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Joint work with C. Reutenauer

•This is a report on the following joint paper

C. Kassel, C. Reutenauer, Algebraicity of the zeta function associated to a
matrix over a free group algebra, arXiv:1303.3481

• Our paper was inspired by pages 1–3 of the preprint Noncommutative
identities by M. Kontsevich, arXiv:1109.2469



The general setting

• Let FN be the free group on N generators X1, . . . ,XN and

ZFN = Z〈X1,X
−1
1 , . . . ,XN ,X

−1
N 〉

be its group ring

• Any element of ZFN can be uniquely written as a finite sum

a =
∑

g∈FN

(a, g) g ,

where (a, g) are integers

• Given a ∈ ZFN , we are interested in the coefficient of 1:

(a, 1) ∈ Z



The main result

• For a d × d-matrix M with entries in ZFN define

an(M) = (Tr(Mn), 1) ∈ Z ,

where Tr(Mn) ∈ ZFN is the trace of the n-th power of M

• Consider the “zeta function” of M, which is the formal power series

PM = exp

∑
n≥1

an(M)
tn

n

 ∈ Q[[t]]

• Theorem 1. For each matrix M ∈ Md (ZFN ), the formal power series PM has
integer coefficients and is algebraic

“Algebraic” means that y = PM satisfies an equation of the form

y r + a1(t)y r−1 + · · ·+ ar−1(t) = 0

where a1(t), . . . , ar−1(t) are rational fractions with coefficients in Q



Evidence for Theorem 1

Let us prove Theorem 1 in the very special case where FN = {1}

• Recall that for any matrix M with entries in a commutative ring we have
Jacobi’s formula

exp

∑
n≥1

Tr(Mn)
tn

n

 =
1

det(1− tM)

• Take M ∈ Md (ZFN ) = Md (Z). Then

PM =
1

det(1− tM)
=

1

(1− λ1t) · · · (1− λd t)

where λ1, . . . , λd are the roots of the characteristic polynomial of M

It follows that PM is not only algebraic, but a rational function



Remarks on Theorem 1

• The case d = 1 was settled by Kontsevich in arXiv:1109.2469

A combinatorial proof in the special case d = 1 and N = 1 was given by
Reutenauer and Robado (FPSAC 2012, Nagoya)

• Logarithmic derivative. Define the generating function of M by

gM =
∑
n≥1

an(M) tn ,

Then gM is related to the “zeta function” PM by

gM = t
dlog(PM )

dt
= t

P ′M
PM

where P ′M is the derivative of PM



The proof: Kontsevich’s three steps

Let us now outline the proof of Theorem 1 following an idea by Kontsevich

Starting from a matrix M ∈ Md (ZFN ),

• Step 1. Prove that PM has integer coefficients

• Step 2. Prove that gM = t dlog(PM )/ dt = t P ′M/PM is algebraic

To conclude that PM is algebraic, we need a third step

• Step 3. Prove that, if f is a formal power series with integer coefficients and
its logarithmic derivative t dlog f /dt is algebraic, then f is algebraic

• Note.

I Steps 1–2 use standard techniques of the theory of formal languages

I Step 3 follows from a deep result in arithmetic geometry



Generating and zeta functions

• Let A be a set and A∗ the free monoid on the alphabet A

• Let Z〈〈A〉〉 be the ring of non-commutative formal power series on A with
integer coefficients. For S ∈ Z〈〈A〉〉 we have a unique expansion of the form

S =
∑

w∈A∗

(S ,w) w with (S ,w) ∈ Z

• Definition. (a) The generating function of S is

gS =
∑
n≥1

(∑
|w|=n

(S ,w)

)
tn ∈ Z[[t]]

(b) The zeta function of S is

ζS = exp

∑
n≥1

(∑
|w|=n

(S ,w)

)
tn

n

 ∈ Q[[t]]

• gS and ζS are related by

gS = t
dlog(ζS )

dt
= t

ζ′S
ζS



Cyclic non-commutative formal power series

• Definition. An element S ∈ Z〈〈A〉〉 is cyclic if

(i) ∀u, v ∈ A∗, (S , uv) = (S , vu) and

(ii) ∀w ∈ A∗ − {1}, ∀r ≥ 2, (S ,w r ) = (S ,w)r .

