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Joint work with C. Reutenauer

eThis is a report on the following joint paper

C. Kassel, C. Reutenauer, Algebraicity of the zeta function associated to a
matrix over a free group algebra, arXiv:1303.3481

e Our paper was inspired by pages 1-3 of the preprint Noncommutative
identities by M. Kontsevich, arXiv:1109.2469



The general setting

e Let Fy be the free group on N generators Xi,..., Xy and
ZFn = Z4X0, X0 X, Xyt

be its group ring

e Any element of ZFy can be uniquely written as a finite sum

a=> (a8)e,

geFy

where (a, g) are integers

e Given a € ZFy, we are interested in the coefficient of 1:

(a,1)eZ



The main result

e For a d x d-matrix M with entries in ZFy define
an(M) = (Tr(M"),1) € Z,

where Tr(M") € ZFy is the trace of the n-th power of M

e Consider the “zeta function” of M, which is the formal power series
tl‘l
Py = (M) — t
w=ew | 3 anM) ) €l

e Theorem 1. For each matrix M € My(ZFy), the formal power series Py has
integer coefficients and is algebraic

“Algebraic” means that y = Py satisfies an equation of the form
Y +a(t)y 44 aa(t)=0

where a1(t), ..., a,—1(t) are rational fractions with coefficients in Q



Evidence for Theorem 1

Let us prove Theorem 1 in the very special case where Fy = {1}

e Recall that for any matrix M with entries in a commutative ring we have
Jacobi's formula

t" 1
(M) — | = ————
&P ; r( )n det(1 — tM)

o Take M € My(ZFn) = My(Z). Then
1 1

Pu = Ge@ =) ~ @) (1= D)

where A1, ..., Aq are the roots of the characteristic polynomial of M

It follows that Py is not only algebraic, but a rational function



Remarks on Theorem 1

e The case d = 1 was settled by Kontsevich in arXiv:1109.2469
A combinatorial proof in the special case d =1 and N = 1 was given by

Reutenauer and Robado (FPSAC 2012, Nagoya)

e Logarithmic derivative. Define the generating function of M by

auv = Z an(M) t",

n>1

Then gu is related to the “zeta function” Py by

—t leg(PM) —¢ Pfll\/l

dt P

where Py, is the derivative of Py



The proof: Kontsevich's three steps

Let us now outline the proof of Theorem 1 following an idea by Kontsevich

Starting from a matrix M € My(ZFy),

e Step 1. Prove that Py has integer coefficients

e Step 2. Prove that gy = t dlog(Pu)/dt = t Py /Pu is algebraic
To conclude that Py is algebraic, we need a third step

e Step 3. Prove that, if f is a formal power series with integer coefficients and
its logarithmic derivative t dlog f/dt is algebraic, then f is algebraic

e Note.
> Steps 1-2 use standard techniques of the theory of formal languages

> Step 3 follows from a deep result in arithmetic geometry



Generating and zeta functions

e Let A be a set and A" the free monoid on the alphabet A

e Let Z{(A)) be the ring of non-commutative formal power series on A with
integer coefficients. For S € Z{(A)) we have a unique expansion of the form

S=Y (S,w)w  with(S,w)€Z
wEA*
e Definition. (a) The generating function of S is
=3 (X (s 2l
n>1 Mw|=n

(b) The zeta function of S is

(s = exp (Z (Z (s, w)) t) e Q)

n>1 Mw|=n
e gs and (s are related by

_ dlog(¢s) _ . ¢s
gs =1t P =t CS



Cyclic non-commutative formal power series

o Definition. An element S € Z{{A)) is cyclic if
(i) Yu,ve A", (S,uv)=(S,vu) and
(i) Vw e A" = {1},Vr > 2, (S,w")=(S,w)".
Recall: (a) A word is primitive if it is not the power of a proper subword

(b) Words w and w’ are conjugate if w = uv and w’ = vu for some u and v

e Proposition. If S € Z{(A)) is cyclic, then we have the factorization

1
=111 (S, 0) i

lel

where L is any set of representatives of conjugacy classes of primitive elements
of A* — {1} (Lyndon words)

We are mainly interested in the following important consequence

e Corollary. If S € Z{(A)) is cyclic, then (s has integer coefficients



Algebraic non-commutative formal power series

e A system of proper algebraic non-commutative equations is a finite set of
equations

fi:Pi(£17~~~,fr) (I':].,...,I’) (1)
where each p; € Z{{1,. .., &, A) has no constant term and contains no
monomial &;

The system (1) has a unique solution (S1,...,S;) € (Z{A))", i.e., a r-tuple
such that S; = pi(Si, ..., Sr) and has no constant term for all i =1,...,r

Definition. A series S € Z((A)) is algebraic if it differs by a constant from such
an S

e Example. Let A = {a, b}. The equation £ = a¢” + b has the solution

S:b+abb+aabbb+ababb+~o:Z w

wet

where t is tukasiewicz's language

t={weA"||wl, =|wl|s+1and |u|, > |u]s for all proper prefixes uof w}



More on algebraic power series

We recall results by Schiitzenberger et al.

Proposition.

