

From Christoffel words to braids

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Colloquium at Rutgers
13 April 2007

Joint work

- With Christophe Reutenauer, UQAM, Montréal, Canada
- Paper published in

Annali di Matematica Pura ed Applicata 186 (2007), 317–339

Downloadable from arXiv:math.GR/0507219

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ Christoffel words: finite words
 - ▶ Sturmian sequences: infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ Christoffel words: finite words
 - ▶ Sturmian sequences: infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ **Christoffel words:** finite words
 - ▶ **Sturmian sequences:** infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ **Christoffel words:** finite words
 - ▶ **Sturmian sequences:** infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ Christoffel words: finite words
 - ▶ Sturmian sequences: infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ **Christoffel words:** finite words
 - ▶ **Sturmian sequences:** infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

What is it about?

- ▶ Construct words from simple planar geometry
- ▶ Words on two letters
 - ▶ Christoffel words: finite words
 - ▶ Sturmian sequences: infinite words
- ▶ In relation to
 - ▶ bases of the free group F_2 on two generators
 - ▶ the braid group B_4 on four strands

I. HISTORICAL BACKGROUND

Elwin Bruno Christoffel (1829–1900)

- ▶ Worked on conformal mappings, geometry and tensor analysis (**Christoffel symbols**), theory of invariants, orthogonal polynomials, continued fractions, and applications to the theory of shock waves, to the dispersion of light.
- ▶ Held positions at Polytechnicum Zurich, TU Berlin, and...
- ▶ in Strasbourg
After French-Prussian War in 1870, France lost **Alsace-Lorraine** to the German Empire
The Prussians created a new university in Strasbourg
Christoffel founded the *Mathematisches Institut* in 1872

Elwin Bruno Christoffel (1829–1900)

- ▶ Worked on conformal mappings, geometry and tensor analysis (**Christoffel symbols**), theory of invariants, orthogonal polynomials, continued fractions, and applications to the theory of shock waves, to the dispersion of light.
- ▶ Held positions at Polytechnicum Zurich, TU Berlin, and...
- ▶ in Strasbourg

After French-Prussian War in 1870, France lost
Alsace-Lorraine to the German Empire

The Prussians created a new university in Strasbourg
Christoffel founded the *Mathematisches Institut* in 1872

Elwin Bruno Christoffel (1829–1900)

- ▶ Worked on conformal mappings, geometry and tensor analysis (**Christoffel symbols**), theory of invariants, orthogonal polynomials, continued fractions, and applications to the theory of shock waves, to the dispersion of light.
- ▶ Held positions at Polytechnicum Zurich, TU Berlin, and...
- ▶ in Strasbourg
After French-Prussian War in 1870, France lost **Alsace-Lorraine** to the German Empire
The Prussians created a new university in Strasbourg
Christoffel founded the *Mathematisches Institut* in 1872

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in Latin (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as *auctore E. B. Christoffel, prof. Argentinensi*
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in Latin (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as *auctore E. B. Christoffel, prof. Argentinensi*
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in **Latin** (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in **Latin** (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in **Latin** (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in **Latin** (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi
- ▶ *Argentinensi* derived from *Argentoratum*, name of the city founded by the Romans, later Strasbourg

Christoffel's *Observatio arithmetica*

- ▶ *Observatio arithmetica*, Annali di Matematica Pura ed Applicata, vol. 6 (1875), 148–152
- ▶ Published in **Latin** (he also published papers in German, French, Italian)
- ▶ Author's name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi
- ▶ **Argentinensi** derived from ***Argentoratum***, name of the city founded by the Romans, later Strasbourg

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r_1, r_2, r_3, \dots residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r_1, r_2, r_3, \dots residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r₁, r₂, r₃,... residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r₁, r₂, r₃,... residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r₁, r₂, r₃,... residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmeticā 1

- ▶ *Designantibus a, b numeros positivos integros et primos inter se, sint r₁, r₂, r₃,... residua minima non negativa numerorum a, 2a, 3a, ... secundum modulum b,...*
- ▶ Denoting coprime positive integers a, b , let r_1, r_2, r_3, \dots be the minimal non-negative remainders of the numbers $a, 2a, 3a, \dots$ modulo b, \dots
- ▶ *Agitur autem de quaestione, quando r_m crescat vel decrescat, si m unitate augitur...*
- ▶ The question is whether r_m increases or decreases if m grows by one...

Observatio arithmetic a 2

- ▶ *... notatur littera c vel d, prout r_m crescit vel decrescit. Hoc modo nova series nascitur, e duabus tantum literis c, d, sed certo quodam ordine composita...*
- ▶ ... write down the letter *c* or *d* according as r_m increases or decreases. In this way a new sequence arises, made of the two letters *c*, *d* arranged in a certain precise order...

Observatio arithmetic a 2

- ▶ *... notatur littera c vel d, prout r_m crescit vel decrescit. Hoc modo nova series nascitur, e duabus tantum literis c, d, sed certo quodam ordine composita...*
- ▶ ... write down the letter *c* or *d* according as r_m increases or decreases. In this way a new sequence arises, made of the two letters *c*, *d* arranged in a certain precise order...

Observatio arithmetic a 2

- ▶ *... notatur littera c vel d, prout r_m crescit vel decrescit. Hoc modo nova series nascitur, e duabus tantum literis c, d, sed certo quodam ordine composita...*
- ▶ *... write down the letter c or d according as r_m increases or decreases. In this way a new sequence arises, made of the two letters c, d arranged in a certain precise order...*

Observatio arithmeticæ 3

- *Exemplum I. Sit $a = 4$, $b = 11$, erit series $(r.)$ notis c, d ornata*

$$\begin{array}{cccccccccccc} r. = & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 0 \\ g. = & c & d & c & c & d & c & c & d & c & d & c \end{array}$$

- The integers a and b can be recovered from the sequence $(g.)$:
 - a is the number of d 's in $(g.)$
 - b is the length of $(g.)$
- Main result of the paper tells how to recover the continued fraction expansion of a/b from $(g.)$

Observatio arithmeticæ 3

- *Exemplum I. Sit $a = 4$, $b = 11$, erit series $(r.)$ notis c, d ornata*

$$\begin{array}{cccccccccccc} r. = & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 0 \\ g. = & c & d & c & c & d & c & c & d & c & d & c \end{array}$$

