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What is it about?

» Construct words from simple planar geometry

» Words on two letters

» Christoffel words: finite words
» Sturmian sequences: infinite words

» In relation to

» bases of the free group F> on two generators
» the braid group B, on four strands
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Elwin Bruno Christoffel (1829—1900)

» Worked on conformal mappings, geometry and tensor
analysis (Christoffel symbols), theory of invariants,
orthogonal polynomials, continued fractions, and
applications to the theory of shock waves, to the dispersion
of light.

» Held positions at Polytechnicum Zurich, TU Berlin, and. ..

» in Strasbourg
After French-Prussian War in 1870, France lost
Alsace-Lorraine to the German Empire
The Prussians created a new university in Strasbourg
Christoffel founded the Mathematisches Institutin 1872
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Christoffel’s Observatio arithmetica

» Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148—152

» Published in Latin (he also published papers in German,
French, Italian)

» Author’s name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi

» Argentinensi derived from Argentoratum, name of the city
founded by the Romans, later Strasbourg
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» Designantibus a, b numeros positivos integros et primos inter
se, sint ry, rz, 13, . .. residua minima non negativa numerorum a,
2a, 3a, ... secundum modulum b,. ..

» Denoting coprime positive integers a, b, let ry, ro, r3,... be
the minimal non-negative remainders of the numbers a, 2a,
3a,... modulo b,...

» Agitur autem de quaestione, quando ry, crescat vel decrescat, si
m unitate augitur. . .

» The question is whether r, increases or decreases if m
grows by one...
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» ...notatur littera ¢ vel d, prout ry, crescit vel decrescit. Hoc
modo nova series nascitur, e duabus tantum literis c, d, sed
certo quodam ordine composita. . .

» ...write down the letter ¢ or d according as rp, increases or
decreases. In this way a new sequence arises, made of
the two letters ¢, d arranged in a certain precise order. . .
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Observatio arithmetica 3

» Exemplum I. Sita =4, b= 11, erit series (r.) notis ¢, d ornata
= 4 8 1 5 9 2 6 10 3 7 0
= ¢ d ¢ ¢ d

c ¢ d ¢ d ¢

» The integers a and b can be recovered from the
sequence (g.):

» ais the number of d’sin (g.)
» bis the length of (g.)

» Main result of the paper tells how to recover the continued
fraction expansion of a/b from (g.)



Observatio arithmetica 4

Sequences of letters ¢ et d thus obtained, e.g.,
cdccdecdedce,

are called Christoffel words



Christoffel words (and infinite variants) come up in

e mathematics
* symbolic dynamics (Morse)
* continued fractions

e computer science
* formal language theory
* algorithms on words
* pattern recognition

e physics
* crystallography

e biology



Il. AGEOMETRICAL CONSTRUCTION
OF CHRISTOFFEL WORDS
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Primitive vectors of Z2 and Christoffel words

> (B) e 72 is primitive if p, g are coprime

> To (7) we shall attach a Christoffel word

4

in the letters a,a~", b, b™"
» w represents an element of free group Fo = F(a,b)
> the image of win Z%is (£)



Planar representation of a primitive vector

If P = () is primitive, then [OP](Z? = {O, P}

P= ()

O = (0,0)



Stair-case approximation

If p, @ > 0, then approximate segment OP
by closest stair-case path from beneath

P=(o)




Christoffel word of a positive primitive vector

To the vector (3) € N? we attach the word

w(3) = aabaabab = &?ba?bab € F,

(3)



Christoffel words: factorization property 1

(: closest point of Z? to segment OP

w(3) = (&°b)(a?bab) = w(F) w(3)

P=(3)




Christoffel words: factorization property 2

Theorem
If(5), (5) € N? satisfy‘ g ; ‘ =1, then

as) =)



General Christoffel words

ba~'ba 'ba—?
4\ 37 3
(5 )2 ab - ()
o a a_| a®ba’bab
2:2_1 bl 3 5| aP
bl a7 2P a
=3 _BO L Yalalppip
(2 bl @ ~I_hH| s
()
a a
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Bases of the free group F»

Let Fo = F(a, b) be the free group on two generators a, b

» {u,v} C Fois a basisif {u, v} generates F,

Equivalently, {u, v} is a basis if there is ¢ € Aut(F,) with

p(@ =u and ¢(b)=v

» Two bases {u, v} and {v/, v’} of F, are conjugate if there is
w € F, such that v = wuw~" and v/ = wvw!
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> Recall: {(5), (5)} is a basis of Z? <= ps — qr = +1

» Question:
Can we lift {(£), (5)} to a basis of F,?
» Example:
» @b e Ryisalift of (%)
» ab?is alift of (3)
» {&b, a®b?} is not a basis of F,
» {&’b, a®bab} is a basis of F,
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Christoffel bases of F»

