

A cohomological invariant for groups coming from quantum group theory

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg
Strasbourg, France

Oberseminar Topologie
Mathematisches Institut der Universität Bonn
23. November 2010

Introduction

- Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807
- Given a **finite group** G and a **field** k , we define a '**cohomology group**'

$$\mathcal{H}^2(G/k)$$

with the following properties:

- ▶ If G is **abelian**, then

$$\mathcal{H}^2(G/k) = H^2(\widehat{G}, k^\times) \quad (\text{group cohomology})$$

where $k^\times = k - \{0\}$ and $\widehat{G} = \text{Hom}(G, k^\times)$

- ▶ There are groups G such that $\mathcal{H}^2(G/k)$ is **not abelian**

Remark. $\mathcal{H}^2(G/k) \not\cong H^2(G, k^\times)$, the latter being abelian

Introduction

- Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807
- Given a **finite group** G and a **field** k , we define a '**cohomology group**'

$$\mathcal{H}^2(G/k)$$

with the following properties:

- ▶ If G is **abelian**, then

$$\mathcal{H}^2(G/k) = H^2(\widehat{G}, k^*) \quad (\text{group cohomology})$$

where $k^* = k - \{0\}$ and $\widehat{G} = \text{Hom}(G, k^*)$

- ▶ There are groups G such that $\mathcal{H}^2(G/k)$ is **not abelian**

Remark. $\mathcal{H}^2(G/k) \not\cong H^2(G, k^*)$, the latter being abelian

Introduction

- Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807
- Given a **finite group** G and a **field** k , we define a '**cohomology group**'

$$\mathcal{H}^2(G/k)$$

with the following properties:

- ▶ If G is **abelian**, then

$$\mathcal{H}^2(G/k) = H^2(\widehat{G}, k^\times) \quad (\text{group cohomology})$$

where $k^\times = k - \{0\}$ and $\widehat{G} = \text{Hom}(G, k^\times)$

- ▶ There are groups G such that $\mathcal{H}^2(G/k)$ is **not abelian**

Remark. $\mathcal{H}^2(G/k) \not\cong H^2(G, k^\times)$, the latter being abelian

Introduction

- Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807
- Given a **finite group** G and a **field** k , we define a '**cohomology group**'

$$\mathcal{H}^2(G/k)$$

with the following properties:

- ▶ If G is **abelian**, then

$$\mathcal{H}^2(G/k) = H^2(\widehat{G}, k^\times) \quad (\text{group cohomology})$$

where $k^\times = k - \{0\}$ and $\widehat{G} = \text{Hom}(G, k^\times)$

- ▶ There are groups G such that $\mathcal{H}^2(G/k)$ is **not abelian**

Remark. $\mathcal{H}^2(G/k) \not\cong H^2(G, k^\times)$, the latter being abelian

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Extending group cohomology to Hopf algebras

Start from the cohomology groups $H^i(G, k^\times)$ of G acting trivially on k^\times

- ▶ **Sweedler (1968)** associated to any **cocommutative** Hopf algebra H cohomology groups

$$H_{\text{Sw}}^i(H) \quad (i \geq 1)$$

such that

$$H_{\text{Sw}}^i(kG) = H^i(G, k^\times)$$

for any group G

- ▶ **Schauenburg (2002)** extended this to **arbitrary** Hopf algebras; he defined groups

$$H_{\text{Sch}}^i(H) \quad (i = 1, 2)$$

such that

$$H_{\text{Sch}}^i(H) = H_{\text{Sw}}^i(H)$$

for any cocommutative Hopf algebra H

Price to pay: these groups are defined only for $i = 1$ and $i = 2$

Extending group cohomology to Hopf algebras

Start from the cohomology groups $H^i(G, k^\times)$ of G acting trivially on k^\times

- ▶ **Sweedler (1968)** associated to any **cocommutative** Hopf algebra H cohomology groups

$$H_{\text{Sw}}^i(H) \quad (i \geq 1)$$

such that

$$H_{\text{Sw}}^i(kG) = H^i(G, k^\times)$$

for any group G

- ▶ **Schauenburg (2002)** extended this to **arbitrary** Hopf algebras; he defined groups

$$H_{\text{Sch}}^i(H) \quad (i = 1, 2)$$

such that

$$H_{\text{Sch}}^i(H) = H_{\text{Sw}}^i(H)$$

for any cocommutative Hopf algebra H

Price to pay: these groups are defined only for $i = 1$ and $i = 2$

The group $\mathcal{H}^2(G/k)$

- **First Schauenburg cohomology:** $H_{\text{Sch}}^1(H)$ is easy to compute:
it is the **abelian group**

$$H_{\text{Sch}}^1(H) = \{\chi \in \text{Alg}(H, k) \mid \chi\alpha = \alpha\chi \text{ for all } \alpha \in \text{Hom}(H, k)\}$$

So **we are left with** $H_{\text{Sch}}^2(H)$

- **Second Schauenburg cohomology:** $H_{\text{Sch}}^2(H)$ has been computed for **very few** non-cocommutative Hopf algebras

- **Our initial aim:**

Compute $H_{\text{Sch}}^2(H)$ for a large class of non-cocommutative Hopf algebras,
namely for the **dual Hopf algebras** $H = (kG)^*$, where G is a **finite group**

Observation: The Hopf algebra $(kG)^*$ is **not cocommutative** if and only if G is not abelian

- For simplicity, we set

$$H_{\text{Sch}}^2((kG)^*) = \mathcal{H}^2(G/k)$$

The group $\mathcal{H}^2(G/k)$

- **First Schauenburg cohomology:** $H_{\text{Sch}}^1(H)$ is easy to compute:
it is the **abelian group**

$$H_{\text{Sch}}^1(H) = \{\chi \in \text{Alg}(H, k) \mid \chi\alpha = \alpha\chi \text{ for all } \alpha \in \text{Hom}(H, k)\}$$

So **we are left with** $H_{\text{Sch}}^2(H)$

- **Second Schauenburg cohomology:** $H_{\text{Sch}}^2(H)$ has been computed for **very few** non-cocommutative Hopf algebras

- **Our initial aim:**

Compute $H_{\text{Sch}}^2(H)$ for a large class of non-cocommutative Hopf algebras,
namely for the **dual Hopf algebras** $H = (kG)^*$, where G is a **finite group**

Observation: The Hopf algebra $(kG)^*$ is **not cocommutative** if and only if G is not abelian

- For simplicity, we set

$$H_{\text{Sch}}^2((kG)^*) = \mathcal{H}^2(G/k)$$

The group $\mathcal{H}^2(G/k)$

- **First Schauenburg cohomology:** $H_{\text{Sch}}^1(H)$ is easy to compute:
it is the **abelian group**

$$H_{\text{Sch}}^1(H) = \{\chi \in \text{Alg}(H, k) \mid \chi\alpha = \alpha\chi \text{ for all } \alpha \in \text{Hom}(H, k)\}$$

So **we are left with** $H_{\text{Sch}}^2(H)$

- **Second Schauenburg cohomology:** $H_{\text{Sch}}^2(H)$ has been computed for **very few** non-cocommutative Hopf algebras

- **Our initial aim:**

Compute $H_{\text{Sch}}^2(H)$ for a large class of non-cocommutative Hopf algebras,
namely for the **dual Hopf algebras** $H = (kG)^*$, where G is a **finite group**

Observation: The Hopf algebra $(kG)^*$ is **not cocommutative** if and only if G is not abelian

- For simplicity, we set

$$H_{\text{Sch}}^2((kG)^*) = \mathcal{H}^2(G/k)$$

The group $\mathcal{H}^2(G/k)$

- **First Schauenburg cohomology:** $H_{\text{Sch}}^1(H)$ is easy to compute:
it is the **abelian group**

$$H_{\text{Sch}}^1(H) = \{\chi \in \text{Alg}(H, k) \mid \chi\alpha = \alpha\chi \text{ for all } \alpha \in \text{Hom}(H, k)\}$$

