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Introduction

• Report on joint work with Pierre Guillot (Strasbourg):

Cohomology of invariant Drinfeld twists on group algebras,

Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807

• Given a finite group G and a field k , we define a ‘cohomology group’

H2(G/k)

with the following properties:

I If G is abelian, then

H2(G/k) = H2(bG, k×) (group cohomology)

where k× = k − {0} and bG = Hom(G, k×)

I There are groups G such that H2(G/k) is not abelian

Remark. H2(G/k) 6∼= H2(G, k×), the latter being abelian
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Extending group cohomology to Hopf algebras

Start from the cohomology groups H i (G, k×) of G acting trivially on k×

I Sweedler (1968) associated to any cocommutative Hopf algebra H
cohomology groups

H i
Sw(H) (i ≥ 1)

such that
H i

Sw(kG) = H i (G, k×)

for any group G

I Schauenburg (2002) extended this to arbitrary Hopf algebras; he
defined groups

H i
Sch(H) (i = 1, 2)

such that
H i

Sch(H) = H i
Sw(H)

for any cocommutative Hopf algebra H

Price to pay: these groups are defined only for i = 1 and i = 2
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The group H2(G/k)

• First Schauenburg cohomology: H1
Sch(H) is easy to compute:

it is the abelian group

H1
Sch(H) = {χ ∈ Alg(H, k) | χα = αχ for all α ∈ Hom(H, k)}

So we are left with H2
Sch(H)

• Second Schauenburg cohomology: H2
Sch(H) has been computed for very

few non-cocommutative Hopf algebras

• Our initial aim:
Compute H2

Sch(H) for a large class of non-cocommutative Hopf algebras,
namely for the dual Hopf algebras H = (kG)∗, where G is a finite group

Observation: The Hopf algebra (kG)∗ is not cocommutative if and only if
G is not abelian

• For simplicity, we set

H2
Sch((kG)∗) = H2(G/k)
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The abelian case
If A is a finite abelian group and k is algebraically closed, then the discrete
Fourier transform induces a Hopf algebra isomorphism

(kA)∗ ∼= kbA
Thus,

H2(A/k) = H2
Sch((kA)∗) (by definition)

∼= H2
Sch(kbA) (discrete Fourier transform)

∼= H2(bA, k×)

∼= Hom(H2(bA,Z), k×) (universal coefficient theorem)

∼= Hom(Λ2
Z(bA), k×)

= {alternating bicharacters on bA}
A bicharacter is a bimultiplicative map b : bA× bA→ k×, i.e.,

b(u1u2, v) = b(u1, v) b(u2, v) and b(u, v1v2) = b(u, v1) b(u, v2)

Alternating means that b(u, u) = 1 for all u ∈ bA
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Towards a geometric interpretation of H2(G/k)

We had another motivation to try to understand H2(G/k)

• Recall: A G-torsor is a right G-variety T such that the map

T ×G −→ T × T

(t , g) 7−→ (t , tg)

is an isomorphism

• If k = k̄ is algebraically closed, then any torsor is isomorphic to T = G
with G acting by right translations

• Over a general ground field k :

torsors are classified by Serre’s non-abelian Galois cohomology set

H1(Gal(k̄/k),G)
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Bitorsors

• To obtain a group structure, we consider bitorsors

• A bitorsor T is both a left and right G-torsor such the left and right actions
commute

• The product of two bitorsors T ,T ′ is the bitorsor

T ∗ T ′ = T ×G T ′ = (T × T ′)/〈(tg, t ′) = (t , gt ′)〉

• In this way, the set of isomorphism classes of bitorsors becomes a group,
which is isomorphic to the Galois cohomology group

H1(Gal(k̄/k),Z (G))

where Z (G) is the center of G
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Noncommutative bitorsors

• In the spirit of noncommutative geometry, replace

varieties ←→ algebras

groups ←→ Hopf algebras

group action ←→ Hopf algebra coaction

• In this way one defines noncommutative bitorsors for the Hopf
algebra (kG)∗

• The set of isomorphism classes of these noncommutative bitorsors
is a group isomorphic to

H2(G/k)
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Reminder on group cohomology

• Define Z 2(G, k×) as the set of all maps f : G ×G→ k× satisfying the
cocycle condition

f (x , y) f (xy , z) = f (y , z) f (x , yz) (x , y , z ∈ G)

Cocycles form a group under pointwise multiplication

• Two cocycles are cohomologous—we write f ∼ f ′—if there is a map
g : G→ k× such that

f ′(x , y) =
g(x)g(y)

g(xy)
f (x , y) (x , y ∈ G)

• By definition,
H2(G, k×) = Z 2(G, k×)/∼

Let us extend this to cocommutative Hopf algebras
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Sweedler cohomology 1

