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De quoi s’agit-il ?

• D’une histoire de mots (à deux lettres). . .

où apparaissent des tresses

• Travail en commun avec
Christophe Reutenauer, UQAM, Montréal, Canada

• Article paru dans
Annali di Matematica Pura ed Applicata 186 (2007), 317–339
arXiv : math.GR/0507219



I. UN PEU D’HISTOIRE



Elwin Bruno Christoffel (1829–1900)

I Travaux en géométrie, analyse tensorielle (symboles de
Christoffel), théorie des invariants, polynômes
orthogonaux, fractions continues, physique (dispersion de
la lumière, ondes de choc)

I En poste au Polytechnicum Zurich, TU Berlin, et. . .
I à Strasbourg
I Après la Guerre franco-prussienne de 1870,

l’Alsace-Lorraine a été rattachée à l’Empire allemand
I Nouvelle université à Strasbourg

En 1872 Christoffel fonde le Mathematisches Institut
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L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



L’Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Publié en latin (C. a également publié des articles en
allemand, français et italien)

I Nom de l’auteur en première page de l’article :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi est dérivé de Argentoratum, nom donné par
les Romains à Strasbourg au moment de la fondation de la
ville



Observatio arithmetica 1

I Designantibus a, b numeros positivos integros et primos inter
se, sint r1, r2, r3, . . . residua minima non negativa numerorum a,
2a, 3a, . . . secundum modulum b,. . .

I Désignons par a, b des entiers positifs premiers entre eux
et soit r1, r2, r3, . . . les restes de la division de a, 2a, 3a, . . .
par b,. . .

I Agitur autem de quaestione, quando rm crescat vel decrescat, si
m unitate augitur. . .

I Il s’agit de savoir quand rm croît ou décroît si m augmente
d’une unité. . .
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Observatio arithmetica 2

I . . .notatur littera c vel d, prout rm crescit vel decrescit. Hoc modo
nova series nascitur, e duabus tantum literis c, d, sed certo
quodam ordine composita. . .

I . . .on écrit la lettre c ou d suivant que rm croît ou décroît.
De cette manière naît une nouvelle suite, faite des deux
lettres c, d , mais arrangée dans un certain ordre. . .
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Observatio arithmetica 3

I Exemplum I. Sit a = 4, b = 11, erit series (r.) notis c, d ornata

r. = 4 8 1 5 9 2 6 10 3 7 0
g. = c d c c d c c d c d c

I On retrouve les entiers a and b à partir de la suite (g.) :
? a est le nombre de d dans (g.)
? b est la longueur de la suite (g.)

I Le résultat principal de l’article indique comment recouvrer
le développement en fraction continue de a/b à partir
de (g.)
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Observatio arithmetica 4

Les suites de lettres c et d obtenues de cette manière, par
exemple

cdccdccdcdc ,

sont appelées des mots de Christoffel

Pour commencer,
nous en donnons une construction géométrique



Les mots de Christoffel (et leurs variantes infinies)
interviennent en

• mathématiques
? dynamique symbolique (Morse)
? fractions continues

• informatique
? langages formels
? algorithmes sur les mots et combinatoire
? reconnaissance de formes

• physique
? cristallographie

• biologie



II. CONSTRUCTION GÉOMÉTRIQUE

DES MOTS DE CHRISTOFFEL



Vecteurs primitifs de Z2 et mots de Christoffel

I
(p

q

)
∈ Z2 est primitif si p et q sont premiers entre eux

I A un vecteur primitif
(p

q

)
nous allons associer un mot de Christoffel

w = w
(

p
q

)
formé avec les lettres a, a−1, b, b−1 et tel que
• le nombre “algébrique” d’occurrences de a dans w est p,
et
• le nombre “algébrique” d’occurrences de b dans w est q
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Représentation planaire d’un vecteur primitif

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

O = (0, 0)

P =
(p

q

)
Si P =

(p
q

)
est primitif, alors [OP]

⋂
Z2 = {O, P}



Approximation par des "escaliers"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

O

P =
(p

q

)
Si p, q ≥ 0, on approche le segment OP

par l’escalier inférieur le plus proche



Mot de Christoffel associé à
un vecteur primitif positif

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

a a

a a

a

b

b

b

O

(5
3

)
Au vecteur

(5
3

)
∈ N2 on associe le mot

w
(5

3

)
= aabaabab = a2ba2bab ∈ F2



Factorisation canonique d’un mot de Christoffel : 1

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

���
���

�*�
�

�
�

�
�

�
�

�
��3

a a

a a

a

b

b

b

O

P =
(5

3

)

j

j: point de Z2 le plus proche de OP

w
(5

3

)
= (a2b)(a2bab) = w

(2
1

)
w

(3
2

)



Factorisation canonique d’un mot de Christoffel : 2

Théorème.