So **we are left with** $H_{\text{Sch}}^2(H)$

- **Second Schauenburg cohomology:** $H_{\text{Sch}}^2(H)$ has been computed for **very few** non-cocommutative Hopf algebras

- **Our initial aim:**

Compute $H_{\text{Sch}}^2(H)$ for a large class of non-cocommutative Hopf algebras,
namely for the **dual Hopf algebras** $H = (kG)^*$, where G is a **finite group**

Observation: The Hopf algebra $(kG)^*$ is **not cocommutative** if and only if G is not abelian

- For simplicity, we set

$$H_{\text{Sch}}^2((kG)^*) = \mathcal{H}^2(G/k)$$

The abelian case

If A is a finite **abelian** group and k is **algebraically closed**, then the **discrete Fourier transform** induces a Hopf algebra isomorphism

$$(kA)^* \cong k\widehat{A}$$

Thus,

$$\begin{aligned}\mathcal{H}^2(A/k) &= H_{\text{Sch}}^2((kA)^*) && \text{(by definition)} \\ &\cong H_{\text{Sch}}^2(k\widehat{A}) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\}\end{aligned}$$

A **bicharacter** is a bimultiplicative map $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$, i.e.,

$$b(u_1 u_2, v) = b(u_1, v) b(u_2, v) \quad \text{and} \quad b(u, v_1 v_2) = b(u, v_1) b(u, v_2)$$

Alternating means that $b(u, u) = 1$ for all $u \in \widehat{A}$

The abelian case

If A is a finite **abelian** group and k is **algebraically closed**, then the **discrete Fourier transform** induces a Hopf algebra isomorphism

$$(kA)^* \cong k\widehat{A}$$

Thus,

$$\begin{aligned}\mathcal{H}^2(A/k) &= H_{\text{Sch}}^2((kA)^*) && \text{(by definition)} \\ &\cong H_{\text{Sch}}^2(k\widehat{A}) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\}\end{aligned}$$

A **bicharacter** is a bimultiplicative map $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$, i.e.,

$$b(u_1 u_2, v) = b(u_1, v) b(u_2, v) \quad \text{and} \quad b(u, v_1 v_2) = b(u, v_1) b(u, v_2)$$

Alternating means that $b(u, u) = 1$ for all $u \in \widehat{A}$

The abelian case

If A is a finite **abelian** group and k is **algebraically closed**, then the **discrete Fourier transform** induces a Hopf algebra isomorphism

$$(kA)^* \cong k\widehat{A}$$

Thus,

$$\begin{aligned}\mathcal{H}^2(A/k) &= H_{\text{Sch}}^2((kA)^*) && \text{(by definition)} \\ &\cong H_{\text{Sch}}^2(k\widehat{A}) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\}\end{aligned}$$

A **bicharacter** is a bimultiplicative map $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$, i.e.,

$$b(u_1 u_2, v) = b(u_1, v) b(u_2, v) \quad \text{and} \quad b(u, v_1 v_2) = b(u, v_1) b(u, v_2)$$

Alternating means that $b(u, u) = 1$ for all $u \in \widehat{A}$

Towards a geometric interpretation of $\mathcal{H}^2(G/k)$

We had **another motivation** to try to understand $\mathcal{H}^2(G/k)$

- **Recall:** A G -torsor is a right G -variety T such that the map

$$\begin{aligned} T \times G &\longrightarrow T \times T \\ (t, g) &\longmapsto (t, tg) \end{aligned}$$

is an isomorphism

- If $k = \bar{k}$ is **algebraically closed**, then any torsor is isomorphic to $T = G$ with G acting by right translations

- Over a **general ground field** k :

torsors are classified by Serre's **non-abelian Galois cohomology set**

$$H^1(\text{Gal}(\bar{k}/k), G)$$

Towards a geometric interpretation of $\mathcal{H}^2(G/k)$

We had **another motivation** to try to understand $\mathcal{H}^2(G/k)$

- **Recall:** A **G -torsor** is a right G -variety T such that the map

$$\begin{aligned} T \times G &\longrightarrow T \times T \\ (t, g) &\longmapsto (t, tg) \end{aligned}$$

is an isomorphism

- If $k = \bar{k}$ is **algebraically closed**, then any torsor is isomorphic to $T = G$ with G acting by right translations

- Over a **general ground field** k :

torsors are classified by Serre's **non-abelian Galois cohomology set**

$$H^1(\text{Gal}(\bar{k}/k), G)$$

Bitorsors

- To obtain a group structure, we consider **bitorsors**
- A **bitorsor** T is both a left and right G -torsor such the left and right actions commute
- The **product** of two bitorsors T, T' is the bitorsor

$$T * T' = T \times_G T' = (T \times T') / \langle (tg, t') = (t, gt') \rangle$$

- In this way, the set of isomorphism classes of bitorsors becomes a group, which is isomorphic to the **Galois cohomology group**

$$H^1(\text{Gal}(\bar{k}/k), Z(G))$$

where $Z(G)$ is the **center** of G

Bitorsors

- To obtain a group structure, we consider **bitorsors**
- A **bitorsor** T is both a left and right G -torsor such the left and right actions commute
- The **product** of two bitorsors T, T' is the bitorsor

$$T * T' = T \times_G T' = (T \times T') / \langle (tg, t') = (t, gt') \rangle$$

- In this way, the set of isomorphism classes of bitorsors becomes a group, which is isomorphic to the **Galois cohomology group**

$$H^1(\text{Gal}(\bar{k}/k), Z(G))$$

where $Z(G)$ is the **center** of G

Noncommutative bitorsors

- In the spirit of **noncommutative geometry**, replace

$$\begin{array}{ccc} \text{varieties} & \longleftrightarrow & \text{algebras} \\ \text{groups} & \longleftrightarrow & \text{Hopf algebras} \\ \text{group action} & \longleftrightarrow & \text{Hopf algebra coaction} \end{array}$$

- In this way one defines **noncommutative bitorsors** for the Hopf algebra $(kG)^*$
- The **set of isomorphism classes** of these noncommutative bitorsors is a **group** isomorphic to

$$\mathcal{H}^2(G/k)$$

Noncommutative bitorsors

- In the spirit of **noncommutative geometry**, replace

$$\begin{array}{ccc} \text{varieties} & \longleftrightarrow & \text{algebras} \\ \text{groups} & \longleftrightarrow & \text{Hopf algebras} \\ \text{group action} & \longleftrightarrow & \text{Hopf algebra coaction} \end{array}$$

- In this way one defines **noncommutative bitorsors** for the Hopf algebra $(kG)^*$
- The **set of isomorphism classes** of these noncommutative bitorsors is a **group** isomorphic to

$$\mathcal{H}^2(G/k)$$

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Reminder on group cohomology