Let H be a Hopf algebra with coproduct ∆ : H → H ⊗ H

• Define the convolution product of two bilinear maps f , f ′ : H × H → k by

(f ∗ f ′)(x , y) =
X

(x)(y)

f (x1, y1) f ′(x2, y2)

where ∆(x) =
P

(x) x1 ⊗ x2 and ∆(y) =
P

(y) y1 ⊗ y2

• Define Z 2(H) as the set of all convolution-invertible bilinear maps
f : H × H → k satisfying the cocycle conditionX

(x)(y)

f (x1, y1) f (x2y2, z) =
X

(y)(z)

f (y1, z1) f (x , y2z2) (x , y , z ∈ H)

• If H is cocommutative and f , f ′ ∈ Z 2(H), then f ∗ f ′ ∈ Z 2(H)

and thus Z 2(H) becomes a group
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Sweedler cohomology 2

• Two cocycles are cohomologous—we write f ∼ f ′—if there is a
convolution-invertible linear map g : H → k such that

f ′(x , y) =
X

(x)(y)

g(x1) g(y1) f (x2, y2) g−1(x3y3) (x , y ∈ H)

where g−1 is the convolution-inverse of g

Convention: (∆⊗ id)∆(x) =
P

(x) x1 ⊗ x2 ⊗ x3

• By definition, the Sweedler cohomology group of a cocommutative Hopf
algebra is

H2
Sw(H) = Z 2(H)/∼
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Schauenburg cohomology
Let H be an arbitrary Hopf algebra

•We restrict to special cocycles, namely cocycles satisfying the additional
condition X

(x)(y)

f (x1, y1) x2y2 =
X

(x)(y)

f (x2, y2) x1y1 (x , y ∈ H)

If f , f ′ are special cocycles, then so is f ∗ f ′

and thus the set Z 2
s (H) of special cocycles becomes a group

Remark. If H is cocommutative, then any cocycle is special

• Two special cocycles are cohomologous if there is a g : H → k as above,
but also satisfying X

(x)

g(x1) x2 =
X
(x)

g(x2) x1 (x ∈ H)

• The Sweedler cohomology group of a Hopf algebra H is defined as

H2
Sch(H) = Z 2

s (H)/∼
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Rationality

Assume that k is of characteristic zero with algebraic closure k̄

• Theorem 1. If all irreducible k̄-representations of G can be realized over k,
then there is an exact sequence of groups

1 −→ H1(Gal(k̄/k),Z (G)) −→ H2(G/k) −→ H2(G/k̄) −→ 1

(bitorsors) (noncomm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G is centerless, then H2(G/k) ∼= H2(G/k̄)

•We are now reduced to computing H2(G/k̄)

• From now on, assume k is algebraically closed: k̄ = k

• To compute H2(G/k̄), we need the following two ingredients. . .
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First ingredient: class-preserving automorphisms

• Let Autc(G) be the group of automorphisms ϕ of G such that for all g ∈ G

ϕ(g) = hgh−1 for some h ∈ G

The group Inn(G) of inner automorphism is normal in Autc(G)

• Definition.
Outc(G) = Autc(G)/ Inn(G)

•We have Outc(G) = 1 if

(a) G = Sn (symmetric group)

(b) G = SLn(Fq)

(c) G is simple (Feit-Seitz, 1989)

• Finding finite groups with Outc(G) 6= 1 is not straightforward

Nevertheless, there are groups with non-trivial Outc(G),
even with non-abelian Outc(G)
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Second ingredient: the pointed set B(G)

I For any finite group G
let B(G) be the set of pairs (A, b) where

(i) A is an abelian normal subgroup of G and

(ii) b : bA× bA→ k× is a G-invariant non-degenerate alternating
bicharacter

I The set B(G) is finite and can be “computed in finite time”

It is non-empty since it always contains the trivial pair ({1}, b0 ≡ 1)

I If (A, b) ∈ B(G), then necessarily

A ∼= A0 ×cA0

for some subgroup A0. Hence, |A| = |A0|2 is a square

I Examples. B(G) is trivial if G = Sn, G = SLn(Fq), or G is simple
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Determining H2(G/k̄)

Assume that the ground field k = k̄ is of characteristic prime to |G|

We set H2(G) = H2(G/k̄)

• Theorem 2 There is a set-theoretic map Θ : H2(G)→ B(G) such that

(a) H0 = Θ−1(({1}, b0)) is a subgroup of H2(G) such that

H0 ∼= Outc(G)

(b) Θ(α) = Θ(β) if and only if β ∈ αH0

(c) If |G| is odd, then Θ is surjective

• Remark. If |G| is even, then Θ may or may not be surjective
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Consequences of Theorem 2