Si
(p

q

)
,
(r

s

)
∈ N2 vérifient

∣∣∣∣ p r
q s

∣∣∣∣ = 1 , alors on a

w
(

p + r
q + s

)
= w

(
p
q

)
w

(
r
s

)



Mots de Christoffel généraux

"
"

"
"

"
"

"
"

"
"

""

aaaaaaaaaaaa

Z
Z

Z
Z

Z
Z

Z
Z

Z

�
�

�
�

�
��

a a

a a

a

b

b

b
↑↑

a a a

a ab̄

b̄↓↓

ā

ā

āā

b

b

b
←←

ā

ā

b̄

b̄

ā
←←

O

(5
3

)

( 5
−2

)

(−4
3

)

(−3
−2

)

a2ba2bab

a3b−1a2b−1

ba−1ba−1ba−2

b−1a−1b−1a−2

ā = a−1

b̄ = b−1



Le groupe F2

• Les mots en a, a−1, b, b−1 forment un groupe,
le groupe libre F2

? Loi de composition : concaténation
? Elément neutre : le mot vide
? Identification :

aa−1 = a−1a = bb−1 = b−1b = 1 .

• Un mot en a, a−1, b, b−1 est réduit s’il ne contient pas les
sous-suites

aa−1, a−1a, bb−1, b−1b .

Tout élément de F2 peut être représenté par un unique mot
réduit.



Comptage du nombre de a et de b

• Il existe un unique homomorphisme de groupes

p : F2 → Z2

tel que p(a) =
(1

0

)
et p(b) =

(0
1

)
• L’homomorphisme p permet de compter algébriquement le
nombre d’occurrences de a et de b dans un mot représentant
un élément de F2

Exemple :

p(a−3b5ab−2a) =

(
−1
3

)



Objectif : Décrire les bases de F2

I {u, v} ⊂ F2 est une base de F2 si {u, v} engendre F2
comme groupe.

Exemple trivial : {a, b} est une base de F2

I Deux bases {u, v} et {u′, v ′}de F2 sont conjuguées s’il
existe w ∈ F2 tel que u′ = wuw−1 and v ′ = wvw−1

I Rappel : Description des bases de Z2

{
(p

q

)
,
(r

s

)
} est une base de Z2 ⇐⇒ ps − qr = ±1



Objectif : Décrire les bases de F2

I {u, v} ⊂ F2 est une base de F2 si {u, v} engendre F2
comme groupe.

Exemple trivial : {a, b} est une base de F2

I Deux bases {u, v} et {u′, v ′}de F2 sont conjuguées s’il
existe w ∈ F2 tel que u′ = wuw−1 and v ′ = wvw−1

I Rappel : Description des bases de Z2

{
(p

q

)
,
(r

s

)
} est une base de Z2 ⇐⇒ ps − qr = ±1



Objectif : Décrire les bases de F2

I {u, v} ⊂ F2 est une base de F2 si {u, v} engendre F2
comme groupe.

Exemple trivial : {a, b} est une base de F2

I Deux bases {u, v} et {u′, v ′}de F2 sont conjuguées s’il
existe w ∈ F2 tel que u′ = wuw−1 and v ′ = wvw−1

I Rappel : Description des bases de Z2

{
(p

q

)
,
(r

s

)
} est une base de Z2 ⇐⇒ ps − qr = ±1



Relèvement de bases de Z2 à F2

I Notre objectif : Décrire les bases de F2 et répondre à la. . .

I Question : Soit p : F2 → Z2 la surjection canonique.
Peut-on relever une base de Z2 en une base de F2 via p ?

I Exemple :
I a2b ∈ F2 est un relèvement de

(2
1

)
I a3b2 est un relèvement de

(3
2

)
I {a2b, a3b2} n’est pas une base de F2,
I {a2b, a2bab} est une base de F2
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Une description complète des bases de F2

Théorème.

I Si
{(p

q

)
,
(r

s

)}
est une base de Z2, alors{

w
(

p
q

)
, w

(
r
s

)}
est une base de F2 (appelée une base de Christoffel).