- Define $Z^2(G, k^\times)$ as the set of all maps $f : G \times G \rightarrow k^\times$ satisfying the cocycle condition

$$f(x, y) f(xy, z) = f(y, z) f(x, yz) \quad (x, y, z \in G)$$

Cocycles form a **group** under pointwise multiplication

- Two cocycles are **cohomologous**—we write $f \sim f'$ —if there is a map $g : G \rightarrow k^\times$ such that

$$f'(x, y) = \frac{g(x)g(y)}{g(xy)} f(x, y) \quad (x, y \in G)$$

- By definition,

$$H^2(G, k^\times) = Z^2(G, k^\times) / \sim$$

Let us extend this to **cocommutative Hopf algebras**

Reminder on group cohomology

- Define $Z^2(G, k^\times)$ as the set of all maps $f : G \times G \rightarrow k^\times$ satisfying the cocycle condition

$$f(x, y) f(xy, z) = f(y, z) f(x, yz) \quad (x, y, z \in G)$$

Cocycles form a **group** under pointwise multiplication

- Two cocycles are **cohomologous**—we write $f \sim f'$ —if there is a map $g : G \rightarrow k^\times$ such that

$$f'(x, y) = \frac{g(x)g(y)}{g(xy)} f(x, y) \quad (x, y \in G)$$

- By definition,

$$H^2(G, k^\times) = Z^2(G, k^\times) / \sim$$

Let us extend this to **cocommutative Hopf algebras**

Reminder on group cohomology

- Define $Z^2(G, k^\times)$ as the set of all maps $f : G \times G \rightarrow k^\times$ satisfying the cocycle condition

$$f(x, y) f(xy, z) = f(y, z) f(x, yz) \quad (x, y, z \in G)$$

Cocycles form a **group** under pointwise multiplication

- Two cocycles are **cohomologous**—we write $f \sim f'$ —if there is a map $g : G \rightarrow k^\times$ such that

$$f'(x, y) = \frac{g(x)g(y)}{g(xy)} f(x, y) \quad (x, y \in G)$$

- By definition,

$$H^2(G, k^\times) = Z^2(G, k^\times)/\sim$$

Let us extend this to **cocommutative Hopf algebras**

Sweedler cohomology 1

Let H be a Hopf algebra with coproduct $\Delta : H \rightarrow H \otimes H$

- Define the **convolution product** of two bilinear maps $f, f' : H \times H \rightarrow k$ by

$$(f * f')(x, y) = \sum_{(x)(y)} f(x_1, y_1) f'(x_2, y_2)$$

where $\Delta(x) = \sum_{(x)} x_1 \otimes x_2$ and $\Delta(y) = \sum_{(y)} y_1 \otimes y_2$

- Define $Z^2(H)$ as the set of all **convolution-invertible** bilinear maps $f : H \times H \rightarrow k$ satisfying the **cocycle condition**

$$\sum_{(x)(y)} f(x_1, y_1) f(x_2 y_2, z) = \sum_{(y)(z)} f(y_1, z_1) f(x, y_2 z_2) \quad (x, y, z \in H)$$

- If H is **cocommutative** and $f, f' \in Z^2(H)$, then $f * f' \in Z^2(H)$ and thus $Z^2(H)$ becomes a **group**

Sweedler cohomology 1

Let H be a Hopf algebra with coproduct $\Delta : H \rightarrow H \otimes H$

- Define the **convolution product** of two bilinear maps $f, f' : H \times H \rightarrow k$ by

$$(f * f')(x, y) = \sum_{(x)(y)} f(x_1, y_1) f'(x_2, y_2)$$

where $\Delta(x) = \sum_{(x)} x_1 \otimes x_2$ and $\Delta(y) = \sum_{(y)} y_1 \otimes y_2$

- Define $Z^2(H)$ as the set of all **convolution-invertible** bilinear maps $f : H \times H \rightarrow k$ satisfying the **cocycle condition**

$$\sum_{(x)(y)} f(x_1, y_1) f(x_2 y_2, z) = \sum_{(y)(z)} f(y_1, z_1) f(x, y_2 z_2) \quad (x, y, z \in H)$$

- If H is **cocommutative** and $f, f' \in Z^2(H)$, then $f * f' \in Z^2(H)$ and thus $Z^2(H)$ becomes a **group**

Sweedler cohomology 1

Let H be a Hopf algebra with coproduct $\Delta : H \rightarrow H \otimes H$

- Define the **convolution product** of two bilinear maps $f, f' : H \times H \rightarrow k$ by

$$(f * f')(x, y) = \sum_{(x)(y)} f(x_1, y_1) f'(x_2, y_2)$$

where $\Delta(x) = \sum_{(x)} x_1 \otimes x_2$ and $\Delta(y) = \sum_{(y)} y_1 \otimes y_2$

- Define $Z^2(H)$ as the set of all **convolution-invertible** bilinear maps $f : H \times H \rightarrow k$ satisfying the **cocycle condition**

$$\sum_{(x)(y)} f(x_1, y_1) f(x_2 y_2, z) = \sum_{(y)(z)} f(y_1, z_1) f(x, y_2 z_2) \quad (x, y, z \in H)$$

- If H is **cocommutative** and $f, f' \in Z^2(H)$, then $f * f' \in Z^2(H)$ and thus $Z^2(H)$ becomes a **group**

Sweedler cohomology 2

- Two cocycles are **cohomologous**—we write $f \sim f'$ —if there is a **convolution-invertible** linear map $g : H \rightarrow k$ such that

$$f'(x, y) = \sum_{(x)(y)} g(x_1) g(y_1) f(x_2, y_2) g^{-1}(x_3 y_3) \quad (x, y \in H)$$

where g^{-1} is the convolution-inverse of g

Convention: $(\Delta \otimes \text{id})\Delta(x) = \sum_{(x)} x_1 \otimes x_2 \otimes x_3$

- By definition, the **Sweedler cohomology** group of a cocommutative Hopf algebra is

$$H_{\text{Sw}}^2(H) = Z^2(H)/\sim$$

Sweedler cohomology 2

- Two cocycles are **cohomologous**—we write $f \sim f'$ —if there is a **convolution-invertible** linear map $g : H \rightarrow k$ such that

$$f'(x, y) = \sum_{(x)(y)} g(x_1) g(y_1) f(x_2, y_2) g^{-1}(x_3 y_3) \quad (x, y \in H)$$

where g^{-1} is the convolution-inverse of g

Convention: $(\Delta \otimes \text{id})\Delta(x) = \sum_{(x)} x_1 \otimes x_2 \otimes x_3$

- By definition, the **Sweedler cohomology** group of a **cocommutative Hopf algebra** is

$$H_{\text{Sw}}^2(H) = Z^2(H)/\sim$$

Schauenburg cohomology

Let H be an **arbitrary** Hopf algebra

- We restrict to **special cocycles**, namely cocycles satisfying the additional condition

$$\sum_{(x)(y)} f(x_1, y_1) x_2 y_2 = \sum_{(x)(y)} f(x_2, y_2) x_1 y_1 \quad (x, y \in H)$$

If f, f' are special cocycles, then so is $f * f'$

and thus the set $Z_s^2(H)$ of special cocycles becomes a **group**

Remark. If H is **cocommutative**, then any cocycle is special

- Two special cocycles are **cohomologous** if there is a $g : H \rightarrow k$ as above, but also satisfying

$$\sum_{(x)} g(x_1) x_2 = \sum_{(x)} g(x_2) x_1 \quad (x \in H)$$

- The **Sweedler cohomology** group of a Hopf algebra H is defined as

$$H_{\text{Sch}}^2(H) = Z_s^2(H)/\sim$$

Schauenburg cohomology

Let H be an **arbitrary** Hopf algebra

- We restrict to **special cocycles**, namely cocycles satisfying the additional condition

$$\sum_{(x)(y)} f(x_1, y_1) x_2 y_2 = \sum_{(x)(y)} f(x_2, y_2) x_1 y_1 \quad (x, y \in H)$$