- The integers a and b can be recovered from the sequence $(g.)$:
 - a is the number of d 's in $(g.)$
 - b is the length of $(g.)$
- Main result of the paper tells how to recover the continued fraction expansion of a/b from $(g.)$

Observatio arithmeticæ 3

- *Exemplum I. Sit $a = 4$, $b = 11$, erit series $(r.)$ notis c, d ornata*

$$\begin{array}{cccccccccccc} r. = & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 0 \\ g. = & c & d & c & c & d & c & c & d & c & d & c \end{array}$$

- The integers a and b can be recovered from the sequence $(g.)$:
 - a is the number of d 's in $(g.)$
 - b is the length of $(g.)$
- Main result of the paper tells how to recover the continued fraction expansion of a/b from $(g.)$

Observatio arithmeticæ 3

- *Exemplum I. Sit $a = 4$, $b = 11$, erit series $(r.)$ notis c, d ornata*

$$\begin{array}{cccccccccccc} r. = & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 0 \\ g. = & c & d & c & c & d & c & c & d & c & d & c \end{array}$$

- The integers a and b can be recovered from the sequence $(g.)$:
 - a is the number of d 's in $(g.)$
 - b is the length of $(g.)$
- Main result of the paper tells how to recover the continued fraction expansion of a/b from $(g.)$

Observatio arithmeticæ 3

- *Exemplum I. Sit $a = 4$, $b = 11$, erit series ($r.$) notis c, d ornata*

$$\begin{array}{cccccccccccc} r. = & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 0 \\ g. = & c & d & c & c & d & c & c & d & c & d & c \end{array}$$

- The integers a and b can be recovered from the sequence $(g.)$:
 - a is the number of d 's in $(g.)$
 - b is the length of $(g.)$
- Main result of the paper tells how to recover the continued fraction expansion of a/b from $(g.)$

Observatio arithmeticā 4

Sequences of letters c et d thus obtained, e.g.,

$cdcccdccdc$,

are called **Christoffel words**

Christoffel words (and infinite variants) come up in

- mathematics
 - ★ symbolic dynamics (Morse)
 - ★ continued fractions
- computer science
 - ★ formal language theory
 - ★ algorithms on words
 - ★ pattern recognition
- physics
 - ★ crystallography
- biology

II. A GEOMETRICAL CONSTRUCTION OF CHRISTOFFEL WORDS

Primitive vectors of \mathbb{Z}^2 and Christoffel words

- ▶ $\begin{pmatrix} p \\ q \end{pmatrix} \in \mathbb{Z}^2$ is primitive if p, q are coprime
- ▶ To $\begin{pmatrix} p \\ q \end{pmatrix}$ we shall attach a **Christoffel word**

$$w = w\begin{pmatrix} p \\ q \end{pmatrix}$$

in the letters a, a^{-1}, b, b^{-1}

- ▶ w represents an element of free group $F_2 = F(a, b)$
- ▶ the image of w in \mathbb{Z}^2 is $\begin{pmatrix} p \\ q \end{pmatrix}$

Primitive vectors of \mathbb{Z}^2 and Christoffel words

- ▶ $\begin{pmatrix} p \\ q \end{pmatrix} \in \mathbb{Z}^2$ is primitive if p, q are coprime
- ▶ To $\begin{pmatrix} p \\ q \end{pmatrix}$ we shall attach a **Christoffel word**

$$w = w\begin{pmatrix} p \\ q \end{pmatrix}$$

in the letters a, a^{-1}, b, b^{-1}

- ▶ w represents an element of free group $F_2 = F(a, b)$
- ▶ the image of w in \mathbb{Z}^2 is $\begin{pmatrix} p \\ q \end{pmatrix}$

Primitive vectors of \mathbb{Z}^2 and Christoffel words

- ▶ $\begin{pmatrix} p \\ q \end{pmatrix} \in \mathbb{Z}^2$ is primitive if p, q are coprime
- ▶ To $\begin{pmatrix} p \\ q \end{pmatrix}$ we shall attach a **Christoffel word**

$$w = w\begin{pmatrix} p \\ q \end{pmatrix}$$

in the letters a, a^{-1}, b, b^{-1}

- ▶ w represents an element of free group $F_2 = F(a, b)$
- ▶ the image of w in \mathbb{Z}^2 is $\begin{pmatrix} p \\ q \end{pmatrix}$

Primitive vectors of \mathbb{Z}^2 and Christoffel words

- ▶ $\begin{pmatrix} p \\ q \end{pmatrix} \in \mathbb{Z}^2$ is primitive if p, q are coprime
- ▶ To $\begin{pmatrix} p \\ q \end{pmatrix}$ we shall attach a **Christoffel word**

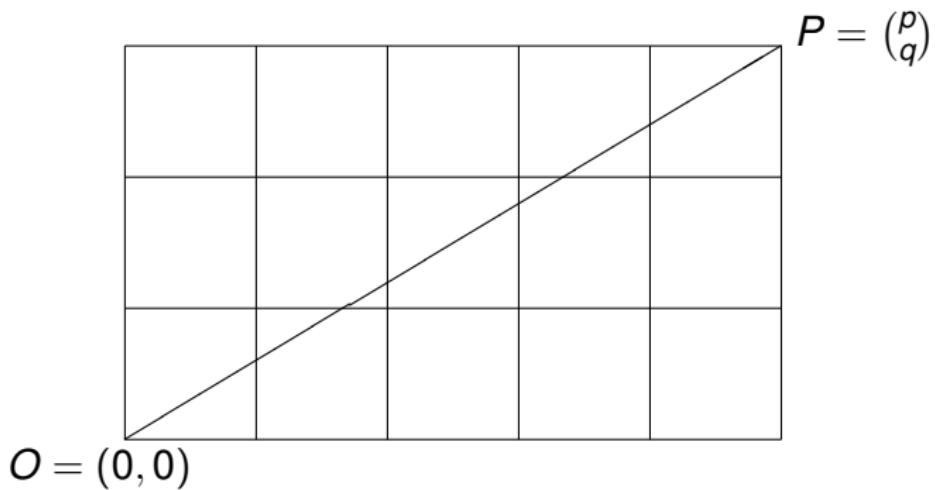
$$w = w\begin{pmatrix} p \\ q \end{pmatrix}$$

in the letters a, a^{-1}, b, b^{-1}

- ▶ w represents an element of free group $F_2 = F(a, b)$
- ▶ the image of w in \mathbb{Z}^2 is $\begin{pmatrix} p \\ q \end{pmatrix}$

