

# Algebraicity of zeta functions associated to matrices

Christian Kassel

Institut de Recherche Mathématique Avancée  
CNRS - Université de Strasbourg  
Strasbourg, France

Conference “Words, Codes and Algebraic Combinatorics”  
Cetraro, Italy  
1st of July, 2013

# Joint work with C. Reutenauer

- This is a report on the following [joint paper](#)

C. Kassel, C. Reutenauer, *Algebraicity of the zeta function associated to a matrix over a free group algebra*, arXiv:1303.3481

- Our paper was [inspired](#) by pages 1–3 of the preprint *Noncommutative identities* by M. Kontsevich, arXiv:1109.2469

# The general setting

- Let  $F_N$  be the **free group** on  $N$  generators  $X_1, \dots, X_N$  and

$$\mathbb{Z}F_N = \mathbb{Z}\langle X_1, X_1^{-1}, \dots, X_N, X_N^{-1} \rangle$$

be its **group ring**

- Any element of  $\mathbb{Z}F_N$  can be uniquely written as a finite sum

$$a = \sum_{g \in F_N} (a, g) g,$$

where  $(a, g)$  are integers

- Given  $a \in \mathbb{Z}F_N$ , we are interested in the **coefficient of 1**:

$$(a, 1) \in \mathbb{Z}$$

# The main result

- For a  $d \times d$ -matrix  $M$  with entries in  $\mathbb{Z}F_N$  define

$$a_n(M) = (\text{Tr}(M^n), 1) \in \mathbb{Z},$$

where  $\text{Tr}(M^n) \in \mathbb{Z}F_N$  is the **trace** of the  $n$ -th power of  $M$

- Consider the **“zeta function”** of  $M$ , which is the formal power series

$$P_M = \exp \left( \sum_{n \geq 1} a_n(M) \frac{t^n}{n} \right) \in \mathbb{Q}[[t]]$$

- **Theorem 1.** *For each matrix  $M \in M_d(\mathbb{Z}F_N)$ , the formal power series  $P_M$  has **integer** coefficients and is **algebraic***

“Algebraic” means that  $y = P_M$  satisfies an equation of the form

$$y^r + a_1(t)y^{r-1} + \cdots + a_{r-1}(t) = 0$$

where  $a_1(t), \dots, a_{r-1}(t)$  are **rational fractions** with coefficients in  $\mathbb{Q}$

# Evidence for Theorem 1

Let us prove Theorem 1 in the **very special case** where  $F_N = \{1\}$

- Recall that for any matrix  $M$  with entries in a **commutative ring** we have **Jacobi's formula**

$$\exp \left( \sum_{n \geq 1} \text{Tr}(M^n) \frac{t^n}{n} \right) = \frac{1}{\det(1 - tM)}$$

- Take  $M \in M_d(\mathbb{Z}F_N) = M_d(\mathbb{Z})$ . Then

$$P_M = \frac{1}{\det(1 - tM)} = \frac{1}{(1 - \lambda_1 t) \cdots (1 - \lambda_d t)}$$

where  $\lambda_1, \dots, \lambda_d$  are the roots of the **characteristic polynomial** of  $M$

It follows that  $P_M$  is not only algebraic, but a rational function

# Remarks on Theorem 1

- The case  $d = 1$  was settled by **Kontsevich** in arXiv:1109.2469

A **combinatorial proof** in the special case  $d = 1$  and  $N = 1$  was given by Reutenauer and Robado (FPSAC 2012, Nagoya)

- **Logarithmic derivative.** Define the **generating function** of  $M$  by

$$g_M = \sum_{n \geq 1} a_n(M) t^n,$$

Then  $g_M$  is related to the “zeta function”  $P_M$  by

$$g_M = t \frac{d \log(P_M)}{dt} = t \frac{P'_M}{P_M}$$

where  $P'_M$  is the **derivative** of  $P_M$

# The proof: Kontsevich's three steps

Let us now outline **the proof of Theorem 1** following an idea by Kontsevich

Starting from a matrix  $M \in M_d(\mathbb{Z}F_N)$ ,

- **Step 1.** Prove that  $P_M$  has **integer** coefficients
- **Step 2.** Prove that  $g_M = t \operatorname{dlog}(P_M)/dt = t P'_M/P_M$  is **algebraic**