If f, f' are special cocycles, then so is $f * f'$

and thus the set $Z_s^2(H)$ of special cocycles becomes a **group**

Remark. If H is **cocommutative**, then any cocycle is special

- Two special cocycles are **cohomologous** if there is a $g : H \rightarrow k$ as above, but also satisfying

$$\sum_{(x)} g(x_1) x_2 = \sum_{(x)} g(x_2) x_1 \quad (x \in H)$$

- The **Sweedler cohomology** group of a Hopf algebra H is defined as

$$H_{\text{Sch}}^2(H) = Z_s^2(H)/\sim$$

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Rationality

Assume that k is of characteristic zero with algebraic closure \bar{k}

- **Theorem 1.** If all irreducible \bar{k} -representations of G can be realized over k , then there is an **exact sequence** of groups

$$\begin{array}{ccccccc}
 1 & \longrightarrow & H^1(\text{Gal}(\bar{k}/k), Z(G)) & \longrightarrow & \mathcal{H}^2(G/k) & \longrightarrow & \mathcal{H}^2(G/\bar{k}) \longrightarrow 1 \\
 & & (\text{bitorsors}) & & (\text{noncomm. bitorsors}) & & \\
 & & (\text{ARITHMETIC}) & & & & (\text{GEOMETRIC})
 \end{array}$$

In particular, if G is **centerless**, then $\mathcal{H}^2(G/k) \cong \mathcal{H}^2(G/\bar{k})$

Rationality

Assume that k is of characteristic zero with algebraic closure \bar{k}

- **Theorem 1.** If all irreducible \bar{k} -representations of G can be realized over k , then there is an **exact sequence** of groups

$$\begin{array}{ccccccc}
 1 & \longrightarrow & H^1(\mathrm{Gal}(\bar{k}/k), Z(G)) & \longrightarrow & \mathcal{H}^2(G/k) & \longrightarrow & \mathcal{H}^2(G/\bar{k}) \longrightarrow 1 \\
 & & \text{(bitorsors)} & & \text{(noncomm. bitorsors)} & & \\
 & & \text{(ARITHMETIC)} & & & & \text{(GEOMETRIC)}
 \end{array}$$

In particular, if G is **centerless**, then $\mathcal{H}^2(G/k) \cong \mathcal{H}^2(G/\bar{k})$

- We are now reduced to computing $\mathcal{H}^2(G/\bar{k})$
- From now on, assume k is **algebraically closed**: $\bar{k} = k$
- To compute $\mathcal{H}^2(G/\bar{k})$, we need the following two ingredients. . .

First ingredient: class-preserving automorphisms

- Let $\text{Aut}_c(G)$ be the group of **automorphisms** φ of G such that for all $g \in G$

$$\varphi(g) = hgh^{-1} \quad \text{for some } h \in G$$

The group $\text{Inn}(G)$ of **inner** automorphism is normal in $\text{Aut}_c(G)$

- Definition.**

$$\text{Out}_c(G) = \text{Aut}_c(G) / \text{Inn}(G)$$

- We have $\text{Out}_c(G) = 1$ if

- $G = S_n$ (symmetric group)
- $G = SL_n(\mathbb{F}_q)$
- G is **simple** (Feit-Seitz, 1989)

- Finding finite groups with $\text{Out}_c(G) \neq 1$ is **not straightforward**

Nevertheless, there are groups with non-trivial $\text{Out}_c(G)$, even with **non-abelian** $\text{Out}_c(G)$

First ingredient: class-preserving automorphisms

- Let $\text{Aut}_c(G)$ be the group of **automorphisms** φ of G such that for all $g \in G$

$$\varphi(g) = hgh^{-1} \quad \text{for some } h \in G$$

The group $\text{Inn}(G)$ of **inner** automorphism is normal in $\text{Aut}_c(G)$

- Definition.**

$$\text{Out}_c(G) = \text{Aut}_c(G) / \text{Inn}(G)$$

- We have $\text{Out}_c(G) = 1$ if

- $G = S_n$ (symmetric group)
- $G = SL_n(\mathbb{F}_q)$
- G is **simple** (Feit-Seitz, 1989)

- Finding finite groups with $\text{Out}_c(G) \neq 1$ is **not straightforward**

Nevertheless, there are groups with non-trivial $\text{Out}_c(G)$, even with **non-abelian** $\text{Out}_c(G)$

Second ingredient: the pointed set $\mathcal{B}(G)$

- ▶ For any **finite group G**
let $\mathcal{B}(G)$ be the set of **pairs (A, b)** where
 - (i) A is an **abelian normal subgroup** of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a **G -invariant non-degenerate alternating bicharacter**
- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”
It is **non-empty** since it always contains the trivial pair $(\{1\}, b_0 \equiv 1)$
- ▶ If $(A, b) \in \mathcal{B}(G)$, then necessarily

$$A \cong A_0 \times \widehat{A}_0$$

for some subgroup A_0 . Hence, $|A| = |A_0|^2$ is a **square**

- ▶ **Examples.** $\mathcal{B}(G)$ is **trivial** if $G = S_n$, $G = SL_n(\mathbb{F}_q)$, or G is simple

Second ingredient: the pointed set $\mathcal{B}(G)$

- ▶ For any finite group G
let $\mathcal{B}(G)$ be the set of pairs (A, b) where
 - (i) A is an abelian normal subgroup of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a G -invariant non-degenerate alternating bicharacter
- ▶ The set $\mathcal{B}(G)$ is finite and can be “computed in finite time”
It is non-empty since it always contains the trivial pair $(\{1\}, b_0 \equiv 1)$
- ▶ If $(A, b) \in \mathcal{B}(G)$, then necessarily

$$A \cong A_0 \times \widehat{A_0}$$

for some subgroup A_0 . Hence, $|A| = |A_0|^2$ is a square

- ▶ Examples. $\mathcal{B}(G)$ is trivial if $G = S_n$, $G = SL_n(\mathbb{F}_q)$, or G is simple

Second ingredient: the pointed set $\mathcal{B}(G)$

- ▶ For any **finite group G**
let $\mathcal{B}(G)$ be the set of **pairs** (A, b) where
 - (i) A is an **abelian normal subgroup** of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a **G -invariant non-degenerate alternating bicharacter**
- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”
It is **non-empty** since it always contains the trivial pair $(\{1\}, b_0 \equiv 1)$
- ▶ If $(A, b) \in \mathcal{B}(G)$, then necessarily

$$A \cong A_0 \times \widehat{A_0}$$

for some subgroup A_0 . Hence, $|A| = |A_0|^2$ is a **square**

- ▶ **Examples.** $\mathcal{B}(G)$ is **trivial** if $G = S_n$, $G = SL_n(\mathbb{F}_q)$, or G is simple

Second ingredient: the pointed set $\mathcal{B}(G)$

- ▶ For any **finite group G**
let $\mathcal{B}(G)$ be the set of **pairs** (A, b) where
 - (i) A is an **abelian normal subgroup** of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a **G -invariant non-degenerate alternating bicharacter**
- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”
It is **non-empty** since it always contains the trivial pair $(\{1\}, b_0 \equiv 1)$
- ▶ If $(A, b) \in \mathcal{B}(G)$, then necessarily

$$A \cong A_0 \times \widehat{A_0}$$

for some subgroup A_0 . Hence, $|A| = |A_0|^2$ is a **square**

- ▶ **Examples.** $\mathcal{B}(G)$ is **trivial** if $G = S_n$, $G = SL_n(\mathbb{F}_q)$, or G is simple

Determining $\mathcal{H}^2(G/\bar{k})$

Assume that the ground field $k = \bar{k}$ is of **characteristic prime to $|G|$**

We set $\mathcal{H}^2(G) = \mathcal{H}^2(G/\bar{k})$

- **Theorem 2** *There is a set-theoretic map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ such that*

- (a) $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$ *is a subgroup of $\mathcal{H}^2(G)$ such that*

$$\mathcal{H}_0 \cong \text{Out}_c(G)$$

- (b) $\Theta(\alpha) = \Theta(\beta)$ *if and only if* $\beta \in \alpha \mathcal{H}_0$

