Corrigé de l'examen de M2 2007-2008

C. Noot-Huyghe

- 1. 1- Soit $h(X) = X^{p-1} \in \mathbf{Z}_p[X]$. Dans \mathbf{F}_p il y a p-1 racines distinctes à l'équation h(X) = 0. De plus, si α est une telle racine, $h'(\alpha) = (p-1)\alpha^{p-2}$ est non nul. Une conséquence du lemme de Hensel est alors que chaque racine se relève en une racine de h dans \mathbf{Z}_p . ces racines sont distinctes puisqu'elles sont distinctes $modulo\ p$ et cela montre que \mathbf{Z}_p et donc \mathbf{Q}_p contient les racines p-1-ièmes de l'unité.
 - 2- On peut supposer que f est unitaire et de degré n. Si f = gh, avec g et h unitaires, alors, on a une décomposition $mod\ p\ \overline{f} = \overline{g}\overline{h}$, en notant \overline{t} la classe dans $\mathbf{F}_p[X]$ d'un polynôme $t \in \mathbf{Z}_p[X]$. Comme \overline{f} est irréductible, cela donne que $\overline{g} = 1$ ou $\overline{h} = 1$, par exemple $\overline{g} = 1$. Comme g est unitaire, $deg(g) = deg(\overline{g}) = 0$ de sorte que f est irréductible.
 - 3- L'anneau A est un \mathbb{Z}_p -module libre de rang fini n, de base $1, X, \ldots, X^{n-1}$ (on utilisera par la suite le plongement $\mathbb{Z}_p \to A$ qui envoie x sur $x \cdot 1 \in \mathbb{Z}_p$). La valuation proposée est la restriction de la valuation $v(x) = \{max \ i \mid x \in p^i A\}$, ce qui est une valuation par les vérifications usuelles. La topologie induite par cette valuation est la topologie produit induite par \mathbb{Z}_p sur A, si bien que A est complet pour la topologie induite par la valuation. L'idéal pA est maximal car le quotient A/pA est isomorphe à $\mathbb{Z}_p[X]/\overline{f}$, et est un corps car \overline{f} est irréductible. Si $x \notin pA$, alors x est inversible dans A/pA, ce qui signifie qu'il existe $y \in A$, $u \in A$ tels que xy = 1 + pu. Soit $v = \sum_{k \in \mathbb{N}} (-1)^k p^k u^k$ qui converge dans A qui est p-adiquement complet, alors v = 1, ce qui montre que v = 1 est inversible dans v = 10 et que v = 11 est un idéal maximal. L'anneau v = 12 est un anneau local, de corps résiduel v = 13 qui est un corps fini, isomorphe à v = 14 qui est un anneau local, de corps résiduel v = 15 qui est un corps fini, isomorphe à v = 16 qui est un anneau local, de corps résiduel v = 17 qui est un corps fini, isomorphe à v = 18 que v = 19 qui est un anneau local, de corps résiduel v = 19 qui est un corps fini, isomorphe à v = 19 qui est un anneau local, de corps résiduel v = 19 qui est un corps fini, isomorphe à v = 19 qui est v = 19 qui est un corps fini, isomorphe à v = 19 qui est v = 19 qui est un corps fini, isomorphe à v = 19 qui est v =
 - 4- Si g est un autre relèvement de \overline{f} , alors g est irréductible et g est alors le polynôme minimal de g la classe de g dans l'algèbre g = $\mathbf{Z}_p[X]/g$. Dans g dans g dans l'algèbre g = $\mathbf{Z}_p[X]/g$. Dans g dans
 - 5- Comme A/pA est isomorphe à \mathbf{F}_q , et que A est un anneau de valuation discrète où le lemme de Hensel est valide, c'est la même question que la question 1-.
- 2. 1- C'est du cours : $A = \Gamma(U, \mathcal{O}_U) = K[x][1/Q] = K[x, Q^{-1}].$
 - 2- Le faisceau des formes différentielles sur \mathbf{A}_K^1 est un $\mathcal{O}_{\mathbf{A}_K^1}$ -module libre de rang 1 engendré par dx. Par le théorème de changement de base pour le module des différentielles, $\Omega_U^1 = \Omega_{\mathbf{A}_K^1|U}^1$ est un \mathcal{O}_U -module libre de rang 1 engendré par dx et $\Omega = \Gamma(U, \Omega_U^1) = A.dx = K[x, Q^{-1}]dx$.
 - 3- i. Soit $u = f/Q^n$, avec $f \in K[x]$ tel que f n'est pas divisible par Q. On calcule

