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Cohomology of invariant Drinfeld twists on group algebras,
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e Given a finite group G and a field k, we define a ‘cohomology group’

H(G/K)
with the following properties:
» |f Gis abelian, then
H2(G/K) = H*(G, k™) (group cohomology)

where k* = k — {0} and G = Hom(G, k*)

> There are groups G such that #2(G/k) is not abelian

Remark. H?(G/k) 2 H*(G, k*), the latter being abelian
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Extending group cohomology to Hopf algebras
Start from the cohomology groups H'(G, k*) of G acting trivially on k*

» Sweedler (1968) associated to any cocommutative Hopf algebra H
cohomology groups .
Hsw(H) (i>1)
such that ‘ ‘
Hsw(kG) = H'(G, k™)
for any group G

> Schauenburg (2002) extended this to arbitrary Hopf algebras; he
defined groups .
Hsen(H) (i=1,2)

such that ' '
Hsen(H) = Hsw(H)

for any cocommutative Hopf algebra H

Price to pay: these groups are defined only fori =1 and i =2
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The group H?(G/k)

« First Schauenburg cohomology: H,(H) is easy to compute:
it is the abelian group

Hen(H) = {x € Alg(H, k) | xa = ax forall a € Hom(H, k)}
So we are left with Hay,(H)

« Second Schauenburg cohomology: H2,(H) has been computed for very
few non-cocommutative Hopf algebras

o Our initial aim:

Compute HZ,,(H) for a large class of non-cocommutative Hopf algebras,
namely for the dual Hopf algebras H = (kG)*, where G is a finite group

Observation: The Hopf algebra (kG)* is not cocommutative if and only if
G is not abelian

e For simplicity, we set

Hén((KG)*) = H?(G/K)
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The abelian case

If Ais a finite abelian group and k is algebraically closed, then the discrete
Fourier transform induces a Hopf algebra isomorphism

(KA)" 2 kA
Thus,
HA(A/K) = Hanm((KA)®) (by definition)
>~ HZ,(kA) (discrete Fourier transform)

1

H?(A, k*)

Il

Hom(Ha(A, Z),k*)  (universal coefficient theorem)

Hom(A2(A), k*)

1%

= {alternating bicharacters on 7\}
A bicharacter is a bimultiplicative map b: A x A — k*, i.e.,
b(uruz, v) = b(us, v) b(uz,v) and  b(u,vive) = b(u, vi) b(u, v»)

Alternating means that b(u,u) = 1 forall u € A



Towards a geometric interpretation of H2(G/ k)

We had another motivation to try to understand H?(G/k)

e Recall: A G-torsor is a right G-variety T such that the map

TxG — TxT
(t,g) — (t19)

is an isomorphism

o If k = k is algebraically closed, then any torsor is isomorphicto T = G
with G acting by right translations



Towards a geometric interpretation of H2(G/ k)

We had another motivation to try to understand H?(G/k)

e Recall: A G-torsor is a right G-variety T such that the map

TxG — TxT
(t,g) — (t19)

is an isomorphism

o If k = k is algebraically closed, then any torsor is isomorphicto T = G
with G acting by right translations

e Over a general ground field k:
torsors are classified by Serre’s non-abelian Galois cohomology set

H'(Gal(k/k), G)
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e To obtain a group structure, we consider bitorsors

e A bitorsor T is both a left and right G-torsor such the left and right actions
commute

e The product of two bitorsors T, T’ is the bitorsor

T«T' =TxeT =(TxT)/((tg, ') = (t,gt'))



Bitorsors

e To obtain a group structure, we consider bitorsors

e A bitorsor T is both a left and right G-torsor such the left and right actions
commute

e The product of two bitorsors T, T’ is the bitorsor

T«T' =TxeT =(TxT)/((tg, ') = (t,gt'))

o In this way, the set of isomorphism classes of bitorsors becomes a group,
which is isomorphic to the Galois cohomology group
H'(Gal(k/k), Z(G))

where Z(G) is the center of G
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e In the spirit of noncommutative geometry, replace

varieties «— algebras
groups «— Hopf algebras
group action «— Hopf algebra coaction