To conclude that  $P_M$  is algebraic, we **need a third step**

- **Step 3.** Prove that, if  $f$  is a formal power series with **integer** coefficients and its **logarithmic derivative**  $t \operatorname{dlog} f/dt$  is algebraic, then  $f$  is **algebraic**

- **Note.**

- ▶ Steps 1–2 use standard techniques of the theory of **formal languages**
- ▶ Step 3 follows from a deep result in **arithmetic geometry**

# Generating and zeta functions

- Let  $A$  be a set and  $A^*$  the free monoid on the alphabet  $A$
- Let  $\mathbb{Z}\langle\langle A \rangle\rangle$  be the ring of **non-commutative formal power series** on  $A$  with integer coefficients. For  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  we have a unique expansion of the form

$$S = \sum_{w \in A^*} (S, w) w \quad \text{with } (S, w) \in \mathbb{Z}$$

- **Definition.** (a) *The generating function of  $S$  is*

$$g_S = \sum_{n \geq 1} \left( \sum_{|w|=n} (S, w) \right) t^n \in \mathbb{Z}[[t]]$$

- (b) *The zeta function of  $S$  is*

$$\zeta_S = \exp \left( \sum_{n \geq 1} \left( \sum_{|w|=n} (S, w) \right) \frac{t^n}{n} \right) \in \mathbb{Q}[[t]]$$

- $g_S$  and  $\zeta_S$  are **related** by

$$g_S = t \frac{d \log(\zeta_S)}{dt} = t \frac{\zeta'_S}{\zeta_S}$$

# Cyclic non-commutative formal power series

- **Definition.** An element  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  is *cyclic* if

- (i)  $\forall u, v \in A^*, (S, uv) = (S, vu)$  and
- (ii)  $\forall w \in A^* - \{1\}, \forall r \geq 2, (S, w^r) = (S, w)^r$ .

Recall: (a) A word is *primitive* if it is not the power of a proper subword

(b) Words  $w$  and  $w'$  are *conjugate* if  $w = uv$  and  $w' = vu$  for some  $u$  and  $v$

- **Proposition.** If  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  is *cyclic*, then we have the *factorization*

$$\zeta_S = \prod_{\ell \in L} \frac{1}{1 - (S, \ell) t^{|\ell|}}$$

where  $L$  is any set of representatives of *conjugacy classes of primitive elements* of  $A^* - \{1\}$  (Lyndon words)

We are mainly interested in the following *important consequence*

- **Corollary.** If  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  is *cyclic*, then  $\zeta_S$  has *integer* coefficients

# Algebraic non-commutative formal power series

- A system of **proper algebraic non-commutative equations** is a finite set of equations

$$\xi_i = p_i(\xi_1, \dots, \xi_r) \quad (i = 1, \dots, r) \quad (1)$$

where each  $p_i \in \mathbb{Z}\langle\xi_1, \dots, \xi_r, A\rangle$  has no constant term and contains no monomial  $\xi_j$

The system (1) has a unique **solution**  $(S_1, \dots, S_r) \in (\mathbb{Z}\langle\langle A \rangle\rangle)^r$ , i.e., a  $r$ -tuple such that  $S_i = p_i(S_1, \dots, S_r)$  and has no constant term for all  $i = 1, \dots, r$

**Definition.** A series  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  is **algebraic** if it differs by a constant from such an  $S_i$

- **Example.** Let  $A = \{a, b\}$ . The equation  $\xi = a\xi^2 + b$  has the solution

$$S = b + abb + aabbb + ababb + \dots = \sum_{w \in \mathbb{L}} w$$

where  $\mathbb{L}$  is **Lukasiewicz's language**

$$\mathbb{L} = \{w \in A^* \mid |w|_b = |w|_a + 1 \text{ and } |u|_a \geq |u|_b \text{ for all proper prefixes } u \text{ of } w\}$$