• The group H2(G) is finite: it sits between Outc(G) and B(G)

• The group H2(G) can be non-abelian since H2(G) ⊃ H0 ∼= Outc(G)

• If Outc(G) = 1 and B(G) is trivial, then H2(G) = 1

• Examples of groups with trivial H2(G):
(a) G = Sn

(b) G = SLn(Fq)

(c) G is simple
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I. Origin: Where H2(G/k) comes from

II. Definition of H2(G/k)

III. Main results

IV. A proof using quantum group theory

V. Examples of computation



Representing elements of H2(G) by Drinfeld twists

• Represent an element of H2(G) = H2
Sch((kG)∗) by a special cocycle

f : (kG)∗ × (kG)∗ → k

• Dualizing, we obtain an element F ∈ kG ⊗ kG such that

(a) F is invertible in the algebra kG ⊗ kG (invertibility of f )

(b) F is a Drinfeld twist, i.e.,

(F ⊗ 1) (id⊗∆)(F ) = (1⊗ F ) (∆⊗ id)(F ) ∈ kG ⊗ kG ⊗ kG

(translation of the cocycle condition)

(c) F is G-invariant, i.e.,

(g ⊗ g) F = F (g ⊗ g) (g ∈ G)

(the cocycle f is special)
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The universal R-matrix attached to a Drinfeld twist

• Given an invertible invariant Drinfeld twist F , consider

RF = F21 F−1 ∈ kG ⊗ kG

This is a universal R-matrix for kG, i.e., an invertible element satisfying

∆(a) RF = RF ∆(a) for all a ∈ kG

and

(∆⊗ id)(RF ) = (RF )13 (RF )23 and (id⊗∆)(RF ) = (RF )13 (RF )12

• The universal R-matrix induces braidings on the tensor category of
G-modules

γV ,W : V ⊗W
∼=−→ W ⊗ V

v ⊗ w 7−→
`
RF (v ⊗ w)

´
21
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Constructing the map Θ: Part 1

• By work of Radford, there is a minimal Hopf subalgebra H ⊂ kG such that

RF ∈ H ⊗ H

This Hopf algebra is self-dual: H∗ ∼= H

• Since kG is cocommutative, so is H. From self-duality, H is bicommutative

One deduces that H = kA for some abelian subgroup A of G

• Since F is G-invariant, so is RF , and A is normal in G
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Constructing the map Θ: Part 2

• By duality, RF ∈ kA⊗ kA corresponds to a bilinear form

kbA× kbA ∼= (kA)∗ × (kA)∗ → k

Restricting to bA× bA, we obtain a G-invariant bicharacter bF : bA× bA→ k×

One shows that bF is non-degenerate and alternating

•We define
Θ(f ) = (A, bF ) ∈ B(G)

One checks that Θ(f ) depends only on the class of the cocycle f in H2(G)
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On the proof of Theorem 2

• To determine H0 = Θ−1(({1}, b0)), we use the following result:

Etingof and Gelaki (2000): If F is a Drinfeld twist such that RF = 1⊗ 1, or
equivalently F is symmetric: F = F21, then

F = (a⊗ a) ∆(a−1)

for some invertible element a ∈ kG

Observation. The symmetric twist F = (a⊗ a) ∆(a−1) is invariant if and only
if the automorphism x 7→ axa−1 preserves G and is an element of Autc(G)

From this it is easy to deduce that H0 ∼= Outc(G)

• Etingof and Gelaki’s result follows from classical Tannakian theory:

Deligne and Milne (1982): Any exact and fully faithful symmetric tensor
functor from the category of kG-modules to the category of k-vector spaces
is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor, to which Etingof
and Gelaki apply Deligne and Milne’s result
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Example of groups with non-trivial H2(G)

• Let p be an odd prime and let G be the wreath product

G = Z/p o Z/p = A o Z/p

with Z/p acting cyclically on A = (Z/p)p

•We have Outc(G) = 1 and |G| is odd; we deduce from Theorem 2 that the
map Θ : H2(G)→ B(G) is bijective

• Proposition. We have

H2(G) ∼= H2(bA, k×)G ∼= (Z/p)(p−1)/2

• Proof. The second isomorphism follows from a standard cohomological
calculation

The first isomorphism is a consequence of the following interpretation of B(G)
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The set B(G) as a colimit

I Theorem. There is a bijection

B(G)
∼=−→

[
A

H2(bA, k×)G

where the RHS is the colimit in the category whose objects are the
abelian normal subgroups A of G and whose arrows are the inclusions

I Corollary. If G has a unique maximal abelian normal subgroup A, then

B(G) ∼= H2(bA, k×)G

I An example where Θ is not surjective: Take G = Z/2 o Z/2,
which is the dihedral group of order 8

The map Θ is injective since Outc(G) = 1

G having two maximal abelian normal subgroups, we obtain |B(G)| = 3

Proposition. H2(G) = 1
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The alternating group A4

I Consider the alternating group A4

A4 ∼= V4 o Z/3 with V4 = Z/2× Z/2

• Since Outc(A4) = 1, the map Θ : H2(A4)→ B(A4) is injective

• The set B(A4) has two elements: (V4, det) and the trivial one

The order of A4 being even, we cannot conclude that Θ is surjective.