Planar representation of a primitive vector

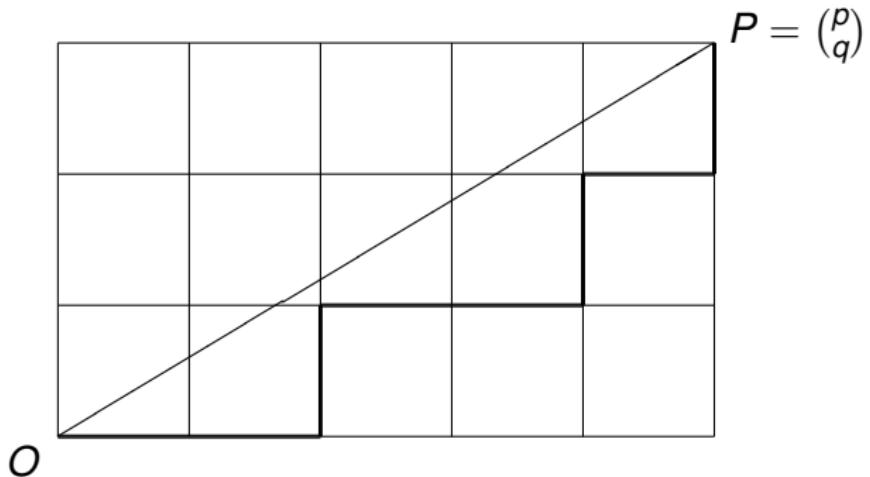
If $P = \begin{pmatrix} p \\ q \end{pmatrix}$ is primitive, then $[OP] \cap \mathbb{Z}^2 = \{O, P\}$



Stair-case approximation

If $p, q \geq 0$, then approximate segment OP

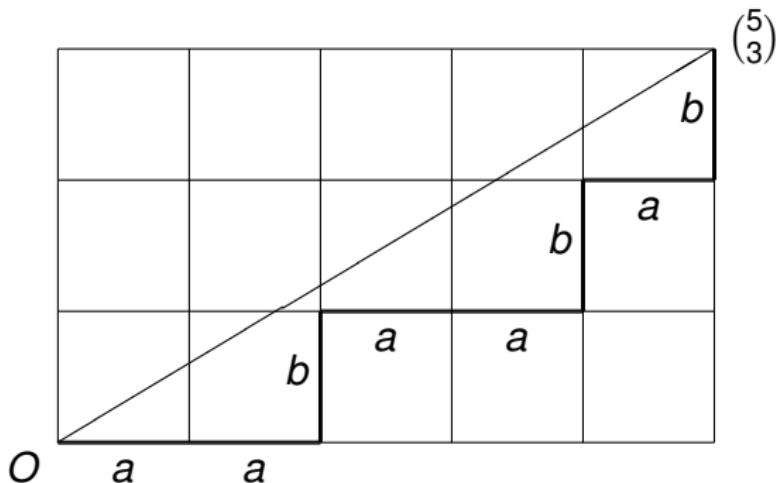
by closest stair-case path from beneath



Christoffel word of a positive primitive vector

To the vector $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \in \mathbb{N}^2$ we attach the word

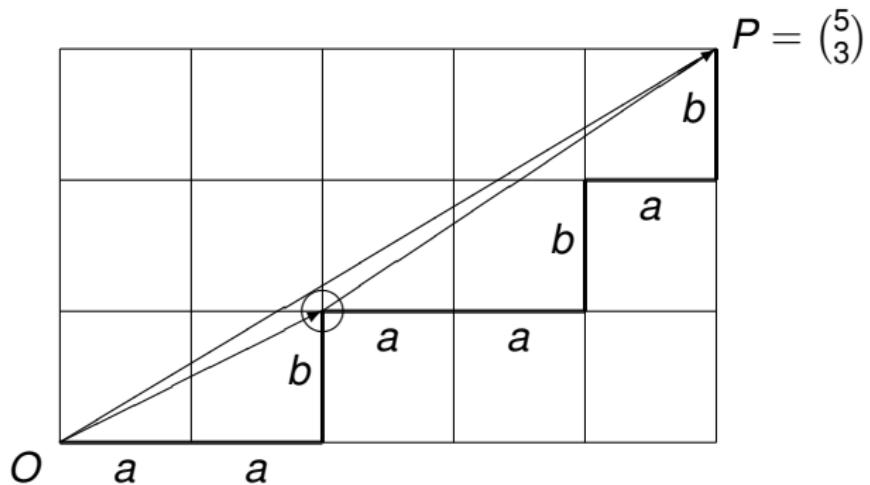
$$w \begin{pmatrix} 5 \\ 3 \end{pmatrix} = aabaabab = a^2ba^2bab \in F_2$$



Christoffel words: factorization property 1

○: closest point of \mathbb{Z}^2 to segment OP

$$w\binom{5}{3} = (a^2b)(a^2bab) = w\binom{2}{1} w\binom{3}{2}$$



Christoffel words: factorization property 2

Theorem

If $\begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \in \mathbb{N}^2$ satisfy $\begin{vmatrix} p & r \\ q & s \end{vmatrix} = 1$, then

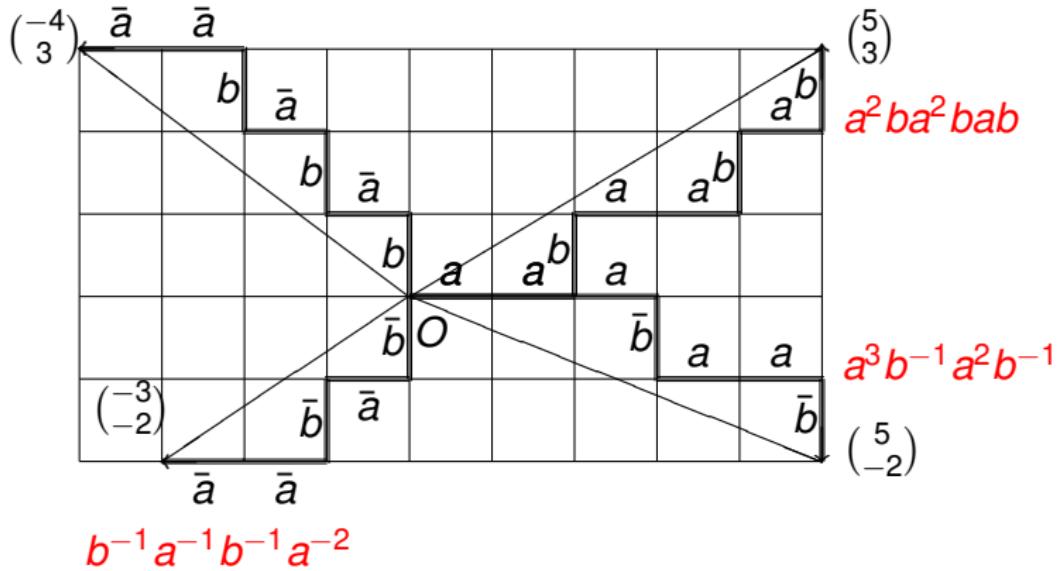
$$w\left(\begin{pmatrix} p+r \\ q+s \end{pmatrix}\right) = w\left(\begin{pmatrix} p \\ q \end{pmatrix}\right) w\left(\begin{pmatrix} r \\ s \end{pmatrix}\right)$$