Noncommutative bitorsors

e In the spirit of noncommutative geometry, replace

varieties «— algebras
groups «— Hopf algebras
group action «— Hopf algebra coaction

e In this way one defines noncommutative bitorsors for the Hopf
algebra (kG)*

e The set of isomorphism classes of these noncommutative bitorsors
is a group isomorphic to
H(G/k)
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Reminder on group cohomology

o Define Z2(G, k*) as the set of all maps f : G x G — k* satisfying the
cocycle condition

foy) f(xy,2) =y, 2) (x,y2)  (x,y,2€ G)

Cocycles form a group under pointwise multiplication

o Two cocycles are cohomologous—we write f ~ f'—if there is a map
g: G — k* such that

£ (x,y) = 990 ¢

909) fx,y) (x,y€G)

e By definition,
H(G, k) = Z°(G, k™) /~

Let us extend this to cocommutative Hopf algebras
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Sweedler cohomology 1

Let H be a Hopf algebra with coproduct A : H — H® H

o Define the convolution product of two bilinear maps f,f' : H x H — k by

(Fx )0 y) = > O, 3) F (e, y2)
(€9167)

where A(x) =3 ) X1 @Xe and A(y) =3,y y1 ® ye

o Define Z2(H) as the set of all convolution-invertible bilinear maps
f: H x H — k satisfying the cocycle condition

> ) feye, 2) = > f(yi,z0) f(x,yo22)  (x,y,2 € H)
(O0) V(@)

o If His cocommutative and f, f' € Z2(H), then f x f' € Z2(H)
and thus Z2(H) becomes a group
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Sweedler cohomology 2

e Two cocycles are cohomologous—we write f ~ f'—if there is a
convolution-invertible linear map g : H — k such that

Fy) = g(x)gn) (e, ¥2) 9 (xays)  (X,y € H)
()W)

where g~ is the convolution-inverse of g

Convention: (A ® id)A(X) = > X1 ® X2 ® X3

e By definition, the Sweedler cohnomology group of a cocommutative Hopf
algebra is

Hew(H) = Z*(H)/~
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Let H be an arbitrary Hopf algebra

e We restrict to special cocycles, namely cocycles satisfying the additional
condition

Do fay) ey =Y fOe,ye)xan  (x,y€H)
(W) (W)

If f, f' are special cocycles, then so is f = f/
and thus the set Z2(H) of special cocycles becomes a group

Remark. If H is cocommutative, then any cocycle is special



Schauenburg cohomology
Let H be an arbitrary Hopf algebra

e We restrict to special cocycles, namely cocycles satisfying the additional
condition

Do fay) ey =Y fOe,ye)xan  (x,y€H)
(W) (W)

If f, f' are special cocycles, then so is f = f/
and thus the set Z2(H) of special cocycles becomes a group

Remark. If H is cocommutative, then any cocycle is special

e Two special cocycles are cohomologous if there isa g : H — k as above,
but also satisfying

Z g(X1)X2 = Z g(Xg)X1 (X S H)
() ()

e The Sweedler cohnomology group of a Hopf algebra H is defined as

Héon(H) = Z5(H)/~
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Rationality

Assume that k is of characteristic zero with algebraic closure k

o Theorem 1. If all irreducible /_(-representations of G can be realized over k,
then there is an exact sequence of groups

1 — H'(Gal(k/k),Z(G)) — H*(G/k) — H3*(G/k) — 1
(bitorsors) (noncomm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G is centerless, then H?(G/k) = H?(G/k)



Rationality

Assume that k is of characteristic zero with algebraic closure k

o Theorem 1. If all irreducible /_(-representations of G can be realized over k,
then there is an exact sequence of groups

1 — H'(Gal(k/k),Z(G)) — H*(G/k) — H3*(G/k) — 1
(bitorsors) (noncomm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G is centerless, then H?(G/k) = H?(G/k)
o We are now reduced to computing H2(G/k)