$$d\left(\frac{f}{Q^n}\right) = \frac{Qf' - nQ'f}{Q^{n+1}}.$$

Si d(u) = 0, on a Qf' = nQ'f et donc Q|f puisque $Q \wedge Q' = 1$, ce qui est absurde, sauf pour n = 0 et f' = 0, c'est-à-dire si $u \in K$. Cela montre que $H^0_{DR}(U) = Ker(d) = K$. Calcul de $C = coker(d) = \Omega/Im(d)$.

- ii. Soit $u = f/Q^n$ comme précédemment avec f non divisible par Q. Si on a $du = x^i/Q$ pour $0 \le i \le d-1$, cela donne la relation $Q(f'-x^iQ^{n-1}) = nQ'f$ et donc Q|f sauf si n=0 mais dans ce cas u est un polynôme et on ne peut pas avoir $d(u) = x^i/Q$.
- iii. Il est évident que $\Omega = \bigcup_{n\geq 0} G_n$ et que $G_{n-1} \subset G_n$. Si $u = f/Q^n \in G_n$, on effectue la division euclidienne de f par Q: f = aQ + b avec deg(b) < d et ainsi $u = a/Q^{n-1} + b/Q^n \in G_{n-1} + \sum_{0 \leq i \leq d-1} \frac{x^i}{O^n}$, ce qui montre l'assertion.
- iv. Comme Q' est premier avec Q, Q' est inversible modulo Q et la multiplication par Q' est un isomorphisme du K-espace vectoriel K[x]/P. Cette application transforme une base en une base, de sorte que les éléments $\overline{b_0}, \ldots, \overline{b_{d-1}}$ forment une base de K[x]/P. Soit maintenant x^j/Q^n pour $j \in \{0,\ldots,d-1\}$. Comme les éléments $\overline{b_i}$ forment une base de K[x]/P, il existe des scalaires μ_1,\ldots,μ_{d-1} , un polynôme RdeK[x] tels que $x^j=\sum_{t=0}^{d-1}\mu_tb_t+QR$, de sorte que $x^j/Q^n\in G_{n-1}+\sum_{0\leq i\leq d-1}\frac{b_i}{O^n}dx$, ce qui donne l'énoncé cherché.
- v. On montre par récurrence sur $n \ge 0$ que $G_n \subset E + Im(d)$, cela montre l'assertion sur $H^1_{DR}(U)$ car alors E est une base de ce K-espace vectoriel. Pour n = 0, $G_0 = K[x]dx$. Soit $f = \sum_{l=1}^M c_l x^l$, alors $f(x)dx = d(\sum_{l=1}^M)c_l x^{l+1}/l + 1)$ car le corps K est de caractéristique 0 et donc $G_0 \subset E + Im(d)$. Pour $0 \le i \le d-1$ et $n \ge 0$, on a

$$d\left(\frac{x^{i}}{Q^{n-1}}\right) = \frac{ix^{i-1}}{Q^{n-1}} - (n-1)\frac{x^{i}Q'}{Q^{n}}$$

soit encore

$$d\left(\frac{x^{i}}{Q^{n-1}}\right) = \frac{ix^{i-1} - (n-1)a_{i}}{Q^{n-1}} - (n-1)\frac{b_{i}}{Q^{n}}.$$

Si $G_{n-1} \subset E + Im(d)$, les termes $\frac{b_i}{Q^n}$ sont aussi dans E + Im(d), ce qui montre que $G_n \subset E + Im(d)$.