General Christoffel words

$$ba^{-1}ba^{-1}ba^{-2}$$

$$\bar{a} = a^{-1}$$

$$\bar{b} = b^{-1}$$



Bases of the free group F_2

Let $F_2 = F(a, b)$ be the free group on two generators a, b

- ▶ $\{u, v\} \subset F_2$ is a *basis* if $\{u, v\}$ generates F_2

Equivalently, $\{u, v\}$ is a basis if there is $\varphi \in \text{Aut}(F_2)$ with

$$\varphi(a) = u \text{ and } \varphi(b) = v$$

- ▶ Two bases $\{u, v\}$ and $\{u', v'\}$ of F_2 are *conjugate* if there is $w \in F_2$ such that $u' = wuw^{-1}$ and $v' = wvw^{-1}$

Bases of the free group F_2

Let $F_2 = F(a, b)$ be the free group on two generators a, b

- ▶ $\{u, v\} \subset F_2$ is a *basis* if $\{u, v\}$ generates F_2

Equivalently, $\{u, v\}$ is a basis if there is $\varphi \in \text{Aut}(F_2)$ with

$$\varphi(a) = u \text{ and } \varphi(b) = v$$

- ▶ Two bases $\{u, v\}$ and $\{u', v'\}$ of F_2 are *conjugate* if there is $w \in F_2$ such that $u' = wuw^{-1}$ and $v' = wvw^{-1}$

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$

- ▶ Question:

Can we lift $\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \}$ to a basis of F_2 ?

- ▶ Example:

- ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
- ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\{\begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix}\}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$
- ▶ Question:

Can we lift $\{\begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix}\}$ to a basis of F_2 ?

- ▶ Example:
 - ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 - ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
 - ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
 - ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$

- ▶ Question:

Can we lift $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to a basis of F_2 ?

- ▶ Example:

- ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
- ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$
- ▶ Question:
Can we lift $\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \}$ to a basis of F_2 ?
- ▶ Example:
 - ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 - ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
 - ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
 - ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$
- ▶ Question:
Can we lift $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to a basis of F_2 ?
- ▶ Example:
 - ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 - ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
 - ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
 - ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$
- ▶ Question:
Can we lift $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to a basis of F_2 ?
- ▶ Example:
 - ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 - ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
 - ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
 - ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Lifting bases of \mathbb{Z}^2 to F_2

- ▶ Recall: $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of $\mathbb{Z}^2 \iff ps - qr = \pm 1$
- ▶ Question:
Can we lift $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to a basis of F_2 ?
- ▶ Example:
 - ▶ $a^2b \in F_2$ is a lift of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
 - ▶ a^3b^2 is a lift of $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
 - ▶ $\{a^2b, a^3b^2\}$ is not a basis of F_2 ,
 - ▶ $\{a^2b, a^2bab\}$ is a basis of F_2

Christoffel bases of F_2

Theorem

- ▶ If $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of \mathbb{Z}^2 , then

$$\left\{ w \begin{pmatrix} p \\ q \end{pmatrix}, w \begin{pmatrix} r \\ s \end{pmatrix} \right\}$$

is a basis of F_2 (called a *Christoffel basis*). It lifts the basis $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to F_2

- ▶ Any basis of F_2 is conjugate of a (unique) Christoffel basis

Christoffel bases of F_2

Theorem

- If $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of \mathbb{Z}^2 , then

$$\left\{ w \begin{pmatrix} p \\ q \end{pmatrix}, w \begin{pmatrix} r \\ s \end{pmatrix} \right\}$$

is a basis of F_2 (called a *Christoffel basis*). It lifts the basis $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to F_2

- Any basis of F_2 is conjugate of a (unique) Christoffel basis

Christoffel bases of F_2

Theorem

- If $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ is a basis of \mathbb{Z}^2 , then

$$\left\{ w \begin{pmatrix} p \\ q \end{pmatrix}, w \begin{pmatrix} r \\ s \end{pmatrix} \right\}$$

is a basis of F_2 (called a **Christoffel basis**). It lifts the basis $\left\{ \begin{pmatrix} p \\ q \end{pmatrix}, \begin{pmatrix} r \\ s \end{pmatrix} \right\}$ to F_2

- Any basis of F_2 is conjugate of a (unique) Christoffel basis

Palindromes

- ▶ The *reverse* of a word w is the word \tilde{w} obtained by reading w from right to left
- ▶ A *palindrome* is a word w such that $\tilde{w} = w$
- ▶ A basis $\{u, v\}$ of F_2 is *palindromic* if both u and v are palindromes

Palindromes

- ▶ The *reverse* of a word w is the word \tilde{w} obtained by reading w from right to left
- ▶ A *palindrome* is a word w such that $\tilde{w} = w$
- ▶ A basis $\{u, v\}$ of F_2 is *palindromic* if both u and v are palindromes

Palindromes

- ▶ The *reverse* of a word w is the word \tilde{w} obtained by reading w from right to left
- ▶ A *palindrome* is a word w such that $\tilde{w} = w$
- ▶ A basis $\{u, v\}$ of F_2 is *palindromic* if both u and v are palindromes

Existence of palindromic bases

Let $|w|$ be the length of a word w with respect to the alphabet $\{a, b, a^{-1}, b^{-1}\}$

Theorem

Any basis $\{u, v\}$ of F_2 with $|u|, |v|$ odd is the conjugate of a unique (cyclically reduced) palindromic basis

Example:

- $\{aba^2b, a^2b\}$ is a non-palindromic basis of F_2 ,
- but is conjugated to the palindromic basis $\{ababa, aba\}$

