1 TD3 – Faisceaux localement constants et modules à connexion (suite)

Exercice 1.1. Soient X un ouvert de \mathbb{C} et M un \mathcal{O}_X -module localement libre de rang fini muni d'une connexion

$$\nabla : M \to M \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}.$$

Soit $x_0 \in X$, *on note* $\pi_1(X, x_0)$ *le groupe fondamentale.*

- (1) Rappeler la construction de la représentation de monodromie ρ associée à (M, ∇) et $x_0 \in X$.
- (2) Supposons maintenant $X = D(0, \varepsilon)^* := \{z \in \mathbb{C} | 0 < |z| < \varepsilon\}$, pour $\varepsilon > 0$. Soient γ : $[0, 1] \to X$ le lacet $\gamma(s) := \frac{\varepsilon}{2}e^{2\pi is}$ et $x_0 = \gamma(0) = \gamma(1) = \frac{\varepsilon}{2}$; on note $[\gamma]$ sa classe d'homotopie dans $\pi_1(X, x_0)$. Montrer que $\rho([\gamma])$ est donnée par la matrice de monodromie C définie au début du cours (préciser dans quels sens).

Exercice 1.2. Soit $X := \mathbb{C} \setminus \{0, \pm i, \pm i\sqrt{2}\}\$ et $B := \mathbb{C} \setminus \{0, 1\}$. On note $p : X \to B$ l'application définie par $p(z) := (z^2 + 1)^2$. Montrer que p est revêtement. (cf. Polycopiés de A.Kraus pg. 59).

Calculer l'image directe par p du module à connexion (\mathcal{O}_X, d) . Est-elle régulière en 0, 1 et ∞ ? Montrer qu'elle se décompose en facteurs directs de rang 1. Calculer ces facteurs.

Exercice 1.3. (cf. exercice 5.7 dans M. van der Put, M. Singer, Galois Thory of Linear Differential Equation) On considère le système d'équations différentielles

$$\begin{cases} \frac{dy}{dz} - \sum_{i=1}^{k} \frac{A_i}{z - s_i} \cdot y = 0 , \end{cases}$$

où $A_i \in M_{n,n}(\mathbb{C})$ et les s_i sont des nombres complexes distinctes. Écrire le D-module et le module à connexion méromorphe associé. Montrer que ∞ est un point singulier régulier. Montrer que $\sum_{i=1}^k A_i = 0$ implique que ∞ est régulier.