- 1- Les polynômes définissant f sont homogènes de sorte que f définit une application birationnelle de \mathbf{P}_K^1 . Pour voir que cette application est bien définie, il faut vérifier qu'on ne peut pas avoir $u_0^n + \lambda u_0^{n-1}u_1 = 0$ et $u_1^n = 0$. Or ces égalités donnent $u_0 = u_1 = 0$, ce qui ne correspond pas à un point de l'espace projectif. Cela montre que f est bien définie.
 - 2- Si $u_1 \neq 0$, alors $u_1^n \neq 0$, donc U_1 est stable par f. On munit u_1 de la coordonnée t. L'application f: $U_1 \rightarrow U_1$ est alors donnée $\mathcal{O}_{U_1} \rightarrow \mathcal{O}_{U_1}$ par $t \mapsto \lambda t^n + \lambda t^{n-1} = t^{n-1}(\lambda + t)$. Soit A l'anneau local en t = 0 de U_1 (qui correspond à l' ∞). L'élément $\lambda + t$ est inversible dans A et, par définition, f est ramifié en ∞ d'indice n-1 (ramification modérée par hypothèse). Etudions $f^*\Omega_X^1 \rightarrow \Omega_X^1$. L'image de dt est $d(t^n + \lambda t^{n-1}) = nt^{n-1} + \lambda(n-1)t^{n-2}dt$. L'application f est ramifiée aux points où cette dérivée s'annule, i.e. en ∞ (déjà traité) et en $t = \frac{-\lambda}{(n-1)/n}$. Comme l'ordre d'annulation de la dérivée en ce point est 1 et que 2 est premier avec car(K), la ramification en ce point est modérée et est égale à 2.
 - 3- On remarque que $f[1,s] = [1 + \lambda s, s^n]$, de sorte que f induit une application $D(1 + \lambda s) \to U_0$. On note encore f la restriction de cette application à $D(1 + \lambda s)$. L'ouvert $D(1 + \lambda s)$ contient 0. Comme on a étudié la ramification de f sur U_1 , il suffit, pour étudier toute la ramification de f d'étudier ce qui se passe dans le complémentaire de U_1 c'est-à-dire en 0. Or, en restriction à $D(1 + \lambda s)$, f correspond à $s \mapsto s^n/(1 + \lambda s)$, et est donc modérément ramifiée d'indice n en 0.