III. STURMIAN SEQUENCES AND MORPHISMS

Infinite version of Christoffel words

- ▶ Let $L \subset \mathbb{R}_+^2$ be a half-line originating from O and satisfying $L \cap \mathbb{Z}^2 = \{O\}$
The slope of L is irrational
- ▶ The infinite sequence in a, b encoding the stair-case approximation of L is a **Sturmian sequence**

Infinite version of Christoffel words

- ▶ Let $L \subset \mathbb{R}_+^2$ be a half-line originating from O and satisfying $L \cap \mathbb{Z}^2 = \{O\}$
The slope of L is irrational
- ▶ The infinite sequence in a, b encoding the stair-case approximation of L is a **Sturmian sequence**

Sturmian sequences: formal definition

- ▶ **Infinite word** in a, b : map $\{0, 1, 2, \dots\} \rightarrow \{a, b\}$
Example: $abaababaabaab\dots$
- ▶ **Sturmian sequence**: infinite word w in a, b such that the number of distinct factors of w of length n is $n + 1$ for each $n \geq 1$ (w_1 is a factor of $w = w_0 w_1 w_2$)
 - ▶ $n = 1$: Number of distinct letters is 2
 - ▶ $n = 2$: Three possible length-two factors out of four:
 - aa, ab, ba, bb

Sturmian sequences: formal definition

- ▶ **Infinite word** in a, b : map $\{0, 1, 2, \dots\} \rightarrow \{a, b\}$
Example: $abaababaabaab\dots$
- ▶ **Sturmian sequence**: infinite word w in a, b such that the number of distinct factors of w of length n is $n + 1$ for each $n \geq 1$ (w_1 is a factor of $w = w_0 w_1 w_2$)
 - ▶ $n = 1$: Number of distinct letters is 2
 - ▶ $n = 2$: Three possible length-two factors out of four:

aa, ab, ba, bb

Sturmian sequences: formal definition

- ▶ **Infinite word** in a, b : map $\{0, 1, 2, \dots\} \rightarrow \{a, b\}$
Example: $abaababaabaab\dots$
- ▶ **Sturmian sequence**: infinite word w in a, b such that the number of distinct factors of w of length n is $n + 1$ for each $n \geq 1$ (w_1 is a factor of $w = w_0 w_1 w_2$)
 - ▶ $n = 1$: Number of distinct letters is 2
 - ▶ $n = 2$: Three possible length-two factors out of four:

aa, ab, ba, bb

Sturmian sequences: formal definition

- ▶ **Infinite word** in a, b : map $\{0, 1, 2, \dots\} \rightarrow \{a, b\}$
Example: $abaababaabaab\dots$
- ▶ **Sturmian sequence**: infinite word w in a, b such that the number of distinct factors of w of length n is $n + 1$ for each $n \geq 1$ (w_1 is a factor of $w = w_0 w_1 w_2$)
 - ▶ $n = 1$: Number of distinct letters is 2
 - ▶ $n = 2$: Three possible length-two factors out of four:

aa, ab, ba, bb

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of **golden ratio**)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of **golden ratio**)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of golden ratio)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of golden ratio)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of **golden ratio**)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of golden ratio)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of golden ratio)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of golden ratio)

The Fibonacci sequence

- ▶ Obtain Sturmian sequences **dynamically** by iterating an appropriate substitution $\varphi : \{a, b\}^* \rightarrow \{a, b\}^*$
- ▶ *Example:* Let $\varphi(a) = ab$ and $\varphi(b) = a$. Then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w
 - ▶ $w_0 = a$
 - ▶ $w_1 = ab$
 - ▶ $w_2 = aba$
 - ▶ $w_3 = abaab$
 - ▶ $w_4 = abaababa$
 - ▶ $w_5 = abaababaabaab \dots$
- ▶ w approximates half-line of slope $(\sqrt{5} - 1)/2$ (inverse of **golden ratio**)

Sturmian morphisms

- ▶ A **substitution** replaces a et b by (positive) words in a and b (i.e., it is an endomorphism of free monoid $\{a, b\}^*$)

Substitutions can be composed and form a monoid

- ▶ A **Sturmian morphism** is a substitution preserving the Sturmian sequences
- ▶ The Sturmian morphisms form a monoid under composition, the **Sturmian monoid St**

Sturmian morphisms

- ▶ A **substitution** replaces a et b by (positive) words in a and b (i.e., it is an endomorphism of free monoid $\{a, b\}^*$)
Substitutions can be composed and form a monoid
- ▶ A **Sturmian morphism** is a substitution preserving the Sturmian sequences
- ▶ The Sturmian morphisms form a monoid under composition, the **Sturmian monoid St**

Sturmian morphisms

- ▶ A **substitution** replaces a et b by (positive) words in a and b (i.e., it is an endomorphism of free monoid $\{a, b\}^*$)
Substitutions can be composed and form a monoid
- ▶ A **Sturmian morphism** is a substitution preserving the Sturmian sequences
- ▶ The Sturmian morphisms form a monoid under composition, the **Sturmian monoid St**

Examples of Sturmian morphisms

$$\text{id} = \begin{pmatrix} a \mapsto a \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad E = \begin{pmatrix} a \mapsto b \\ b \mapsto a \end{pmatrix}$$

We have $E^2 = \text{id}$

$$L_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ab \end{pmatrix} \quad \text{and} \quad R_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ba \end{pmatrix}$$

$$L_b = EL_aE = \begin{pmatrix} a \mapsto ba \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad R_b = ER_aE = \begin{pmatrix} a \mapsto ab \\ b \mapsto b \end{pmatrix}$$

Examples of Sturmian morphisms

$$\text{id} = \begin{pmatrix} a \mapsto a \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad E = \begin{pmatrix} a \mapsto b \\ b \mapsto a \end{pmatrix}$$

We have $E^2 = \text{id}$

$$L_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ab \end{pmatrix} \quad \text{and} \quad R_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ba \end{pmatrix}$$

$$L_b = EL_aE = \begin{pmatrix} a \mapsto ba \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad R_b = ER_aE = \begin{pmatrix} a \mapsto ab \\ b \mapsto b \end{pmatrix}$$

Examples of Sturmian morphisms

$$\text{id} = \begin{pmatrix} a \mapsto a \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad E = \begin{pmatrix} a \mapsto b \\ b \mapsto a \end{pmatrix}$$