 From now on, assume k is algebraically closed: k = k

o To compute H2(G/k), we need the following two ingredients. . .
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Outc(G) = Aute(G)/ Inn(G)



First ingredient: class-preserving automorphisms

e Let Aut:(G) be the group of automorphisms ¢ of G such that forall g € G
©(g) =hgh™'  forsomehe G
The group Inn(G) of inner automorphism is normal in Autc(G)
e Definition.
Outc(G) = Aute(G)/ Inn(G)
e We have Outc(G) = 1 if

(a) G = S, (symmetric group)
(b) G = SLn(Fq)
(c) Gis simple (Feit-Seitz, 1989)

e Finding finite groups with Out.(G) # 1 is not straightforward

Nevertheless, there are groups with non-trivial Outc(G),
even with non-abelian Out:(G)
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let B(G) be the set of pairs (A, b) where

(i) Ais an abelian normal subgroup of G and

(i) b: Ax A— k* isa G-invariant non-degenerate alternating
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Second ingredient: the pointed set B(G)

» For any finite group G
let B(G) be the set of pairs (A, b) where

(i) Ais an abelian normal subgroup of G and

(i) b: Ax A— k* isa G-invariant non-degenerate alternating
bicharacter

» The set B(G) is finite and can be “computed in finite time”

It is non-empty since it always contains the trivial pair ({1}, by = 1)

> If (A, b) € B(G), then necessarily
A= Ay x Ay
for some subgroup Ay. Hence, |A| = |Ay|? is a square

» Examples. B(G) is trivial if G = S, G = SLy(Fq), or G is simple
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Determining H?(G/k)

Assume that the ground field k = k is of characteristic prime to |G|
We set H?(G) = H?(G/k)

o Theorem 2 There is a set-theoretic map © : H?(G) — B(G) such that
(@) Ho = ©7'(({1}, bo)) is a subgroup of H?(G) such that
Ho = OUtC(G)
(b) ©(a) = ©(B) ifand only if 8 € aHo
(c) If |G| is odd, then © is surjective

e Remark. If |G| is even, then © may or may not be surjective
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Consequences of Theorem 2

e The group H?(G) is finite: it sits between Out;(G) and B(G)
e The group H2(G) can be non-abelian since H2(G) D Ho = Outs(G)
o If Outs(G) = 1 and B(G) is trivial, then H?(G) =1
« Examples of groups with trivial #2(G):
(@ G=35,

(b) G = SLn(Fyq)
(c) Gis simple



Plan

IV. A proof using quantum group theory



Representing elements of 7?(G) by Drinfeld twists

e Represent an element of H2(G) = HZ,,((kG)*) by a special cocycle

f: (kG)* x (kG)* — k



Representing elements of 7?(G) by Drinfeld twists

e Represent an element of H2(G) = HZ,,((kG)*) by a special cocycle
f:(kG)" x (kG)" — k

e Dualizing, we obtain an element F € kG ® kG such that

(a) Fis invertible in the algebra kG ® kG (invertibility of f)



Representing elements of 7?(G) by Drinfeld twists

e Represent an element of H2(G) = HZ,,((kG)*) by a special cocycle
f:(kG)" x (kG)" — k
e Dualizing, we obtain an element F € kG ® kG such that
(a) Fis invertible in the algebra kG ® kG (invertibility of f)
(b) F is a Drinfeld twist, i.e.,
(F1)(dA)F)=(1®F)(A®id)(F) € kG® kG® kG

(translation of the cocycle condition)



Representing elements of 7?(G) by Drinfeld twists

e Represent an element of H2(G) = HZ,,((kG)*) by a special cocycle
f:(kG)" x (kG)" — k

e Dualizing, we obtain an element F € kG ® kG such that

(a) Fis invertible in the algebra kG ® kG (invertibility of f)

(b) F is a Drinfeld twist, i.e.,

(F1)(dA)F)=(1®F)(A®id)(F) € kG® kG® kG

(translation of the cocycle condition)