(a) Algebraic non-commutative formal power series form a subring of Z{A)),
containing all rational series, i.e. those belonging to the smallest subring
D Z(A) closed under inversion

(b) The Hadamard product of a rational series and an algebraic one is
algebraic

(c) Letf: A" — F be a homomorphism to a free group F and L C A* consist
of all words w € A™ such that f(w) = 1. Then the characteristic series

Z w € Z{(A))
weL
of L is algebraic

(d) IfS € Z{A)) is algebraic, then its generating series gs € Z[[t]] is algebraic
in the usual sense



Steps 1 and 2 of the proof

Fix a matrix M € My(ZFy)

e An alphabet associated to M. Define A to be the alphabet consisting of all
triples [g,i,j] with 1 < /,j < d and g € Fy such that (M, j,g) #0

e Let Sy € Z{(A)) be the non-commutative formal power series such that, if
w = [g1, i, 41] - - - [gns inyJn] (n > 1), then
(5M7 W) = (Milyjlvgl) T (Min:jn7g") €L

when g1---g, =1in Fy, and j, = i1 and jx = ik41 forall k=1,...,n— 1.
Otherwise, (Sum, w) = 0.
e Proposition.

(a) We have gs,, = gm and (s,, = Pum

(b) The non-commutative series Sy is cyclic and algebraic

e Corollary. The “zeta function” Py has integer coefficients and its
logarithmic derivative gy = t dlog(Pm)/ dt is algebraic



An algebraicity theorem

To conclude the proof (Step 3) we need the following

e Theorem 2. If f € Z[[t]] is a formal power series with integer coefficients
and t dlog f /dt is algebraic, then f is algebraic

e This theorem belongs to a long list of similar results, such as
(Polya) If f € Z[[t]] is a formal power series with integer coefficients and its
derivative is rational, then f is a rational function

But passing from “rational” to “algebraic” is a more challenging problem,
having received an answer only in the last 30 years



The Grothendieck-Katz conjecture

e The Grothendieck-Katz conjecture is a very general, mainly unproved,
algebraicity criterion:

If Y' = AY is a linear system of differential equations with A € M.(Q(t)), then
it has a basis of solutions which are algebraic over Q(t) if and only, for all large
enough prime integers p, the reduction modulo p of the system has a basis of
solutions that are algebraic over F,(t)

e Instances of the conjecture have been proved

> by Yves André (1989) following Diophantine approximation techniques of
D. V. and G. V. Chudnovsky (1984),

> and by Jean-Benoit Bost (2001) using the language of Arakelov geometry
e These cases cover the system consisting of the single differential equation

_gm
y ty

of interest to us, and thus yield Theorem 2

(for an overview, see Bourbaki Seminar by Chambert-Loir, 2001)



Explicit computations by Kontsevich

Kontsevich explicitly computed Py as an algebraic function for

M=Xi+X{ "+ 4+ Xy + Xy € ZFy = Mi(ZFn)

eFor M=Xi+ X'+ X2+ X, 1,

2 1+2v1—12¢2

Py == -
M3 1 e+ Vi-1282

Remark. If X; and X, were supposed to commute, then Py would not be
algebraic. Indeed, by a computation of Bousquet-Mélou,

an(M) = (M", 1) = <2n> N 116"

n ™ n

The generating function gy, hence Py, cannot be algebraic due to the
presence of 1/n in the previous asymptotics

This example shows that we need non-commuting variables for Theorem 1



An explicit computation for a 2 x 2-matrix

e In our paper Christophe and | computed Py, as an algebraic function for the

2 X 2-matrix )
_fa+a” b
M= ( b~ d+ d*l)
where a, b, d are non-commuting variables

o Theorem 3. We have

—8t)%2 — 14 12¢ — 24t*

(1
P =
M 32t6

Thus Pu belongs to a quadratic extension of Q(t)

e Remark. By Tutte the integers in the expansion of Py as a formal power
series count the planar rooted bicubic maps with an even number of vertices



How we proved Theorem 3

e We represent the matrix M by the following labeled oriented graph

(. CJ
OO

We identify words on A = {a,a=!,b,b~!,d,d1} and paths in this graph

e Let L C A* be the set of non-empty words
(i) whose corresponding paths are closed loops

(ii) which represent the identity element in the free group on a, b, d

e Then ap(M) is the number of words of length nin L



How we proved Theorem 3 (sequel)

e Using this interpretation of a,(M), we found a quadratic equation for gy leading to

51— 8t2)1/2 — 1 4+ 6t2

&m = 1—op

e gy has the following expansion as a truncated formal power series:
gm = 6 (t? + 5t* +29¢5 + 181t% + 118110 + 7941¢12) + O(£1*)
from which we derived the expansion
Py =1+3t>+12t* +561¢° 4-288¢% 41584 t1° 4- 4576 t'> + O(t'*)  (2)

The sequence of integers (1,3, 12, 56,288, 1584, 4576) is the beginning of the
sequence A000257 in Sloane’'s OEIS, which counts the “new” intervals in a Tamari
lattice, as computed by Chapoton (2006)

e Chapoton gave an algebraic expression for the generating function v of these “new”
intervals. Rescaling v, we found that P(t) = (v(t?) — t*)/t® has up to degree 10 the
same expansion as (2).

To complete the proof of Theorem 3, it sufficed to check t P/(t)/P(t) = gm.



The algebraic curve behind a matrix

e By the main result, y = P), satisfies an equation of the form
Y +a(t)y T+t aa(t) =0

where ai(t),...,ar—1(t) are rational fractions with coefficients in Q

This equation defines an algebraic curve Cy (over Z)

_ (a+a7l b
M_( b1 d+d*1)

2 24" —12¢241 o2 —1
1610 YT 66

e For the matrix above

this equation is

y

e In general what can we say about the algebraic curve Cy?

What is its geometric meaning?
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