- (c) *If $|G|$ is odd, then Θ is surjective*

- **Remark.** If $|G|$ is even, then Θ may or may not be surjective

Determining $\mathcal{H}^2(G/\bar{k})$

Assume that the ground field $k = \bar{k}$ is of **characteristic prime to $|G|$**

We set $\mathcal{H}^2(G) = \mathcal{H}^2(G/\bar{k})$

- **Theorem 2** *There is a set-theoretic map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ such that*

- (a) $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$ *is a subgroup of $\mathcal{H}^2(G)$ such that*

$$\mathcal{H}_0 \cong \text{Out}_c(G)$$

- (b) $\Theta(\alpha) = \Theta(\beta)$ *if and only if* $\beta \in \alpha \mathcal{H}_0$

- (c) *If $|G|$ is odd, then Θ is surjective*

- **Remark.** If $|G|$ is even, then Θ may or may not be surjective

Determining $\mathcal{H}^2(G/\bar{k})$

Assume that the ground field $k = \bar{k}$ is of **characteristic prime to $|G|$**

We set $\mathcal{H}^2(G) = \mathcal{H}^2(G/\bar{k})$

- **Theorem 2** *There is a set-theoretic map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ such that*

- (a) $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$ *is a subgroup of $\mathcal{H}^2(G)$ such that*

$$\mathcal{H}_0 \cong \text{Out}_c(G)$$

- (b) $\Theta(\alpha) = \Theta(\beta)$ *if and only if* $\beta \in \alpha \mathcal{H}_0$

- (c) *If $|G|$ is odd, then Θ is surjective*

- **Remark.** If $|G|$ is even, then Θ may or may not be surjective

Determining $\mathcal{H}^2(G/\bar{k})$

Assume that the ground field $k = \bar{k}$ is of **characteristic prime to $|G|$**

We set $\mathcal{H}^2(G) = \mathcal{H}^2(G/\bar{k})$

- **Theorem 2** *There is a set-theoretic map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ such that*

- (a) $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$ *is a subgroup of $\mathcal{H}^2(G)$ such that*

$$\mathcal{H}_0 \cong \text{Out}_c(G)$$

- (b) $\Theta(\alpha) = \Theta(\beta)$ *if and only if* $\beta \in \alpha \mathcal{H}_0$

- (c) *If $|G|$ is odd, then Θ is surjective*

- **Remark.** If $|G|$ is even, then Θ may or may not be surjective

Determining $\mathcal{H}^2(G/\bar{k})$

Assume that the ground field $k = \bar{k}$ is of **characteristic prime to $|G|$**

We set $\mathcal{H}^2(G) = \mathcal{H}^2(G/\bar{k})$

- **Theorem 2** *There is a set-theoretic map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ such that*

- (a) $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$ *is a subgroup of $\mathcal{H}^2(G)$ such that*

$$\mathcal{H}_0 \cong \text{Out}_c(G)$$

- (b) $\Theta(\alpha) = \Theta(\beta)$ *if and only if* $\beta \in \alpha \mathcal{H}_0$

- (c) *If $|G|$ is odd, then Θ is surjective*

- **Remark.** If $|G|$ is even, then Θ may or may not be surjective

Consequences of Theorem 2

- The group $\mathcal{H}^2(G)$ is **finite**: it sits between $\text{Out}_c(G)$ and $\mathcal{B}(G)$
- The group $\mathcal{H}^2(G)$ can be **non-abelian** since $\mathcal{H}^2(G) \supset \mathcal{H}_0 \cong \text{Out}_c(G)$
- If $\text{Out}_c(G) = 1$ and $\mathcal{B}(G)$ is trivial, then $\mathcal{H}^2(G) = 1$
- **Examples of groups with trivial $\mathcal{H}^2(G)$:**
 - (a) $G = S_n$
 - (b) $G = SL_n(\mathbb{F}_q)$
 - (c) G is **simple**

Consequences of Theorem 2

- The group $\mathcal{H}^2(G)$ is **finite**: it sits between $\text{Out}_c(G)$ and $\mathcal{B}(G)$
- The group $\mathcal{H}^2(G)$ can be **non-abelian** since $\mathcal{H}^2(G) \supset \mathcal{H}_0 \cong \text{Out}_c(G)$
- If $\text{Out}_c(G) = 1$ and $\mathcal{B}(G)$ is trivial, then $\mathcal{H}^2(G) = 1$
- Examples of groups with trivial $\mathcal{H}^2(G)$:
 - (a) $G = S_n$
 - (b) $G = SL_n(\mathbb{F}_q)$
 - (c) G is **simple**

Consequences of Theorem 2

- The group $\mathcal{H}^2(G)$ is **finite**: it sits between $\text{Out}_c(G)$ and $\mathcal{B}(G)$
- The group $\mathcal{H}^2(G)$ can be **non-abelian** since $\mathcal{H}^2(G) \supset \mathcal{H}_0 \cong \text{Out}_c(G)$
- If $\text{Out}_c(G) = 1$ and $\mathcal{B}(G)$ is trivial, then $\mathcal{H}^2(G) = 1$
- Examples of groups with trivial $\mathcal{H}^2(G)$:
 - (a) $G = S_n$
 - (b) $G = SL_n(\mathbb{F}_q)$
 - (c) G is **simple**

Consequences of Theorem 2

- The group $\mathcal{H}^2(G)$ is **finite**: it sits between $\text{Out}_c(G)$ and $\mathcal{B}(G)$
- The group $\mathcal{H}^2(G)$ can be **non-abelian** since $\mathcal{H}^2(G) \supset \mathcal{H}_0 \cong \text{Out}_c(G)$
- If $\text{Out}_c(G) = 1$ and $\mathcal{B}(G)$ is trivial, then $\mathcal{H}^2(G) = 1$
- **Examples of groups with trivial $\mathcal{H}^2(G)$:**
 - (a) $G = S_n$
 - (b) $G = SL_n(\mathbb{F}_q)$
 - (c) G is **simple**

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Representing elements of $\mathcal{H}^2(G)$ by Drinfeld twists

- Represent an element of $\mathcal{H}^2(G) = H_{\text{Sch}}^2((kG)^*)$ by a **special cocycle**

$$f : (kG)^* \times (kG)^* \rightarrow k$$

- **Dualizing**, we obtain an element $F \in kG \otimes kG$ such that

(a) F is **invertible** in the algebra $kG \otimes kG$ (invertibility of f)

(b) F is a **Drinfeld twist**, i.e.,

$$(F \otimes 1)(\text{id} \otimes \Delta)(F) = (1 \otimes F)(\Delta \otimes \text{id})(F) \in kG \otimes kG \otimes kG$$

(translation of the cocycle condition)

(c) F is **G -invariant**, i.e.,

$$(g \otimes g)F = F(g \otimes g) \quad (g \in G)$$

(the cocycle f is **special**)

Representing elements of $\mathcal{H}^2(G)$ by Drinfeld twists

- Represent an element of $\mathcal{H}^2(G) = H_{\text{Sch}}^2((kG)^*)$ by a **special cocycle**

$$f : (kG)^* \times (kG)^* \rightarrow k$$

- **Dualizing**, we obtain an element $F \in kG \otimes kG$ such that

(a) F is **invertible** in the algebra $kG \otimes kG$ (invertibility of f)

(b) F is a **Drinfeld twist**, i.e.,

$$(F \otimes 1)(\text{id} \otimes \Delta)(F) = (1 \otimes F)(\Delta \otimes \text{id})(F) \in kG \otimes kG \otimes kG$$

(translation of the cocycle condition)

(c) F is **G -invariant**, i.e.,

$$(g \otimes g)F = F(g \otimes g) \quad (g \in G)$$

(the cocycle f is **special**)