(c) Fis G-invariant, i.e.,

(9®9)F=F(g®g) (g€ G

(the cocycle f is special)
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The universal R-matrix attached to a Drinfeld twist

e Given an invertible invariant Drinfeld twist F, consider
Re = Fo1 F~' € kG ® kG
This is a universal R-matrix for kG, i.e., an invertible element satisfying
A(a) Rr = Rr A(a) foralla € kG
and

(A ®id)(RF) = (RF)13 (RF)es and  (id ®@A)(RF) = (RF)1s (RF)i2

e The universal R-matrix induces braidings on the tensor category of
G-modules

WV,W:V®W =, WweV
voaw — (Re(vew)),,
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Constructing the map ©: Part 1

e By work of Radford, there is a minimal Hopf subalgebra H C kG such that
Ree H® H

This Hopf algebra is self-dual: H* =~ H

e Since kG is cocommutative, so is H. From self-duality, H is bicommutative

One deduces that H = kA for some abelian subgroup A of G

e Since F is G-invariant, so is Rr, and Ais normal in G
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Constructing the map ©: Part 2

e By duality, Rr € kA ® kA corresponds to a bilinear form
KA x kA= (kA)* x (KA)* — k
Restricting to A x 2\, we obtain a G-invariant bicharacter bg : Ax A k*

One shows that br is non-degenerate and alternating

o We define
O(f) = (A, br) € B(G)

One checks that ©(f) depends only on the class of the cocycle f in H?(G)



On the proof of Theorem 2
o To determine Ho = ©~'(({1}, b)), we use the following result:

Etingof and Gelaki (2000): /f F is a Drinfeld twist such that Re =1 ® 1, or
equivalently F is symmetric: F = Fyy, then

F=(a®a)A(a")

for some invertible element a € kG
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On the proof of Theorem 2

o To determine Ho = ©~'(({1}, b)), we use the following result:

Etingof and Gelaki (2000): /f F is a Drinfeld twist such that Re =1 ® 1, or
equivalently F is symmetric: F = F4, then

F=(awa)A(a")
for some invertible element a € kG

Observation. The symmetric twist F = (a® a) A(a™") is invariant if and only
if the automorphism x — axa~' preserves G and is an element of Autc(G)

From this it is easy to deduce that Ho = Out.(G)

e Etingof and Gelaki’s result follows from classical Tannakian theory:

Deligne and Milne (1982): Any exact and fully faithful symmetric tensor
functor from the category of kG-modules to the category of k-vector spaces
is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor, to which Etingof
and Gelaki apply Deligne and Milne’s result
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V. Examples of computation



Example of groups with non-trivial H?(G)

e Let p be an odd prime and let G be the wreath product
G=Z/p1Z/p=AXZ/p
with Z/p acting cyclically on A = (Z/p)?

e We have Out.(G) = 1 and |G| is odd; we deduce from Theorem 2 that the
map © : H?(G) — B(G) is bijective
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Example of groups with non-trivial H?(G)

e Let p be an odd prime and let G be the wreath product
G=Z/p1Z/p=AXZ/p
with Z/p acting cyclically on A = (Z/p)?

e We have Out.(G) = 1 and |G| is odd; we deduce from Theorem 2 that the
map © : H?(G) — B(G) is bijective

e Proposition. We have
HA(G) = HY(AK*)® = (z/p)* "

e Proof. The second isomorphism follows from a standard cohomological
calculation

The first isomorphism is a consequence of the following interpretation of B(G)
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A

where the RHS is the colimit in the category whose objects are the
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The set B(G) as a colimit

» Theorem. There is a bijection
B(G) — |J H*(A k*)°
A

where the RHS is the colimit in the category whose objects are the
abelian normal subgroups A of G and whose arrows are the inclusions

» Corollary. If G has a unique maximal abelian normal subgroup A, then
B(G) = H*(A, k*)C

> An example where © is not surjective: Take G=7Z/21Z/2,
which is the dihedral group of order 8

The map © is injective since Out.(G) = 1

G having two maximal abelian normal subgroups, we obtain |B(G)| = 3

Proposition. 73(G) = 1
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Nevertheless,. ..
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The alternating group A4