We have $E^2 = \text{id}$

$$L_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ab \end{pmatrix} \quad \text{and} \quad R_a = \begin{pmatrix} a \mapsto a \\ b \mapsto ba \end{pmatrix}$$

$$L_b = EL_aE = \begin{pmatrix} a \mapsto ba \\ b \mapsto b \end{pmatrix} \quad \text{and} \quad R_b = ER_aE = \begin{pmatrix} a \mapsto ab \\ b \mapsto b \end{pmatrix}$$

The Sturmian monoid as a submonoid of $\text{Aut}(F_2)$

- ▶ Mignosi & Séébold (1993): The monoid St is generated by $\{E, L_a, R_a\}$ or by $\{E, L_b, R_b\}$
- ▶ Considered as endomorphisms of the free group F_2 , the generators E, L_a, R_a of St are invertible in $\text{End}(F_2)$
- ▶ Therefore, St is a submonoid of the group $\text{Aut}(F_2)$

$$\text{St} \subset \text{Aut}(F_2)$$

- ▶ Note: the subgroup generated by $\{E, L_a, R_a\}$ is $\text{Aut}(F_2)$

The Sturmian monoid as a submonoid of $\text{Aut}(F_2)$

- ▶ Mignosi & Séébold (1993): The monoid St is generated by $\{E, L_a, R_a\}$ or by $\{E, L_b, R_b\}$
- ▶ Considered as endomorphisms of the free group F_2 , the generators E, L_a, R_a of St are invertible in $\text{End}(F_2)$
- ▶ Therefore, St is a submonoid of the group $\text{Aut}(F_2)$

$$\text{St} \subset \text{Aut}(F_2)$$

- ▶ Note: the subgroup generated by $\{E, L_a, R_a\}$ is $\text{Aut}(F_2)$

The Sturmian monoid as a submonoid of $\text{Aut}(F_2)$

- ▶ Mignosi & Séébold (1993): The monoid St is generated by $\{E, L_a, R_a\}$ or by $\{E, L_b, R_b\}$
- ▶ Considered as endomorphisms of the free group F_2 , the generators E, L_a, R_a of St are invertible in $\text{End}(F_2)$
- ▶ Therefore, St is a submonoid of the group $\text{Aut}(F_2)$

$$\text{St} \subset \text{Aut}(F_2)$$

- ▶ Note: the subgroup generated by $\{E, L_a, R_a\}$ is $\text{Aut}(F_2)$

The Sturmian monoid as a submonoid of $\text{Aut}(F_2)$

- ▶ Mignosi & Séébold (1993): The monoid St is generated by $\{E, L_a, R_a\}$ or by $\{E, L_b, R_b\}$
- ▶ Considered as endomorphisms of the free group F_2 , the generators E, L_a, R_a of St are invertible in $\text{End}(F_2)$
- ▶ Therefore, St is a submonoid of the group $\text{Aut}(F_2)$

$$\text{St} \subset \text{Aut}(F_2)$$

- ▶ Note: the subgroup generated by $\{E, L_a, R_a\}$ is $\text{Aut}(F_2)$

Projecting onto $GL_2(\mathbb{Z})$

Linearization map: $\pi : \text{Aut}(F_2) \rightarrow \text{Aut}(\mathbb{Z}^2) = GL_2(\mathbb{Z})$

- ▶ $\pi(E) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- ▶ $\pi(L_a) = \pi(R_a) = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$
- ▶ $\pi(L_b) = \pi(R_b) = B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$
- ▶ The set $\{A, B\}$ generates $SL_2(\mathbb{Z})$

Projecting onto $GL_2(\mathbb{Z})$

Linearization map: $\pi : \text{Aut}(F_2) \rightarrow \text{Aut}(\mathbb{Z}^2) = GL_2(\mathbb{Z})$

- ▶ $\pi(E) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- ▶ $\pi(L_a) = \pi(R_a) = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$
- ▶ $\pi(L_b) = \pi(R_b) = B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$
- ▶ The set $\{A, B\}$ generates $SL_2(\mathbb{Z})$

Projecting onto $GL_2(\mathbb{Z})$

Linearization map: $\pi : \text{Aut}(F_2) \rightarrow \text{Aut}(\mathbb{Z}^2) = GL_2(\mathbb{Z})$

- ▶
$$\pi(E) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
- ▶
$$\pi(L_a) = \pi(R_a) = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
- ▶
$$\pi(L_b) = \pi(R_b) = B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
- ▶ The set $\{A, B\}$ generates $SL_2(\mathbb{Z})$

Projecting onto $GL_2(\mathbb{Z})$

Linearization map: $\pi : \text{Aut}(F_2) \rightarrow \text{Aut}(\mathbb{Z}^2) = GL_2(\mathbb{Z})$

- ▶
$$\pi(E) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
- ▶
$$\pi(L_a) = \pi(R_a) = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
- ▶
$$\pi(L_b) = \pi(R_b) = B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
- ▶ The set $\{A, B\}$ generates $SL_2(\mathbb{Z})$

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ Braid relation: $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ Torsion relation: $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ Braid relation: $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ Torsion relation: $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ **Braid relation:** $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ **Torsion relation:** $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ **Braid relation:** $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ **Torsion relation:** $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ **Braid relation:** $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ **Torsion relation:** $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Presentation of $SL_2(\mathbb{Z})$

- ▶ **Generators:** $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- ▶ **Defining relations:**
 - ▶ **Braid relation:** $AB^{-1}A = B^{-1}AB^{-1}$
 - ▶ **Torsion relation:** $(AB^{-1}A)^4 = 1$
- ▶ **Question:** *Can we lift these relations to $Aut(F_2)$ using the lifts L_a, R_a of A and the lifts L_b, R_b of B ?*
- ▶ **Answer:** Yes, see next slide

Lifting the braid relations to $\text{Aut}(F_2)$

- ▶ **Commutation relations:** [the lifts of A (or of B) commute]

$$L_a R_a = R_a L_a \quad \text{and} \quad L_b R_b = R_b L_b$$

- ▶ **Braid relations:** [between any lift of A and the inverse of any lift of B]

$$L_a L_b^{-1} L_a = L_b^{-1} L_a L_b^{-1}, \quad L_a R_b^{-1} L_a = R_b^{-1} L_a R_b^{-1},$$

$$R_a L_b^{-1} R_a = L_b^{-1} R_a L_b^{-1}, \quad R_a R_b^{-1} R_a = R_b^{-1} R_a R_b^{-1}.$$