- Comme $f(U_1) \subset U_1$, $f^{-1}\{0\} = \{0\}$, avec ramification n. La formule du cours donne $f^*[0] = n = deg(f)deg([0]) = deg(f)$ et f est de degré n.
- 4- On a déjà répondu à cette question. On peut retrouver la réponse avec la formule d'Hurwitz, qui s'applique simplement car toute la ramification est modérée. Soit e la ramification cherchée. On trouve : -2=n(-2)+n-1+(n-2)+(e-1) et e=2.
- 4. 1- D'après le cours $f^*[P] = \sum Q \in f^{-1}(P)e_Q[Q]$ où e_Q est l'indice de ramification du morphisme d'anneaux locaux $\mathcal{O}_P \to \mathcal{O}_Q$. De plus, $deg(f^*[P]) = deg(f)deg(P)$ et $P \in X(K)$ est de degré 1 par définition, ce qui donne $deg(f^*[P]) = deg(f) = n$.
 - 2- La formule d'Hurwitz donne 2g(X)-2=-2n+deg(R) où, comme la ramification est modérée, où $deg(R)=\sum_{Q\in X}e_Q-1$, cette somme étant en fait finie. Avec nos hypothèses $deg(R)=\sum Q\in f^{-1}\{P\}(e_Q-1)deg(Q)=deg(f^*[P]-\sum Q\in f^{-1}\{P\})deq(Q)=n-\sum Q\in f^{-1}\{P\}$. En écrivant que $g(X)\geq 0$, on voit que $2-n-\sum Q\in f^{-1}\{P\}\geq 0$ et $n\leq 2-\sum Q\in f^{-1}\{P\}$. Comme $\sum Q\in f^{-1}\{P\}\geq 1$, cela montre que n=1 et que f est un isomorphisme.
 - 3- On procède comme précédemment. Dans ce cas, on a $deg(R) = deg(f^*[0]) + deg(f^*[\infty]-)\sum Q \in f^{-1}\{0\}) \sum Q \in f^{-1}\{\infty\}) \le 2n-2$. La formule d'Hurwitz donne alors $2g(X)-2\le -2$ et $g(X)\le 0$, i.e. g(X)=0 et X est isomorphe à \mathbf{P}^1_K .
- 5. 1- On vérifie d'abord que l'ouvert U' est lisse. Les points fermés où U' n'est pas lisse correspondent aux idéaux maximaux contenant y, P, P'. Or, ces 3 éléments engendrent A = Γ(U', O_X) car P et P' sont premiers entre eux. Sur V' il suffit de vérifier que si P et P' sont premiers entre eux, P₁ et P'₁ sont premiers entre eux. On traite ici le cas où deg(P) = 2g + 1, qui est le cas de l'énoncé avec g = 2. Les polynômes P₁ et P'₁ sont premiers entre eux si et seulement si A¹_K = D(P₁) ∪ D(P'₁). Or comme les polynômes P et P' sont premiers entre eux et que P'₁(t) = -t²g P'(1/t) + (2g + 2)t²g+1 P(1/t), l'ouvert W = A¹_K\{0} est la réunion W ∩ D(P₁) ∪ W ∩ D(P'₁). Pour conclure, il suffit de vérifier que {0} ∈ D(P₁) ∪ D(P'₁). Or, on a toujours P₁(0) = 0 et si a est le coefficient du terme de plus haut degré de P, on a que P'₁(0) = a ≠ 0, d'où l'assertion. On peut aussi montrer que P₁ et P'₁ sont premiers entre eux, en utilisant les formules et sans recourir à des arguments de géométrie.
 - 2- Le genre *g* est égal à 2 d'après le cours.
 - 3- Le module $\Gamma(U',\Omega^1_{U'})$ est le A-module libre Ady + Ads/2ydy = P'(s)ds. Donc, sur D(y), ce module est libre engendré par ds et sur D(P') ce module est libre engendré par ds. De plus, comme U' est lisse, $U' = D(y) \cup D(P')$. L'élément ω_0 est clairement une section sur D(P'). Sur $D(P') \cap D(y)$, on a $\omega_0 = dy/P'(s)$, qui est la restriction d'une section de $\Omega^1_{U'}$ sur D(P'), de sorte que ω_0 est une section globale de $\Omega^1_{U'}$ qui engendre ce faisceau sur chacun des ouvert D(y) et D(P'). Le raisonnement pour ω_1 est identique.
 - 4- Il reste à voir que ω_0 est une section de $\Omega^1_{V'}$, pour voir que c'est une section globale. Or, cela vient de la relation $ds/2y = -t^{g-1}dt/2z$ et $dt/2z \in \Gamma(V',\Omega^1_{V'})$ pour les mêmes raisons que précédemment. On a aussi $sds/2y = -t^{g-1}dt/2z \in \Gamma(V',\Omega^1_{V'})$ puisque $g \geq 2$. Les sections ω_0 et ω_1 sont linéairement indépendantes et $dim H^0(X,\Omega^1_X) = 2$ car X est de genre 2 : ces sections forment dont une base de ce K-espace vectoriel.
 - 5- Comme Ω^1_X est libre, il suffit de calculer l'action de σ sur les éléments ω_0 et ω_1 vus comme sections sur U'. Comme $\sigma^{-1}(dy) = -dy$ et $\sigma^{-1}(s) = s$, σ agit par -Id sur $H^0(X, \Omega^1_X)$.
 - 6- On applique la formule de Riemann-roch : $\Omega_X^{1 \otimes 3}$ est associé au diviseur D=3K où K est le diviseur canonique. Comme le degré de K-D=-2K est -2(2g-2)<0 pour $g\geq 2$, l(K-D)=0, ce qui

donne l(D) = deg(D) + 1 - g = 5(g - 1), ce qui est égal à 5 pour g = 2.

7- Par fonctorialité, tout automorphisme de X induit un automorphisme de $H^0(X,\Omega_X^1)$ et donc aussi de $H^0(X,\Omega_X^{1\otimes 3})$. Si cette application est injective, alors Aut(X) se plonge dans le groupe d'automorphismes de $H^0(X,\Omega_X^{1\otimes 3})$, qui est un K-espace vectoriel de dimension finie, et est un groupe fini si K est fini. Dans notre cas, ce cardinal est inférieur à $card(M_5(K))$ et donc à $card(K)^{25}$. Précisément, si K est de cardinal $Q = p^i$, le cardinal de $Q^i(X,\Omega_X^{1\otimes 3})$ est égal à $Q^i(X,\Omega_X^{1\otimes 3})$ est égal à $Q^i(X,\Omega_X^{1\otimes 3})$, qui est donc un majorant de $Q^i(X,\Omega_X^{1\otimes 3})$.