- 1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
- 2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that
 - i) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. [If $b_0 + b_1 x + \cdots + b_m x^m$ is the inverse of f, prove by induction on f that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use Ex. 1.]
 - ii) f is nilpotent $\Leftrightarrow a_0, a_1, \ldots, a_n$ are nilpotent.
 - iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. [Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0$ ($0 \le r \le n$).]
 - iv) f is said to be *primitive* if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive.
 - 4. In the ring A[x], the Jacobson radical is equal to the nilradical.
- 5. Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that
 - i) f is a unit in $A[[x]] \Leftrightarrow a_0$ is a unit in A.
 - ii) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true? (See Chapter 7, Exercise 2.)
 - iii) f belongs to the Jacobson radical of $A[[x]] \Leftrightarrow a_0$ belongs to the Jacobson radical of A.
- 6. A ring A is such that every ideal not contained in the nilradical contains a non-zero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.
- 7. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.
- 8. Let A be a ring \neq 0. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

- 10. Let A be a ring, $\mathfrak R$ its nilradical. Show that the following are equivalent:
 - i) A has exactly one prime ideal;
 - ii) every element of A is either a unit or nilpotent;
 - iii) A/\mathfrak{N} is a field.
- 11. A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that
 - i) 2x = 0 for all $x \in A$;
 - ii) every prime ideal p is maximal, and A/p is a field with two elements;
 - iii) every finitely generated ideal in A is principal.
- 16. Draw pictures of Spec (Z), Spec (R), Spec (C[x]), Spec (R[x]).
- 17. For each $f \in A$, let D(f) denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets D(f) are open. Show that they form a basis of open sets for the Zariski topology, and that
 - i) $D(f) \cap D(g) = D(fg)$;
 - ii) $D(f) = \emptyset \Leftrightarrow f$ is nilpotent;
 - iii) $D(f) = X \Leftrightarrow f$ is a unit;
 - v) X is quasi-compact (that is, every open covering of X has a finite sub-covering).

[To prove (v), remark that it is enough to consider a covering of X by basic open sets $\mathbb{D}(\{i \in I\})$. Show that the f_i generate the unit ideal and hence that there is an equation of the form

$$1 = \sum_{i \in J} g_i f_i \qquad (g_i \in A)$$

where J is some *finite* subset of I. Then the $\mathbb{N}(i \in J)$ cover X.]