Recall: (a) A word is primitive if it is not the power of a proper subword

(b) Words w and w ′ are conjugate if w = uv and w ′ = vu for some u and v

• Proposition. If S ∈ Z〈〈A〉〉 is cyclic, then we have the factorization

ζS =
∏
`∈L

1

1− (S , `) t|`|

where L is any set of representatives of conjugacy classes of primitive elements
of A∗ − {1} (Lyndon words)

We are mainly interested in the following important consequence

• Corollary. If S ∈ Z〈〈A〉〉 is cyclic, then ζS has integer coefficients



Algebraic non-commutative formal power series

• A system of proper algebraic non-commutative equations is a finite set of
equations

ξi = pi (ξ1, . . . , ξr ) (i = 1, . . . , r) (1)

where each pi ∈ Z〈ξ1, . . . , ξr ,A〉 has no constant term and contains no
monomial ξj

The system (1) has a unique solution (S1, . . . , Sr ) ∈ (Z〈〈A〉〉)r , i.e., a r -tuple
such that Si = pi (S1, . . . , Sr ) and has no constant term for all i = 1, . . . , r

Definition. A series S ∈ Z〈〈A〉〉 is algebraic if it differs by a constant from such
an Si

• Example. Let A = {a, b}. The equation ξ = aξ2 + b has the solution

S = b + abb + aabbb + ababb + · · · =
∑
w∈ L

w

where  L is  Lukasiewicz’s language

 L = {w ∈ A∗ | |w |b = |w |a + 1 and |u|a ≥ |u|b for all proper prefixes u of w}



More on algebraic power series

We recall results by Schützenberger et al.

Proposition.

(a) Algebraic non-commutative formal power series form a subring of Z〈〈A〉〉,
containing all rational series, i.e. those belonging to the smallest subring
⊃ Z〈A〉 closed under inversion

(b) The Hadamard product of a rational series and an algebraic one is
algebraic

(c) Let f : A∗ → F be a homomorphism to a free group F and L ⊂ A∗ consist
of all words w ∈ A∗ such that f (w) = 1. Then the characteristic series∑

w∈L

w ∈ Z〈〈A〉〉

of L is algebraic

(d) If S ∈ Z〈〈A〉〉 is algebraic, then its generating series gS ∈ Z[[t]] is algebraic
in the usual sense



Steps 1 and 2 of the proof

Fix a matrix M ∈ Md (ZFN )

• An alphabet associated to M. Define A to be the alphabet consisting of all
triples [g , i , j ] with 1 ≤ i , j ≤ d and g ∈ FN such that (Mi,j , g) 6= 0

• Let SM ∈ Z〈〈A〉〉 be the non-commutative formal power series such that, if
w = [g1, i1, j1] · · · [gn, in, jn] (n ≥ 1), then

(SM ,w) = (Mi1,j1 , g1) · · · (Min,jn , gn) ∈ Z

when g1 · · · gn = 1 in FN , and jn = i1 and jk = ik+1 for all k = 1, . . . , n − 1.
Otherwise, (SM ,w) = 0.

• Proposition.

(a) We have gSM = gM and ζSM = PM

(b) The non-commutative series SM is cyclic and algebraic

• Corollary. The “zeta function” PM has integer coefficients and its
logarithmic derivative gM = t dlog(PM )/ dt is algebraic



An algebraicity theorem

To conclude the proof (Step 3) we need the following

• Theorem 2. If f ∈ Z[[t]] is a formal power series with integer coefficients
and t dlog f /dt is algebraic, then f is algebraic

• This theorem belongs to a long list of similar results, such as

(Polya) If f ∈ Z[[t]] is a formal power series with integer coefficients and its
derivative is rational, then f is a rational function

But passing from “rational” to “algebraic” is a more challenging problem,
having received an answer only in the last 30 years



The Grothendieck-Katz conjecture

• The Grothendieck-Katz conjecture is a very general, mainly unproved,
algebraicity criterion:

If Y ′ = AY is a linear system of differential equations with A ∈ Mr (Q(t)), then
it has a basis of solutions which are algebraic over Q(t) if and only, for all large
enough prime integers p, the reduction modulo p of the system has a basis of
solutions that are algebraic over Fp(t)