- ▶ **Torsion relation:**

$$(L_a L_b^{-1} R_a)^4 = (L_b^{-1} R_a R_b^{-1})^4 = 1,$$

$$(R_a R_b^{-1} L_a)^4 = (R_b^{-1} L_a L_b^{-1})^4 = 1.$$

(This was the starting point of joint work with Reutenauer)

Lifting the braid relations to $\text{Aut}(F_2)$

- ▶ **Commutation relations:** [the lifts of A (or of B) commute]

$$L_a R_a = R_a L_a \quad \text{and} \quad L_b R_b = R_b L_b$$

- ▶ **Braid relations:** [between any lift of A and the inverse of any lift of B]

$$L_a L_b^{-1} L_a = L_b^{-1} L_a L_b^{-1}, \quad L_a R_b^{-1} L_a = R_b^{-1} L_a R_b^{-1},$$

$$R_a L_b^{-1} R_a = L_b^{-1} R_a L_b^{-1}, \quad R_a R_b^{-1} R_a = R_b^{-1} R_a R_b^{-1}.$$

- ▶ **Torsion relation:**

$$(L_a L_b^{-1} R_a)^4 = (L_b^{-1} R_a R_b^{-1})^4 = 1,$$

$$(R_a R_b^{-1} L_a)^4 = (R_b^{-1} L_a L_b^{-1})^4 = 1.$$

(This was the starting point of joint work with Reutenauer)

Lifting the braid relations to $\text{Aut}(F_2)$

- ▶ **Commutation relations:** [the lifts of A (or of B) commute]

$$L_a R_a = R_a L_a \quad \text{and} \quad L_b R_b = R_b L_b$$

- ▶ **Braid relations:** [between any lift of A and the inverse of any lift of B]

$$L_a L_b^{-1} L_a = L_b^{-1} L_a L_b^{-1}, \quad L_a R_b^{-1} L_a = R_b^{-1} L_a R_b^{-1},$$

$$R_a L_b^{-1} R_a = L_b^{-1} R_a L_b^{-1}, \quad R_a R_b^{-1} R_a = R_b^{-1} R_a R_b^{-1}.$$

- ▶ **Torsion relation:**

$$(L_a L_b^{-1} R_a)^4 = (L_b^{-1} R_a R_b^{-1})^4 = 1,$$

$$(R_a R_b^{-1} L_a)^4 = (R_b^{-1} L_a L_b^{-1})^4 = 1.$$

(This was the starting point of joint work with Reutenauer)

IV. BRAIDS

The braid group B_n on n strands

Presentation of B_n :

Generators:

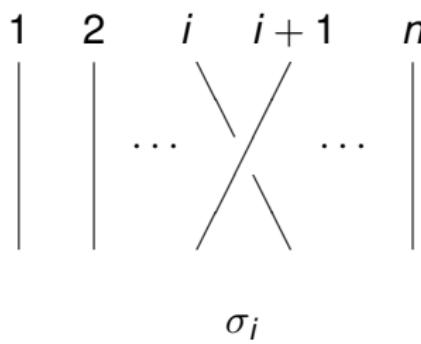
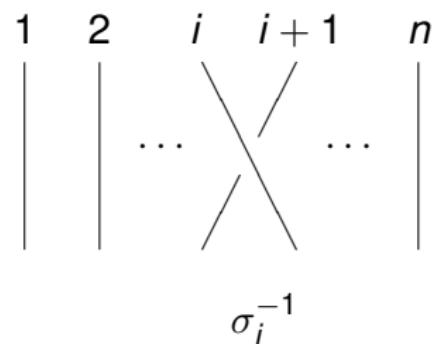
$$\sigma_1, \dots, \sigma_{n-1}$$

Defining relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{if } |i - j| \geq 2$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

Generators of the braid group on n strands



Relation between B_4 and $\text{Aut}(F_2)$

- ▶ Group homomorphism $f : B_4 \rightarrow \text{Aut}(F_2)$ defined by

$$f(\sigma_1) = L_a, \quad f(\sigma_2) = L_b^{-1}, \quad f(\sigma_3) = R_a.$$

- ▶ **Theorem.** *The following sequence is exact:*

$$1 \longrightarrow \mathbb{Z}_4 \longrightarrow B_4 \xrightarrow{f} \text{Aut}(F_2) \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

- \mathbb{Z}_4 = center of B_4 , infinite cyclic generated by $(\sigma_1\sigma_2\sigma_3)^4$

Relation between B_4 and $\text{Aut}(F_2)$

- ▶ Group homomorphism $f : B_4 \rightarrow \text{Aut}(F_2)$ defined by

$$f(\sigma_1) = L_a, \quad f(\sigma_2) = L_b^{-1}, \quad f(\sigma_3) = R_a.$$

- ▶ **Theorem.** *The following sequence is exact:*

$$1 \longrightarrow Z_4 \longrightarrow B_4 \xrightarrow{f} \text{Aut}(F_2) \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

- Z_4 = center of B_4 , infinite cyclic generated by $(\sigma_1\sigma_2\sigma_3)^4$

The complete picture

Theorem. *There is a map of exact sequences*

$$\begin{array}{ccccccc} 1 & \longrightarrow & \mathbb{Z}_4 & \longrightarrow & B_4 & \xrightarrow{f} & \mathrm{Aut}(F_2) \\ & & \cong \downarrow & & \pi' \downarrow & & \pi \downarrow \\ 1 & \longrightarrow & 2\mathbb{Z}_3 & \longrightarrow & B_3 & \longrightarrow & GL_2(\mathbb{Z}) \end{array} \xrightarrow{\det} \mathbb{Z}/2 \longrightarrow 1$$

- $B_3 = \langle A, B \mid AB^{-1}A = B^{-1}AB^{-1} \rangle$
- $2\mathbb{Z}_3$ subgroup of center of B_3 , generated by $(AB^{-1}A)^4$
- $\pi' : B_4 \rightarrow B_3$ defined by $\pi'(\sigma_1) = \pi'(\sigma_3) = A$ and $\pi'(\sigma_2) = B^{-1}$
- $\mathbb{Z}_4 = \text{center of } B_4$, generated by $(\sigma_1\sigma_2\sigma_3)^4$

The special Sturmian monoid St_0

- ▶ Recall: Monoid St generated by E, L_a, R_a or by E, L_b, R_b
- ▶ Definition

$$St_0 = \{\varphi \in St \mid \det(\varphi) = 1\} \subset \text{Aut}(F_2)$$

- ▶ The substitutions L_a, R_a, L_b, R_b belong to St_0
- ▶ The monoid St_0 is generated by L_a, R_a, L_b, R_b