Representing elements of $\mathcal{H}^2(G)$ by Drinfeld twists

- Represent an element of $\mathcal{H}^2(G) = H_{\text{Sch}}^2((kG)^*)$ by a **special cocycle**

$$f : (kG)^* \times (kG)^* \rightarrow k$$

- Dualizing**, we obtain an element $F \in kG \otimes kG$ such that

(a) F is **invertible** in the algebra $kG \otimes kG$ (invertibility of f)

(b) F is a **Drinfeld twist**, i.e.,

$$(F \otimes 1)(\text{id} \otimes \Delta)(F) = (1 \otimes F)(\Delta \otimes \text{id})(F) \in kG \otimes kG \otimes kG$$

(translation of the cocycle condition)

(c) F is **G -invariant**, i.e.,

$$(g \otimes g)F = F(g \otimes g) \quad (g \in G)$$

(the cocycle f is **special**)

Representing elements of $\mathcal{H}^2(G)$ by Drinfeld twists

- Represent an element of $\mathcal{H}^2(G) = H_{\text{Sch}}^2((kG)^*)$ by a **special cocycle**

$$f : (kG)^* \times (kG)^* \rightarrow k$$

- Dualizing**, we obtain an element $F \in kG \otimes kG$ such that

(a) F is **invertible** in the algebra $kG \otimes kG$ (invertibility of f)

(b) F is a **Drinfeld twist**, i.e.,

$$(F \otimes 1)(\text{id} \otimes \Delta)(F) = (1 \otimes F)(\Delta \otimes \text{id})(F) \in kG \otimes kG \otimes kG$$

(translation of the cocycle condition)

(c) F is **G -invariant**, i.e.,

$$(g \otimes g)F = F(g \otimes g) \quad (g \in G)$$

(the cocycle f is **special**)

The universal R -matrix attached to a Drinfeld twist

- Given an **invertible invariant Drinfeld twist** F , consider

$$R_F = F_{21} F^{-1} \in kG \otimes kG$$

This is a **universal R -matrix** for kG , i.e., an invertible element satisfying

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in kG$$

and

$$(\Delta \otimes \text{id})(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\text{id} \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

- The universal R -matrix induces **braidings** on the tensor category of G -modules

$$\begin{aligned} \gamma_{V,W} : V \otimes W &\xrightarrow{\cong} W \otimes V \\ v \otimes w &\mapsto (R_F(v \otimes w))_{21} \end{aligned}$$

The universal R -matrix attached to a Drinfeld twist

- Given an **invertible invariant Drinfeld twist** F , consider

$$R_F = F_{21} F^{-1} \in kG \otimes kG$$

This is a **universal R -matrix** for kG , i.e., an invertible element satisfying

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in kG$$

and

$$(\Delta \otimes \text{id})(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\text{id} \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

- The universal R -matrix induces **braidings** on the tensor category of G -modules

$$\begin{aligned} \gamma_{V,W} : V \otimes W &\xrightarrow{\cong} W \otimes V \\ v \otimes w &\mapsto (R_F(v \otimes w))_{21} \end{aligned}$$

The universal R -matrix attached to a Drinfeld twist

- Given an **invertible invariant Drinfeld twist** F , consider

$$R_F = F_{21} F^{-1} \in kG \otimes kG$$

This is a **universal R -matrix** for kG , i.e., an invertible element satisfying

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in kG$$

and

$$(\Delta \otimes \text{id})(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\text{id} \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

- The universal R -matrix induces **braidings** on the tensor category of G -modules

$$\begin{aligned} \gamma_{V,W} : V \otimes W &\xrightarrow{\cong} W \otimes V \\ v \otimes w &\longmapsto (R_F(v \otimes w))_{21} \end{aligned}$$

Constructing the map Θ : Part 1

- By work of Radford, there is a **minimal** Hopf subalgebra $H \subset kG$ such that

$$R_F \in H \otimes H$$

This Hopf algebra is **self-dual**: $H^* \cong H$

- Since kG is **cocommutative**, so is H . From self-duality, H is **bicommutative**

One deduces that $H = kA$ for some **abelian subgroup** A of G

- Since F is G -invariant, so is R_F , and A is **normal** in G

Constructing the map Θ : Part 1

- By work of Radford, there is a **minimal** Hopf subalgebra $H \subset kG$ such that

$$R_F \in H \otimes H$$

This Hopf algebra is **self-dual**: $H^* \cong H$

- Since kG is **cocommutative**, so is H . From self-duality, H is **bicommutative**

One deduces that $H = kA$ for some **abelian subgroup** A of G

- Since F is G -invariant, so is R_F , and A is **normal** in G

Constructing the map Θ : Part 1

- By work of Radford, there is a **minimal** Hopf subalgebra $H \subset kG$ such that

$$R_F \in H \otimes H$$

This Hopf algebra is **self-dual**: $H^* \cong H$

- Since kG is **cocommutative**, so is H . From self-duality, H is **bicommutative**

One deduces that $H = kA$ for some **abelian subgroup** A of G

- Since F is G -invariant, so is R_F , and A is **normal** in G

Constructing the map Θ : Part 2

- By duality, $R_F \in kA \otimes kA$ corresponds to a bilinear form

$$k\widehat{A} \times k\widehat{A} \cong (kA)^* \times (kA)^* \rightarrow k$$

Restricting to $\widehat{A} \times \widehat{A}$, we obtain a **G -invariant bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$

One shows that b_F is **non-degenerate** and **alternating**

- We define

$$\Theta(f) = (A, b_F) \in \mathcal{B}(G)$$

One checks that $\Theta(f)$ **depends only on the class of** the cocycle f in $\mathcal{H}^2(G)$

Constructing the map Θ : Part 2

- By duality, $R_F \in kA \otimes kA$ corresponds to a bilinear form

$$k\widehat{A} \times k\widehat{A} \cong (kA)^* \times (kA)^* \rightarrow k$$

Restricting to $\widehat{A} \times \widehat{A}$, we obtain a **G -invariant bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$

One shows that b_F is **non-degenerate** and **alternating**

- We define

$$\Theta(f) = (A, b_F) \in \mathcal{B}(G)$$

One checks that $\Theta(f)$ depends only on the class of the cocycle f in $\mathcal{H}^2(G)$

Constructing the map Θ : Part 2

- By duality, $R_F \in kA \otimes kA$ corresponds to a bilinear form

$$k\widehat{A} \times k\widehat{A} \cong (kA)^* \times (kA)^* \rightarrow k$$

Restricting to $\widehat{A} \times \widehat{A}$, we obtain a **G -invariant bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$

One shows that b_F is **non-degenerate** and **alternating**

- We define

$$\Theta(f) = (A, b_F) \in \mathcal{B}(G)$$

One checks that $\Theta(f)$ **depends only on the class of** the cocycle f in $\mathcal{H}^2(G)$

On the proof of Theorem 2

- To determine $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$, we use the following result:

Etingof and Gelaki (2000): *If F is a Drinfeld twist such that $R_F = 1 \otimes 1$, or equivalently F is symmetric: $F = F_{21}$, then*

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in kG$

Observation. The symmetric twist $F = (a \otimes a) \Delta(a^{-1})$ is invariant if and only if the automorphism $x \mapsto axa^{-1}$ preserves G and is an element of $\text{Aut}_c(G)$

From this it is easy to deduce that $\mathcal{H}_0 \cong \text{Out}_c(G)$

- Etingof and Gelaki's result follows from classical Tannakian theory:

Deligne and Milne (1982): *Any exact and fully faithful symmetric tensor functor from the category of kG -modules to the category of k -vector spaces is isomorphic to the forgetful functor*

A symmetric twist gives rise to a symmetric tensor functor, to which Etingof and Gelaki apply Deligne and Milne's result