• Instances of the conjecture have been proved

I by Yves André (1989) following Diophantine approximation techniques of
D. V. and G. V. Chudnovsky (1984),

I and by Jean-Benôıt Bost (2001) using the language of Arakelov geometry

• These cases cover the system consisting of the single differential equation

y ′ =
gM

t
y

of interest to us, and thus yield Theorem 2

(for an overview, see Bourbaki Seminar by Chambert-Loir, 2001)



Explicit computations by Kontsevich

Kontsevich explicitly computed PM as an algebraic function for

M = X1 + X−1
1 + · · ·+ XN + X−1

N ∈ ZFN = M1(ZFN )

• For M = X1 + X−1
1 + X2 + X−1

2 ,

PM =
2

3
· 1 + 2

√
1− 12t2

1− 6t2 +
√

1− 12t2

Remark. If X1 and X2 were supposed to commute, then PM would not be
algebraic. Indeed, by a computation of Bousquet-Mélou,

an(M) = (Mn, 1) =

(
2n

n

)2

∼ 1

π

16n

n

The generating function gM , hence PM , cannot be algebraic due to the
presence of 1/n in the previous asymptotics

This example shows that we need non-commuting variables for Theorem 1



An explicit computation for a 2× 2-matrix

• In our paper Christophe and I computed PM as an algebraic function for the
2× 2-matrix

M =

(
a + a−1 b

b−1 d + d−1

)
where a, b, d are non-commuting variables

• Theorem 3. We have

PM =
(1− 8t2)3/2 − 1 + 12t2 − 24t4

32t6
.

Thus PM belongs to a quadratic extension of Q(t)

• Remark. By Tutte the integers in the expansion of PM as a formal power
series count the planar rooted bicubic maps with an even number of vertices



How we proved Theorem 3

• We represent the matrix M by the following labeled oriented graph

We identify words on A = {a, a−1, b, b−1, d , d−1} and paths in this graph

• Let L ⊂ A∗ be the set of non-empty words

(i) whose corresponding paths are closed loops

(ii) which represent the identity element in the free group on a, b, d

• Then an(M) is the number of words of length n in L



How we proved Theorem 3 (sequel)

• Using this interpretation of an(M), we found a quadratic equation for gM leading to

gM = 3
(1− 8t2)1/2 − 1 + 6t2

1− 9t2

• gM has the following expansion as a truncated formal power series:

gM = 6 (t2 + 5t4 + 29t6 + 181t8 + 1181t10 + 7941t12) + O(t14)

from which we derived the expansion

PM = 1 + 3 t2 + 12 t4 + 56 t6 + 288 t8 + 1584 t10 + 4576 t12 + O(t14) (2)

The sequence of integers (1, 3, 12, 56, 288, 1584, 4576) is the beginning of the
sequence A000257 in Sloane’s OEIS, which counts the “new” intervals in a Tamari
lattice, as computed by Chapoton (2006)

• Chapoton gave an algebraic expression for the generating function ν of these “new”
intervals. Rescaling ν, we found that P(t) = (ν(t2)− t4)/t6 has up to degree 10 the
same expansion as (2).

To complete the proof of Theorem 3, it sufficed to check t P′(t)/P(t) = gM .



The algebraic curve behind a matrix

• By the main result, y = PM satisfies an equation of the form

y r + a1(t)y r−1 + · · ·+ ar−1(t) = 0

where a1(t), . . . , ar−1(t) are rational fractions with coefficients in Q
This equation defines an algebraic curve CM (over Z)

• For the matrix above

M =

(
a + a−1 b

b−1 d + d−1

)
this equation is

y2 +
24t4 − 12t2 + 1

16t6
y +

9t2 − 1

16t6
= 0

• In general what can we say about the algebraic curve CM ?

What is its geometric meaning?
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• G. Jacob, Sur un théorème de Shamir, Information and Control 27 (1975), 218–261

• M. P. Schützenberger, On a theorem of R. Jungen, Proc. Amer. Math. Soc. 13
(1962), 885–890



Background references:
algebraicity results
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