# More on algebraic power series

We recall results by Schützenberger *et al.*

## Proposition.

- (a) Algebraic non-commutative formal power series form a **subring** of  $\mathbb{Z}\langle\langle A \rangle\rangle$ , containing all **rational** series, i.e. those belonging to the smallest subring  $\supset \mathbb{Z}\langle A \rangle$  closed under inversion
- (b) The **Hadamard product** of a rational series and an algebraic one is algebraic
- (c) Let  $f : A^* \rightarrow F$  be a homomorphism to a free group  $F$  and  $L \subset A^*$  consist of all words  $w \in A^*$  such that  $f(w) = 1$ . Then the **characteristic series**

$$\sum_{w \in L} w \in \mathbb{Z}\langle\langle A \rangle\rangle$$

of  $L$  is algebraic

- (d) If  $S \in \mathbb{Z}\langle\langle A \rangle\rangle$  is algebraic, then its **generating series**  $g_S \in \mathbb{Z}[[t]]$  is algebraic in the usual sense

## Steps 1 and 2 of the proof

Fix a matrix  $M \in M_d(\mathbb{Z}F_N)$

- **An alphabet associated to  $M$ .** Define  $A$  to be the **alphabet** consisting of all triples  $[g, i, j]$  with  $1 \leq i, j \leq d$  and  $g \in F_N$  such that  $(M_{i,j}, g) \neq 0$
- Let  $S_M \in \mathbb{Z}\langle\langle A \rangle\rangle$  be the **non-commutative formal power series** such that, if  $w = [g_1, i_1, j_1] \cdots [g_n, i_n, j_n]$  ( $n \geq 1$ ), then

$$(S_M, w) = (M_{i_1, j_1}, g_1) \cdots (M_{i_n, j_n}, g_n) \in \mathbb{Z}$$

when  $g_1 \cdots g_n = 1$  in  $F_N$ , and  $j_n = i_1$  and  $j_k = i_{k+1}$  for all  $k = 1, \dots, n-1$ .  
Otherwise,  $(S_M, w) = 0$ .

- **Proposition.**

- We have  $g_{S_M} = g_M$  and  $\zeta_{S_M} = P_M$
- The non-commutative series  $S_M$  is **cyclic** and **algebraic**

- **Corollary.** The “zeta function”  $P_M$  has **integer** coefficients and its logarithmic derivative  $g_M = t \operatorname{dlog}(P_M)/dt$  is **algebraic**

# An algebraicity theorem

To conclude the proof (Step 3) we need the following

- **Theorem 2.** *If  $f \in \mathbb{Z}[[t]]$  is a formal power series with **integer** coefficients and  $t \operatorname{dlog} f/dt$  is algebraic, then  $f$  is **algebraic***
- This theorem belongs to a long list of similar results, such as  
(Polya) *If  $f \in \mathbb{Z}[[t]]$  is a formal power series with **integer** coefficients and its derivative is **rational**, then  $f$  is a **rational** function*

But passing from “rational” to “algebraic” is a more challenging problem, having received an answer only in the last 30 years

# The Grothendieck-Katz conjecture

- The **Grothendieck-Katz conjecture** is a very general, mainly unproved, algebraicity criterion:

*If  $Y' = AY$  is a linear system of differential equations with  $A \in M_r(\mathbb{Q}(t))$ , then it has a basis of solutions which are algebraic over  $\mathbb{Q}(t)$  if and only, for all large enough prime integers  $p$ , the reduction modulo  $p$  of the system has a basis of solutions that are algebraic over  $\mathbb{F}_p(t)$*

- Instances of the conjecture have been proved
  - ▶ by **Yves André** (1989) following Diophantine approximation techniques of D. V. and G. V. Chudnovsky (1984),
  - ▶ and by **Jean-Benoît Bost** (2001) using the language of Arakelov geometry
- These cases cover the system consisting of the single differential equation

$$y' = \frac{g_M}{t} y$$

of interest to us, and thus yield Theorem 2  
(for an overview, see Bourbaki Seminar by Chambert-Loir, 2001)