On the proof of Theorem 2

- To determine $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$, we use the following result:

Etingof and Gelaki (2000): *If F is a Drinfeld twist such that $R_F = 1 \otimes 1$, or equivalently F is symmetric: $F = F_{21}$, then*

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in kG$

Observation. The symmetric twist $F = (a \otimes a) \Delta(a^{-1})$ is invariant if and only if the automorphism $x \mapsto axa^{-1}$ preserves G and is an element of $\text{Aut}_c(G)$

From this it is easy to deduce that $\mathcal{H}_0 \cong \text{Out}_c(G)$

- Etingof and Gelaki's result follows from classical Tannakian theory:

Deligne and Milne (1982): *Any exact and fully faithful symmetric tensor functor from the category of kG -modules to the category of k -vector spaces is isomorphic to the forgetful functor*

A symmetric twist gives rise to a symmetric tensor functor, to which Etingof and Gelaki apply Deligne and Milne's result

On the proof of Theorem 2

- To determine $\mathcal{H}_0 = \Theta^{-1}((\{1\}, b_0))$, we use the following result:

Etingof and Gelaki (2000): *If F is a Drinfeld twist such that $R_F = 1 \otimes 1$, or equivalently F is symmetric: $F = F_{21}$, then*

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in kG$

Observation. The symmetric twist $F = (a \otimes a) \Delta(a^{-1})$ is invariant if and only if the automorphism $x \mapsto axa^{-1}$ preserves G and is an element of $\text{Aut}_c(G)$

From this it is easy to deduce that $\mathcal{H}_0 \cong \text{Out}_c(G)$

- Etingof and Gelaki's result follows from classical Tannakian theory:

Deligne and Milne (1982): *Any exact and fully faithful symmetric tensor functor from the category of kG -modules to the category of k -vector spaces is isomorphic to the forgetful functor*

A symmetric twist gives rise to a symmetric tensor functor, to which Etingof and Gelaki apply Deligne and Milne's result

Plan

I. Origin: Where $\mathcal{H}^2(G/k)$ comes from

II. Definition of $\mathcal{H}^2(G/k)$

III. Main results

IV. A proof using quantum group theory

V. Examples of computation

Example of groups with non-trivial $\mathcal{H}^2(G)$

- Let p be an **odd prime** and let G be the **wreath product**

$$G = \mathbb{Z}/p \wr \mathbb{Z}/p = A \rtimes \mathbb{Z}/p$$

with \mathbb{Z}/p acting cyclically on $A = (\mathbb{Z}/p)^p$

- We have $\text{Out}_c(G) = 1$ and $|G|$ is odd; we deduce from Theorem 2 that the map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ is **bijective**
- Proposition.** *We have*

$$\mathcal{H}^2(G) \cong H^2(\widehat{A}, k^\times)^G \cong (\mathbb{Z}/p)^{(p-1)/2}$$

- Proof.** The second isomorphism follows from a standard **cohomological calculation**

The first isomorphism is a consequence of the following **interpretation** of $\mathcal{B}(G)$

Example of groups with non-trivial $\mathcal{H}^2(G)$

- Let p be an **odd prime** and let G be the **wreath product**

$$G = \mathbb{Z}/p \wr \mathbb{Z}/p = A \rtimes \mathbb{Z}/p$$

with \mathbb{Z}/p acting cyclically on $A = (\mathbb{Z}/p)^p$

- We have $\text{Out}_c(G) = 1$ and $|G|$ is odd; we deduce from Theorem 2 that the map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ is **bijective**

- Proposition.** *We have*

$$\mathcal{H}^2(G) \cong H^2(\widehat{A}, k^\times)^G \cong (\mathbb{Z}/p)^{(p-1)/2}$$

- Proof.** The second isomorphism follows from a standard **cohomological calculation**

The first isomorphism is a consequence of the following **interpretation** of $\mathcal{B}(G)$

Example of groups with non-trivial $\mathcal{H}^2(G)$

- Let p be an **odd prime** and let G be the **wreath product**

$$G = \mathbb{Z}/p \wr \mathbb{Z}/p = A \rtimes \mathbb{Z}/p$$

with \mathbb{Z}/p acting cyclically on $A = (\mathbb{Z}/p)^p$

- We have $\text{Out}_c(G) = 1$ and $|G|$ is odd; we deduce from Theorem 2 that the map $\Theta : \mathcal{H}^2(G) \rightarrow \mathcal{B}(G)$ is **bijective**

- Proposition.** *We have*

$$\mathcal{H}^2(G) \cong H^2(\widehat{A}, k^\times)^G \cong (\mathbb{Z}/p)^{(p-1)/2}$$

- Proof.** The second isomorphism follows from a standard **cohomological calculation**

The first isomorphism is a consequence of the following **interpretation** of $\mathcal{B}(G)$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

*where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the **inclusions***

- **Corollary.** *If G has a **unique maximal abelian normal** subgroup A , then*

$$\mathcal{B}(G) \cong H^2(\widehat{A}, k^\times)^G$$

- **An example where Θ is not surjective:** Take $G = \mathbb{Z}/2 \wr \mathbb{Z}/2$, which is the **dihedral group** of order 8

The map Θ is injective since $\text{Out}_c(G) = 1$

G having **two** maximal abelian normal subgroups, we obtain $|\mathcal{B}(G)| = 3$

Proposition. $H^2(G) = 1$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the **inclusions**

- **Corollary.** *If G has a **unique maximal abelian normal** subgroup A , then*

$$\mathcal{B}(G) \cong H^2(\widehat{A}, k^\times)^G$$

- An example where Θ is not surjective: Take $G = \mathbb{Z}/2 \wr \mathbb{Z}/2$, which is the **dihedral group** of order 8

The map Θ is injective since $\text{Out}_c(G) = 1$

G having **two** maximal abelian normal subgroups, we obtain $|\mathcal{B}(G)| = 3$

Proposition. $H^2(G) = 1$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the **inclusions**

- **Corollary.** *If G has a **unique maximal abelian normal** subgroup A , then*

$$\mathcal{B}(G) \cong H^2(\widehat{A}, k^\times)^G$$

- **An example where Θ is not surjective:** Take $G = \mathbb{Z}/2 \wr \mathbb{Z}/2$, which is the **dihedral group** of order 8

The map Θ is injective since $\text{Out}_c(G) = 1$

G having **two** maximal abelian normal subgroups, we obtain $|\mathcal{B}(G)| = 3$

Proposition. $H^2(G) = 1$

The alternating group A_4

- ▶ Consider the **alternating group A_4**

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has **two elements**: (V_4, \det) and the trivial one

The order of A_4 being **even**, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ **Theorem.** The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ Theorem. The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ Theorem. The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ **Theorem.** The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ **Theorem.** The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ **Theorem.** The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- ▶ Consider the alternating group A_4

$$A_4 \cong V_4 \rtimes \mathbb{Z}/3 \quad \text{with } V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$$

- Since $\text{Out}_c(A_4) = 1$, the map $\Theta : \mathcal{H}^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective
- The set $\mathcal{B}(A_4)$ has two elements: (V_4, \det) and the trivial one

The order of A_4 being even, we cannot conclude that Θ is surjective.

Nevertheless,...

- ▶ **Theorem.** The map Θ is bijective and $\mathcal{H}^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an invariant Drinfeld twist F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

Non-trivial $\text{Out}_c(G)$

- ▶ Burnside (1912) was the first one to construct groups with $\text{Out}_c(G) \neq 1$ (his smallest example is of order $729 = 3^6$)

Burnside stated that $\text{Out}_c(G)$ is always abelian, but. . .

