

Table: New Variables

F90 implementation

```
do icv = 1, gp%ncv_ib
    UU = dot_product(ifp%u(1:3,icv),ifp%u(1:3,icv))
```
Phase Interface
Summary

- DNS for Spray Primary Breakup
- Introduce s_P for Phase Transition Modeling

Outlook

- Terabyte DNS
- Modeling Approach
- Cavitation
For Further Reading

Norbert Peters.
Turbulent Combustion.

Marcus Herrmann.
A balanced forced Refined Level Set Grid method for two-phase flows on unstructured flow solver grids.