# Explicit computations by Kontsevich

Kontsevich explicitly computed  $P_M$  as an **algebraic function** for

$$M = X_1 + X_1^{-1} + \cdots + X_N + X_N^{-1} \in \mathbb{Z}F_N = M_1(\mathbb{Z}F_N)$$

- For  $M = X_1 + X_1^{-1} + X_2 + X_2^{-1}$ ,

$$P_M = \frac{2}{3} \cdot \frac{1 + 2\sqrt{1 - 12t^2}}{1 - 6t^2 + \sqrt{1 - 12t^2}}$$

**Remark.** If  $X_1$  and  $X_2$  were **supposed to commute**, then  $P_M$  would **not be algebraic**. Indeed, by a computation of Bousquet-Mélou,

$$a_n(M) = (M^n, 1) = \binom{2n}{n}^2 \sim \frac{1}{\pi} \frac{16^n}{n}$$

The generating function  $g_M$ , hence  $P_M$ , cannot be algebraic due to the presence of  $1/n$  in the previous asymptotics

This example shows that we **need non-commuting variables** for Theorem 1

# An explicit computation for a $2 \times 2$ -matrix

- In our paper Christophe and I computed  $P_M$  as an **algebraic function** for the  $2 \times 2$ -matrix

$$M = \begin{pmatrix} a + a^{-1} & b \\ b^{-1} & d + d^{-1} \end{pmatrix}$$

where  $a, b, d$  are non-commuting variables

- **Theorem 3.** We have

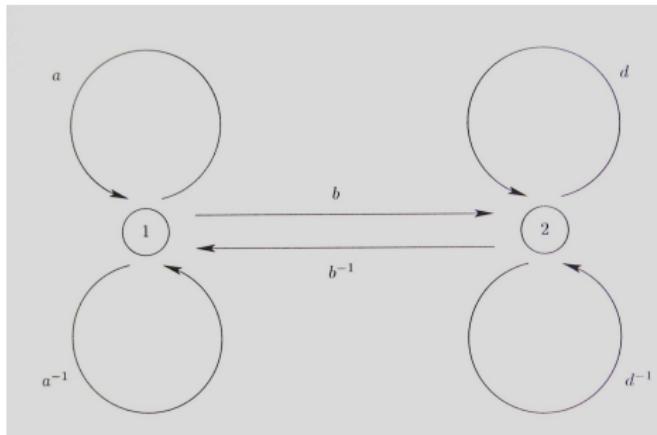
$$P_M = \frac{(1 - 8t^2)^{3/2} - 1 + 12t^2 - 24t^4}{32t^6}.$$

Thus  $P_M$  belongs to a **quadratic extension** of  $\mathbb{Q}(t)$

- **Remark.** By Tutte the integers in the expansion of  $P_M$  as a formal power series count the **planar rooted bicubic maps** with an even number of vertices

# How we proved Theorem 3

- We represent the matrix  $M$  by the following **labeled oriented graph**



We identify words on  $A = \{a, a^{-1}, b, b^{-1}, d, d^{-1}\}$  and paths in this graph

- Let  $L \subset A^*$  be the set of non-empty words
  - (i) whose corresponding paths are closed **loops**
  - (ii) which represent the **identity element in the free group** on  $a, b, d$
- Then  $a_n(M)$  is the **number of words of length  $n$  in  $L$**

## How we proved Theorem 3 (sequel)

- Using this interpretation of  $a_n(M)$ , we found a **quadratic equation** for  $g_M$  leading to

$$g_M = 3 \frac{(1 - 8t^2)^{1/2} - 1 + 6t^2}{1 - 9t^2}$$

- $g_M$  has the following **expansion** as a truncated formal power series:

$$g_M = 6(t^2 + 5t^4 + 29t^6 + 181t^8 + 1181t^{10} + 7941t^{12}) + O(t^{14})$$

from which we derived the **expansion**

$$P_M = 1 + 3t^2 + 12t^4 + 56t^6 + 288t^8 + 1584t^{10} + 4576t^{12} + O(t^{14}) \quad (2)$$

The sequence of integers  $(1, 3, 12, 56, 288, 1584, 4576)$  is the beginning of the sequence A000257 in Sloane's OEIS, which counts the "new" intervals in a **Tamari lattice**, as computed by Chapoton (2006)

- **Chapoton** gave an algebraic expression for the generating function  $\nu$  of these "new" intervals. Rescaling  $\nu$ , we found that  $P(t) = (\nu(t^2) - t^4)/t^6$  has up to degree 10 the same expansion as (2).