Cette base est un relèvement de
{(p

q

)
,
(r

s

)}
à F2

I Tout conjugué d’une base de Christoffel est une base
de F2 et
toute base de F2 est conjuguée à une (unique) base de
Christoffel
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III. SUBSTITUTIONS PRÉSERVANT

LES MOTS DE CHRISTOFFEL



Mots de Christoffel positifs et conjugués

• Un mot de Christoffel positif est un mot en a et b de la forme

w
(

p
q

)
où p, q ∈ N

• Un conjugué d’un mot w est un mot w ′ tel que

w = uv et w ′ = vu

où u et v sont des mots

(Dans un groupe on aurait w ′ = vwv−1)



Morphismes sturmiens

I Une substitution est une transformation qui remplace a et
b par des mots (positifs) en a et b

On peut composer les substitutions

I Un morphisme sturmien est une substitution transformant
tout mot de Christoffel positif en le conjugué d’un mot de
Christoffel positif

I Les morphismes sturmiens forment un monoïde St par
composition des substitutions. C’est le monoïde sturmien
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Exemples de morphismes sturmiens

•
id =

(
a 7→ a
b 7→ b

)
et E =

(
a 7→ b
b 7→ a

)
On a E2 = id
•

La =

(
a 7→ a

b 7→ ab

)
et Ra =

(
a 7→ a

b 7→ ba

)
•

Lb = ELaE =

(
a 7→ ba
b 7→ b

)
et Rb = ERaE =

(
a 7→ ab
b 7→ b

)



Le monoïde sturmien comme sous-monoïde de
Aut(F2)

I Mignosi & Séébold (1993) :
Le monoïde St est engendré par {E , La, Ra} ou par
{E , Lb, Rb}

I Considérés comme endomorphismes de F2, les
générateurs de St sont inversibles

En effet, E−1 = E ,

L−1
a =

(
a 7→ a

b 7→ a−1b

)
et R−1

a =

(
a 7→ a

b 7→ ba−1

)

I Par conséquent, St ⊂ Aut(F2)
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Linéarisation d’un automorphisme de F2

• Tout automorphisme de groupes

f : F2 → F2

induit un automorphisme de groupes

π(f ) : Z2 → Z2

• La linéarisation f 7→ π(f ) est un homomorphisme surjectif

π : Aut(F2)→ Aut(Z2) = GL2(Z)



Effet de la linéarisation sur les générateurs de St

π(E) =

(
0 1
1 0

)

π(La) = π(Ra) = A =

(
1 1
0 1

)
∈ SL2(Z)

π(Lb) = π(Rb) = B =

(
1 0
1 1

)
∈ SL2(Z)



Présentation de SL2(Z)

I Générateurs : A =

(
1 1
0 1

)
et B =

(
1 0
1 1

)
I Relations :

I Relation de tresse : AB−1A = B−1AB−1

I Relation de torsion : (AB−1A)4 = 1

I Question : Soit π : Aut(F2)→ GL2(Z) la linéarisation.

Peut-on remonter les deux relations ci-dessus à Aut(F2) en
utilisant les relèvements La, Ra de A et les relèvements
Lb, Rb de B ?



Présentation de SL2(Z)

I Générateurs : A =

(
1 1
0 1

)
et B =

(
1 0
1 1

)
I Relations :

I Relation de tresse : AB−1A = B−1AB−1

I Relation de torsion : (AB−1A)4 = 1

I Question : Soit π : Aut(F2)→ GL2(Z) la linéarisation.

Peut-on remonter les deux relations ci-dessus à Aut(F2) en
utilisant les relèvements La, Ra de A et les relèvements
Lb, Rb de B ?



Présentation de SL2(Z)

I Générateurs : A =

(
1 1
0 1

)
et B =

(
1 0
1 1

)
I Relations :

I Relation de tresse : AB−1A = B−1AB−1

I Relation de torsion : (AB−1A)4 = 1

I Question : Soit π : Aut(F2)→ GL2(Z) la linéarisation.

Peut-on remonter les deux relations ci-dessus à Aut(F2) en
utilisant les relèvements La, Ra de A et les relèvements
Lb, Rb de B ?



Présentation de SL2(Z)

I Générateurs : A =

(
1 1
0 1

)
et B =

(
1 0
1 1

)
I Relations :

I Relation de tresse : AB−1A = B−1AB−1

I Relation de torsion : (AB−1A)4 = 1

I Question : Soit π : Aut(F2)→ GL2(Z) la linéarisation.

Peut-on remonter les deux relations ci-dessus à Aut(F2) en
utilisant les relèvements La, Ra de A et les relèvements
Lb, Rb de B ?