- ▶ C.-H. Sah (1968): There are groups such that $\text{Out}_c(G)$ is non-abelian (his smallest example is of order 2^{15})

Non-trivial $\text{Out}_c(G)$

- ▶ Burnside (1912) was the first one to construct groups with $\text{Out}_c(G) \neq 1$ (his smallest example is of order $729 = 3^6$)
Burnside stated that $\text{Out}_c(G)$ is always abelian, but. . .
- ▶ C.-H. Sah (1968): There are groups such that $\text{Out}_c(G)$ is non-abelian (his smallest example is of order 2^{15})

Wall's group of order 32

- The group $G = \mathbb{Z}/8 \rtimes \text{Aut}(\mathbb{Z}/8)$ of order 32 has the **presentation**

$$G = \langle s, t, u \mid s^2 = t^2 = u^8 = 1, st = ts, sus^{-1} = u^3, tut^{-1} = u^5 \rangle$$

- G. E. Wall (1947) proved that $\text{Out}_c(G) = \mathbb{Z}/2$, **generated** by the automorphism α defined by

$$\alpha(s) = u^4s = u^2su^{-2}, \quad \alpha(t) = u^4t = utu^{-1}, \quad \alpha(u) = u$$

- The set $\mathcal{B}(G)$ has **two elements**:

$(\langle t, u^4 \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2, \det)$ and the trivial one

- Therefore, $\mathcal{H}^2(G)$ has order 4 or 2 according as Θ is surjective or not

We were **not able to conclude**

Wall's group of order 32

- The group $G = \mathbb{Z}/8 \rtimes \text{Aut}(\mathbb{Z}/8)$ of order 32 has the **presentation**

$$G = \langle s, t, u \mid s^2 = t^2 = u^8 = 1, st = ts, sus^{-1} = u^3, tut^{-1} = u^5 \rangle$$

- G. E. Wall (1947) proved that $\text{Out}_c(G) = \mathbb{Z}/2$, **generated** by the automorphism α defined by

$$\alpha(s) = u^4s = u^2su^{-2}, \quad \alpha(t) = u^4t = utu^{-1}, \quad \alpha(u) = u$$

- The set $\mathcal{B}(G)$ has **two elements**:

$(\langle t, u^4 \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2, \det)$ and the trivial one

- Therefore, $\mathcal{H}^2(G)$ has order 4 or 2 according as Θ is surjective or not

We were **not able to conclude**

Wall's group of order 32

- The group $G = \mathbb{Z}/8 \rtimes \text{Aut}(\mathbb{Z}/8)$ of order 32 has the **presentation**

$$G = \langle s, t, u \mid s^2 = t^2 = u^8 = 1, st = ts, sus^{-1} = u^3, tut^{-1} = u^5 \rangle$$

- G. E. Wall (1947) proved that $\text{Out}_c(G) = \mathbb{Z}/2$, **generated** by the automorphism α defined by

$$\alpha(s) = u^4s = u^2su^{-2}, \quad \alpha(t) = u^4t = utu^{-1}, \quad \alpha(u) = u$$

- The set $\mathcal{B}(G)$ has **two elements**:

$(\langle t, u^4 \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2, \det)$ and the trivial one

- Therefore, $\mathcal{H}^2(G)$ has order 4 or 2 according as Θ is surjective or not

We were **not able to conclude**

Wall's group of order 32

- The group $G = \mathbb{Z}/8 \rtimes \text{Aut}(\mathbb{Z}/8)$ of order 32 has the **presentation**

$$G = \langle s, t, u \mid s^2 = t^2 = u^8 = 1, st = ts, sus^{-1} = u^3, tut^{-1} = u^5 \rangle$$

- G. E. Wall (1947) proved that $\text{Out}_c(G) = \mathbb{Z}/2$, **generated** by the automorphism α defined by

$$\alpha(s) = u^4s = u^2su^{-2}, \quad \alpha(t) = u^4t = utu^{-1}, \quad \alpha(u) = u$$

- The set $\mathcal{B}(G)$ has **two elements**:

$(\langle t, u^4 \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2, \det)$ and the trivial one

- Therefore, $\mathcal{H}^2(G)$ has order 4 or 2 according as Θ is surjective or not

We were **not able to conclude**

References on Hopf algebras

P. Etingof, S. Gelaki, *The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field*, Internat. Math. Res. Notices 2000, no. 5, 223–234.

P. Guillot, C. Kassel, *Cohomology of invariant Drinfeld twists on group algebras*, Internat. Math. Res. Notices 2010, 1894–1939; arXiv:0903.2807.

D. E. Radford, *Minimal quasitriangular Hopf algebras* J. Algebra 157 (1993), no. 2, 285–315.

P. Schauenburg, *Hopf bimodules, coquasibialgebras, and an exact sequence of Kac*, Adv. Math. 165 (2002), 194–263.

M. E. Sweedler, *Cohomology of algebras over Hopf algebras*, Trans. Amer. Math. Soc. 133 (1968), 205–239.

References on groups

W. Burnside, *On the outer automorphisms of a group*, Proc. London Math. Soc. (2) 11 (1912), 225–245.

W. Feit, G. M. Seitz, *On finite rational groups and related topics*, Illinois J. Math. 33 (1989), no. 1, 103–131.

C.-H. Sah, *Automorphisms of finite groups*, J. Algebra 10 (1968), 47–68.

G. E. Wall, *Finite groups with class-preserving outer automorphisms*, J. London Math. Soc. 22 (1947), 315–320.

Danke für Ihre Aufmerksamkeit!

Appendix 1. Wall's group (continued)

- The automorphism α is of the form

$$\alpha(g) = aga^{-1}$$

for some invertible $a \in kG$. A **computer search** gave us

$$a = \frac{1}{2} (1 + u^4) + \frac{\sqrt{2}}{4} u (1 - u^2 - u^4 + u^6)$$

- Then

$$F = (a \otimes a) \Delta(a^{-1})$$

is a **symmetric invariant twist** representing the **non-zero element** of $\mathcal{H}_0 \subset \mathcal{H}^2(G)$

The Drinfeld twist F is a sum of 52 pure tensors:

$$\begin{aligned} 8F = & 2(u_{00} + u_{44}) + (u_{11} + u_{33} + u_{55} + u_{77}) \\ & + u_{01} + u_{03} + u_{04} + u_{05} + u_{07} + u_{12} + u_{17} + u_{25} + u_{35} + u_{36} + u_{67} \\ & + u_{10} + u_{30} + u_{40} + u_{50} + u_{70} + u_{21} + u_{71} + u_{52} + u_{53} + u_{63} + u_{76} \\ & - (u_{13} + u_{14} + u_{15} + u_{16} + u_{23} + u_{27} + u_{34} + u_{37} + u_{45} + u_{47} + u_{56} + u_{57}) \\ & - (u_{31} + u_{41} + u_{51} + u_{61} + u_{32} + u_{72} + u_{43} + u_{73} + u_{54} + u_{74} + u_{65} + u_{75}) \end{aligned}$$

where $u_{ij} = u^i \otimes u^j$ ($i, j \in \{0, 1, \dots, 7\}$)

Appendix 2. On the proof of Theorem 1

- **Theorem 1.** *If all irreducible \bar{k} -representations of G can be realized over k , then there is an **exact sequence** of groups*

$$1 \longrightarrow H^1(\text{Gal}(\bar{k}/k), Z(G)) \longrightarrow \mathcal{H}^2(G/k) \longrightarrow \mathcal{H}^2(G/\bar{k}) \longrightarrow 1$$

- **Ingredients of the proof**

- Observe that Schauenburg cohomology is defined as a complex of **algebraic groups**
- Compute their **tangent Lie algebras** and show that the corresponding complex is **acyclic**
- Use **Hilbert's Theorem 90** twice