The special Sturmian monoid St_0

- ▶ Recall: Monoid St generated by E, L_a, R_a or by E, L_b, R_b
- ▶ **Definition**

$$St_0 = \{\varphi \in St \mid \det(\varphi) = 1\} \subset \text{Aut}(F_2)$$

- ▶ The substitutions L_a, R_a, L_b, R_b belong to St_0
- ▶ The monoid St_0 is generated by L_a, R_a, L_b, R_b

The special Sturmian monoid St_0

- ▶ Recall: Monoid St generated by E, L_a, R_a or by E, L_b, R_b
- ▶ **Definition**

$$St_0 = \{\varphi \in St \mid \det(\varphi) = 1\} \subset \text{Aut}(F_2)$$

- ▶ The substitutions L_a, R_a, L_b, R_b belong to St_0
- ▶ The monoid St_0 is generated by L_a, R_a, L_b, R_b

The special Sturmian monoid St_0

- ▶ Recall: Monoid St generated by E, L_a, R_a or by E, L_b, R_b
- ▶ **Definition**

$$St_0 = \{\varphi \in St \mid \det(\varphi) = 1\} \subset \text{Aut}(F_2)$$

- ▶ The substitutions L_a, R_a, L_b, R_b belong to St_0
- ▶ The monoid St_0 is generated by L_a, R_a, L_b, R_b

Presentation of the monoid St_0

Theorem. *The monoid St_0 has the following presentation:*

Generators: L_a, R_a, L_b, R_b

Defining relations: $L_a R_a = R_a L_a, \quad L_b R_b = R_b L_b,$
and

$$L_a L_b^k R_a = R_a R_b^k L_a, \quad L_b L_a^k R_b = R_b R_a^k L_b$$

for all $k \geq 1$.

(This presentation is infinite)

St₀ is a submonoid of B₄

The monoid St₀ ⊂ Aut(F₂) can be lifted to a monoid in B₄

- ▶ **Theorem.** *There is a monoid morphism $i : St_0 \rightarrow B_4$ such that*

$$St_0 \xrightarrow{i} B_4 \xrightarrow{f} Aut(F_2)$$

is the inclusion.

- ▶ The monoid embedding $i : St_0 \rightarrow B_4$ is defined by

$$i(L_a) = \sigma_1, \quad i(L_b) = \sigma_2^{-1}, \quad i(R_a) = \sigma_3, \quad i(R_b) = \sigma_4^{-1}.$$

- ▶ What is the braid σ_4^{-1} ?

St₀ is a submonoid of B₄

The monoid St₀ ⊂ Aut(F₂) can be lifted to a monoid in B₄

- ▶ **Theorem.** *There is a monoid morphism $i : St_0 \rightarrow B_4$ such that*

$$St_0 \xrightarrow{i} B_4 \xrightarrow{f} Aut(F_2)$$

is the inclusion.

- ▶ The monoid embedding $i : St_0 \rightarrow B_4$ is defined by

$$i(L_a) = \sigma_1, \quad i(L_b) = \sigma_2^{-1}, \quad i(R_a) = \sigma_3, \quad i(R_b) = \sigma_4^{-1}.$$

- ▶ What is the braid σ_4^{-1} ?

St₀ is a submonoid of B₄

The monoid St₀ ⊂ Aut(F₂) can be lifted to a monoid in B₄

- ▶ **Theorem.** *There is a monoid morphism $i : St_0 \rightarrow B_4$ such that*

$$St_0 \xrightarrow{i} B_4 \xrightarrow{f} Aut(F_2)$$

is the inclusion.

- ▶ The monoid embedding $i : St_0 \rightarrow B_4$ is defined by

$$i(L_a) = \sigma_1, \quad i(L_b) = \sigma_2^{-1}, \quad i(R_a) = \sigma_3, \quad i(R_b) = \sigma_4^{-1}.$$

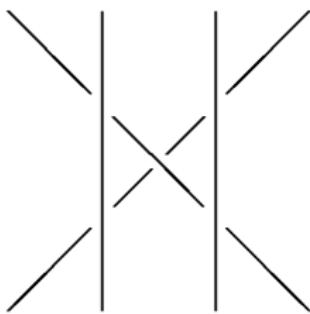
- ▶ What is the braid σ_4^{-1} ?

The braids σ_1 , σ_2^{-1} , σ_3

 σ_1 σ_2^{-1} σ_3

The braid σ_4^{-1}

It braids the 1st and the 4th strands with a negative crossing
behind the 2nd and 3rd strands



$$\sigma_4^{-1} = (\sigma_1 \sigma_3^{-1}) \sigma_2 (\sigma_1 \sigma_3^{-1})^{-1}$$

Conclusion

- ▶ The **monoid** generated by $\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$ in B_4 is isomorphic to the special Sturmian monoid St_0

$$\langle \sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1} \rangle^+ \cong St_0$$

- ▶ Note: The **subgroup** generated by $\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$ is B_4

Conclusion

- ▶ The **monoid** generated by $\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$ in B_4 is isomorphic to the special Sturmian monoid St_0

$$\langle \sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1} \rangle^+ \cong St_0$$

- ▶ Note: The **subgroup** generated by $\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$ is B_4

References - Old and...

J. Bernoulli, *Sur une nouvelle espèce de calcul*. In: Recueil pour les astronomes, t. 1. Berlin (1772), 255–284

E. B. Christoffel, *Observatio arithmeticæ*. Ann. Mat. Pura Appl. 6 (1875), 148–152

A. Markoff, *Sur une question de Jean Bernouilli*. Math. Ann. 19 (1882), 27–36

H. J. S. Smith, *Note on continued fractions*. Messenger of Mathematics (1876)

References - New

J.-P. Allouche, J. Shallit, *Automatic sequences. Theory, applications, generalizations*. Cambridge: Cambridge University Press 2003

C. Kassel, C. Reutenauer, *Sturmian morphisms, the braid group B_4 , Christoffel words, and bases of F_2* . Ann. Mat. Pura Appl. 186 (2007), 317–339

M. Lothaire, *Algebraic combinatorics on words*. Cambridge: Cambridge University Press, 2002

R. P. Osborne, H. Zieschang, *Primitives in the free group on two generators*. Invent. Math. 63 (1981), 17–24

THANK YOU FOR YOUR ATTENTION