Nevertheless,. . .

I Theorem. The map Θ is bijective and H2(A4) ∼= Z/2

To prove the surjectivity of Θ, we exhibit an invariant Drinfeld twist F such that
Θ(F ) = (V4, det), namely

F = 1⊗ 1− (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

+(1⊗ e1 + e1 ⊗ 1) + (1⊗ e2 + e2 ⊗ 1) + (1⊗ e3 + e3 ⊗ 1)

+(e1 ⊗ e2 − e2 ⊗ e1) + (e2 ⊗ e3 − e3 ⊗ e2) + (e3 ⊗ e1 − e1 ⊗ e3)

where e1, e2, e3 are the three non-zero elements of V4
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• Since Outc(A4) = 1, the map Θ : H2(A4)→ B(A4) is injective

• The set B(A4) has two elements: (V4, det) and the trivial one

The order of A4 being even, we cannot conclude that Θ is surjective.

Nevertheless,. . .

I Theorem. The map Θ is bijective and H2(A4) ∼= Z/2

To prove the surjectivity of Θ, we exhibit an invariant Drinfeld twist F such that
Θ(F ) = (V4, det), namely

F = 1⊗ 1− (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

+(1⊗ e1 + e1 ⊗ 1) + (1⊗ e2 + e2 ⊗ 1) + (1⊗ e3 + e3 ⊗ 1)

+(e1 ⊗ e2 − e2 ⊗ e1) + (e2 ⊗ e3 − e3 ⊗ e2) + (e3 ⊗ e1 − e1 ⊗ e3)

where e1, e2, e3 are the three non-zero elements of V4



Non-trivial Outc(G)

I Burnside (1912) was the first one to construct groups with Outc(G) 6= 1
(his smallest example is of order 729 = 36)

Burnside stated that Outc(G) is always abelian, but. . .

I C.-H. Sah (1968): There are groups such that Outc(G) is non-abelian
(his smallest example is of order 215)
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Wall’s group of order 32

• The group G = Z/8 o Aut(Z/8) of order 32 has the presentation

G = 〈s, t , u | s2 = t2 = u8 = 1, st = ts, sus−1 = u3, tut−1 = u5〉

• G. E. Wall (1947) proved that Outc(G) = Z/2, generated by the
automorphism α defined by

α(s) = u4s = u2su−2 , α(t) = u4t = utu−1 , α(u) = u

• The set B(G) has two elements:

(〈t , u4〉 = Z/2× Z/2, det) and the trivial one

• Therefore, H2(G) has order 4 or 2 according as Θ is surjective or not

We were not able to conclude
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Appendix 1. Wall’s group (continued)
• The automorphism α is of the form

α(g) = aga−1

for some invertible a ∈ kG. A computer search gave us

a =
1
2

(1 + u4) +

√
2

4
u (1− u2 − u4 + u6)

• Then
F = (a⊗ a) ∆(a−1)

is a symmetric invariant twist representing the non-zero element of H0 ⊂ H2(G)

The Drinfeld twist F is a sum of 52 pure tensors:

8F = 2 (u00 + u44) + (u11 + u33 + u55 + u77)

+ u01 + u03 + u04 + u05 + u07 + u12 + u17 + u25 + u35 + u36 + u67

+ u10 + u30 + u40 + u50 + u70 + u21 + u71 + u52 + u53 + u63 + u76

− (u13 + u14 + u15 + u16 + u23 + u27 + u34 + u37 + u45 + u47 + u56 + u57)

− (u31 + u41 + u51 + u61 + u32 + u72 + u43 + u73 + u54 + u74 + u65 + u75)

where uij = ui ⊗ uj (i, j ∈ {0, 1, . . . , 7})



Appendix 2. On the proof of Theorem 1

• Theorem 1. If all irreducible k̄-representations of G can be realized over k,
then there is an exact sequence of groups

1 −→ H1(Gal(k̄/k),Z (G)) −→ H2(G/k) −→ H2(G/k̄) −→ 1

• Ingredients of the proof

(a) Observe that Schauenburg cohomology is defined as a complex of
algebraic groups

(b) Compute their tangent Lie algebras and show that the corresponding
complex is acyclic

(c) Use Hilbert’s Theorem 90 twice
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