To complete the proof of Theorem 3, it sufficed to check  $tP'(t)/P(t) = g_M$ .

# The algebraic curve behind a matrix

- By the main result,  $y = P_M$  satisfies an equation of the form

$$y^r + a_1(t)y^{r-1} + \cdots + a_{r-1}(t) = 0$$

where  $a_1(t), \dots, a_{r-1}(t)$  are rational fractions with coefficients in  $\mathbb{Q}$

This equation defines an **algebraic curve**  $C_M$  (over  $\mathbb{Z}$ )

- For the matrix above

$$M = \begin{pmatrix} a + a^{-1} & b \\ b^{-1} & d + d^{-1} \end{pmatrix}$$

this equation is

$$y^2 + \frac{24t^4 - 12t^2 + 1}{16t^6}y + \frac{9t^2 - 1}{16t^6} = 0$$

- In general **what can we say** about the algebraic curve  $C_M$ ?

What is its **geometric meaning**?

# References for our paper

- F. Chapoton, *Sur le nombre d'intervalles dans les treillis de Tamari*, Séminaire Lotharingien de Combinatoire 55 (2006), B55f; arXiv:math/0602368
- C. Kassel, C. Reutenauer, *Algebraicity of the zeta function associated to a matrix over a free group algebra*, arXiv:1303.3481
- M. Kontsevich, *Noncommutative identities*, talk at *Mathematische Arbeitstagung* 2011, Bonn; arXiv:1109.2469v1
- *The On-Line Encyclopedia of Integer Sequences* (2010), <http://oeis.org>
- C. Reutenauer, M. Robado, *On an algebraicity theorem of Kontsevich*, FPSAC 2012, Nagoya, Japan
- W. T. Tutte, *A census of planar maps*, Canadian J. Math. 15 (1963), 249-271

## Background references: formal languages

- J. Berstel, C. Reutenauer, *Zeta functions of formal languages*, Trans. Amer. Math. Soc. 321 (1990), 533–546
- J. Berstel, C. Reutenauer, *Noncommutative rational series with applications*, Encyclopedia of Mathematics and its Applications, 137, Cambridge University Press, Cambridge, 2011
- M. Bousquet-Mélou, *Algebraic generating functions in enumerative combinatorics, and context-free languages*, V. Diekert and B. Durand (Eds.), STACS 2005, 18–35, Lect. Notes Comput. Sci., 3404, Springer-Verlag, Berlin, Heidelberg, 2005. See Sect. 1, Example 3.
- G. Jacob, *Sur un théorème de Shamir*, Information and Control 27 (1975), 218–261
- M. P. Schützenberger, *On a theorem of R. Jungen*, Proc. Amer. Math. Soc. 13 (1962), 885–890

## Background references: algebraicity results

- Y. André, *G-functions and geometry*, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989.
- Y. André, *Sur la conjecture des  $p$ -courbures de Grothendieck et Katz*, Geometric aspects of Dwork theory, Vol. I, II, 55–112, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
- J.-B. Bost, *Algebraic leaves of algebraic foliations over number fields*, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 161–221.
- A. Chambert-Loir, *Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André, D. & G. Chudnovsky)*, Séminaire Bourbaki, Vol. 2000/2001, Astérisque No. 282 (2002), Exp. No. 886, viii, 175–209.
- D. V. Chudnovsky, G. V. Chudnovsky, *Applications of Padé approximations to the Grothendieck conjecture on linear differential equations*, Number theory (New York, 1983–84), 52–100, Lecture Notes in Math., 1135, Springer, Berlin, 1985.