Présentation de SL2(Z)

I Générateurs : A =

(
1 1
0 1

)
et B =

(
1 0
1 1

)
I Relations :

I Relation de tresse : AB−1A = B−1AB−1

I Relation de torsion : (AB−1A)4 = 1

I Question : Soit π : Aut(F2)→ GL2(Z) la linéarisation.

Peut-on remonter les deux relations ci-dessus à Aut(F2) en
utilisant les relèvements La, Ra de A et les relèvements
Lb, Rb de B ?



Remontons les relations de SL2(Z) à Aut(F2)

I Relations de commutation :

La Ra = Ra La et Lb Rb = RbLb

I Relations de tresses :

La L−1
b La = L−1

b La L−1
b , La R−1

b La = R−1
b La R−1

b ,

Ra L−1
b Ra = L−1

b Ra L−1
b , Ra R−1

b Ra = R−1
b Ra R−1

b .

I Relations de torsion :

(LaL−1
b Ra)

4 = (L−1
b RaR−1

b )4 = 1 ,

(RaR−1
b La)

4 = (R−1
b LaL−1

b )4 = 1 ,

(Point de départ du travail commun avec Reutenauer)
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IV. LES TRESSES, ENFIN !



Le groupe de tresses Bn à n brins

Présentation de Bn :

Générateurs :
σ1, . . . , σn−1

Relations :
σi σj = σj σi si |i − j | ≥ 2

σi σi+1 σi = σi+1 σi σi+1



Générateurs de Bn

A
A

�
�

�
�

�

A
A· · · · · ·

1 2 i i + 1 n

σi

A
A

A
A

A �
�

�
�

· · · · · ·

1 2 i i + 1 n

σ−1
i



Relation entre B4 et Aut(F2)

I Homomorphisme de groupes f : B4 → Aut(F2) défini par

f (σ1) = La , f (σ2) = L−1
b , f (σ3) = Ra .

I Théorème. On a la suite exacte :

1 −→ Z4 −→ B4
f−→ Aut(F2) −→ Z/2 −→ 0

• Z4 = centre de B4, infini cyclique engendré par (σ1σ2σ3)
4
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Le monoïde sturmien spécial St0

I Rappel : Le monoïde St est engendré par E , La, Ra ou par
E , Lb, Rb

I Définition

St0 = {ϕ ∈ St | det(ϕ) = 1} ⊂ Aut(F2)

I Les substitutions La, Ra, Lb, Rb appartiennent à St0

I Le monoïde St0 est engendré par La, Ra, Lb, Rb
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Le monoïde sturmien spécial St0

I Rappel : Le monoïde St est engendré par E , La, Ra ou par
E , Lb, Rb

I Définition

St0 = {ϕ ∈ St | det(ϕ) = 1} ⊂ Aut(F2)

I Les substitutions La, Ra, Lb, Rb appartiennent à St0
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Présentation du monoïde St0

Théorème. Le monoïde St0 a la présentation suivante :

Générateurs : La, Ra, Lb, Rb

Relations : La Ra = Ra La , Lb Rb = Rb Lb ,
et

La Lk
b Ra = Ra Rk

b La , Lb Lk
a Rb = Rb Rk

a Lb

pour tout k ≥ 1.

(La présentation a une infinité de relations)



St0 est un sous-monoïde de B4

On peut relever St0 ⊂ Aut(F2) en un sous-monoïde de B4

I Théorème. Il existe un morphisme de monoïdes
i : St0 → B4 tel que le composé

St0
i−→ B4

f−→ Aut(F2)

est l’inclusion.

I Le morphisme de monoïdes i : St0 → B4 est défini par

i(La) = σ1 , i(Lb) = σ−1
2 , i(Ra) = σ3 , i(Rb) = σ−1

4 .

I Qu’est-ce que la tresse σ−1
4 ?
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Les tresses σ1, σ−1
2 , σ3

A
A

�
�

�
�

�

A
A

σ1

A
A

A
A

A �
�

�
�

σ−1
2

A
A

�
�

�
�

�

A
A

σ3



La tresse σ−1
4

Elle “tresse" les premier et quatrième brins (croisement négatif)
derrière les deuxième et troisième brins

�
��

�
��

��

��

�
��

�
��

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

σ−1
4 = (σ1σ

−1
3 ) σ2 (σ1σ

−1
3 )−1



Conclusion :
Des mots aux tresses !

Le monoïde engendré par σ1, σ−1
2 , σ3, σ−1

4 dans B4 est
isomorphe au monoïde sturmien spécial St0

〈σ1 , σ−1
2 , σ3 , σ−1

4 〉
+ ∼= St0
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