» Consider the alternating group As
A2 VyxZ/3 with Vu =7Z/2x7Z/2
e Since Outs(As) = 1, the map © : H3(As) — B(A4) is injective
e The set B(A4) has two elements: (V4,det) and the trivial one
The order of A4 being even, we cannot conclude that © is surjective.
Nevertheless,. ..
» Theorem. The map © is bijective and H?(As) = Z/2

To prove the surjectivity of ©, we exhibit an invariant Drinfeld twist F such that
O(F) = (V4,det), namely



The alternating group A4

» Consider the alternating group As
A= VyxZ/3  with Vy=27/2x17/2
e Since Outs(As) = 1, the map © : H3(As) — B(A4) is injective
e The set B(A4) has two elements: (V4,det) and the trivial one
The order of A4 being even, we cannot conclude that © is surjective.
Nevertheless,. ..

» Theorem. The map © is bijective and H?(As) = Z/2

To prove the surjectivity of ©, we exhibit an invariant Drinfeld twist F such that
O(F) = (V4,det), namely

F = 11—-(e1®e1+e®e+e3® e3)
+t1ee+ed)+(1ea+el)+(10es+eel)
terRve-—eaxe) (2R3 -—a®e)+(e3Re — e ® e3)

where ey, 2, e3 are the three non-zero elements of V4
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> Burnside (1912) was the first one to construct groups with Out.(G) # 1
(his smallest example is of order 729 = 3°%)

Burnside stated that Out:(G) is always abelian, but. . .



Non-trivial Out.(G)

> Burnside (1912) was the first one to construct groups with Out.(G) # 1
(his smallest example is of order 729 = 3°%)

Burnside stated that Out:(G) is always abelian, but. . .

» C.-H. Sah (1968): There are groups such that Out.(G) is non-abelian
(his smallest example is of order 2'°)
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Wall’'s group of order 32

e The group G = Z/8 x Aut(Z/8) of order 32 has the presentation

G=(s,tu|sf=r=u=1,st=ts, sus' = tut"' =u°)

e G. E. Wall (1947) proved that Out.(G) = Z/2, generated by the
automorphism « defined by

als) =u's=1Psu?, a(t)=u't=utu"", a(u)=u

e The set B(G) has two elements:
((t,u*) = Z/2 x Z/2, det) and the trivial one

e Therefore, %(G) has order 4 or 2 according as © is surjective or not

We were not able to conclude
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Danke fur Ihre Aufmerksamkeit!



Appendix 1. Wall’s group (continued)

e The automorphism « is of the form

a(g) = aga™’

for some invertible a € kG. A computer search gave us

1 2
a=-(1 +u4)+£u(1 — =t B
2 4
e Then
F=(a®a)A(a™")
is a symmetric invariant twist representing the non-zero element of Hy C H?(G)

The Drinfeld twist F is a sum of 52 pure tensors:

8F =2 (upo + Uaa) + (Ut1 + Usg + Uss + U77)
+ Up1 + Up3 + Upa + Ups + Ug7 + Uiz + Uq7 + Uos + Uzs + Uge + Ug7
+ U1 + U3 + Uao + Uso + Uzo + U2y + U7q + Us2 + Us3 + Us3 + U7
— (13 + Uta + Uts + Ut + U3 + Up7 + Usg + Us7 + Ugs + Us7 + Usg + Us7)
— (U3t + Ugt + Usy + Ugt + Usp + U7z + Usz + U7z + Usa + Uza + Ugs + U7s)

where uy = u' ® v/ (i,j € {0,1,...,7})



Appendix 2. On the proof of Theorem 1

e Theorem 1. If all irreducible k-representations of G can be realized over k,
then there is an exact sequence of groups

1 — H'(Gal(k/k), Z(G)) — H?(G/k) — H*(G/k) — 1

¢ Ingredients of the proof

(a) Observe that Schauenburg cohomology is defined as a complex of
algebraic groups

(b) Compute their tangent Lie algebras and show that the corresponding
complex is acyclic

(c) Use Hilbert’'s Theorem 90 twice
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