Theorem
> If{(5), ()} is a basis of Z?, then

(e (e))

q s
is a basis of F, (called a Christoffel basis). It lifts the basis
{(@):(5)} toF2

» Any basis of F» is conjugate of a (unique) Christoffel basis
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Palindromes

» The reverse of a word w is the word w obtained by
reading w from right to left

» A palindrome is a word w such that w = w

» A basis {u, v} of F, is palindromic if both u and v are
palindromes



Existence of palindromic bases

Let |w| be the length of a word w with respect to the alphabet
{a,b,a ', b7}

Theorem
Any basis {u, v} of Fo with |u|, |v| odd is the conjugate of a
unique (cyclically reduced) palindromic basis

Example:
o {aba’b, &b} is a non-palindromic basis of F5,
e but is conjugated to the palindromic basis {ababa, aba}



I1l. STURMIAN SEQUENCES AND
MORPHISMS
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Infinite version of Christoffel words

» Let L C R2 be a half-line originating from O and satisfying
LNZ? = {0}
The slope of L is irrational

» The infinite sequence in a, b encoding the stair-case
approximation of L is a Sturmian sequence
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Sturmian sequences: formal definition

» Infinite word in a, b: map {0,1,2,...} — {a, b}
Example: abaababaabaab - - -

» Sturmian sequence: infinite word w in a, b such that the
number of distinct factors of w of length nis n+ 1 for each
n > 1 (wy is a factor of w = wow; ws)

» n=1: Number of distinct letters is 2
» n = 2: Three possible length-two factors out of four:

aa, ab, ba, bb
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» Obtain Sturmian sequences dynamically by iterating an
appropriate substitution ¢ : {a, b}* — {a, b}*

» Example: Let p(a) = ab and ¢(b) = a. Then w, = ¢"(a)
converges to a Sturmian sequence w

> Wo=a

» wy = ab

> W, = aba
» w3 = abaab



The Fibonacci sequence

» Obtain Sturmian sequences dynamically by iterating an
appropriate substitution ¢ : {a, b}* — {a, b}*

» Example: Let p(a) = ab and ¢(b) = a. Then w, = ¢"(a)
converges to a Sturmian sequence w
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The Fibonacci sequence

» Obtain Sturmian sequences dynamically by iterating an
appropriate substitution ¢ : {a, b}* — {a, b}*

» Example: Let p(a) = ab and ¢(b) = a. Then w, = ¢"(a)
converges to a Sturmian sequence w

vV VY VY VY VY

W= a

wy = ab

w» = aba
ws = abaab

w4 = abaababa
ws = abaababaabaab - - -



The Fibonacci sequence

» Obtain Sturmian sequences dynamically by iterating an
appropriate substitution ¢ : {a, b}* — {a, b}*

» Example: Let p(a) = ab and ¢(b) = a. Then w, = ¢"(a)
converges to a Sturmian sequence w

> Wo=a

> Wy = ab

> W, = aba

» ws = abaab

» w4 = abaababa

» ws = abaababaabaab - - -

» w approximates half-line of slope (v/5 — 1)/2 (inverse of
golden ratio)
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Sturmian morphisms

» A substitution replaces a et b by (positive) words in aand b
(i.e., it is an endomorphism of free monoid {a, b}*)

Substitutions can be composed and form a monoid

» A Sturmian morphism is a substitution preserving the
Sturmian sequences

» The Sturmian morphisms form a monoid under
composition, the Sturmian monoid St
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Examples of Sturmian morphisms

. a— a a—b
id = (b»—>b> and E = <b»—>a)

We have E? = id
a— a a—a
La= <b'—>ab> and Ra = (bea)

a— ba

b— b

Lb:ELaE:< b

) and R, — ER,E — <a - ab)
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The Sturmian monoid as a submonoid of Aut(F)

» Mignosi & Séébold (1993): The monoid St is generated by
{E7 La, Ra} or by {E' va Rb}

» Considered as endomorphisms of the free group F», the
generators E, L,, R; of St are invertible in End(F,)

» Therefore, St is a submonoid of the group Aut(F,)

St ¢ Aut(F)

» Note: the subgroup generated by {E, L, Ra} is Aut(F2)
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Projecting onto GL»(Z)

Linearization map: 7 : Aut(F,) — Aut(Z2) = GLa(Z)

m(Lp) = m(Rp) = B =

» The set {A, B} generates SL,(Z)
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Presentation of SLy(Z)

A (11 (10
>Generators.A_(0 1>andB_<1 1)

» Defining relations:

» Braid relation: AB~'A= B~ 1AB~!
» Torsion relation: (AB~1A)* = 1

» Question: Can we lift these relations to Aut(F,) using the
lifts L4, R4 of A and the lifts Ly, Ry of B?

» Answer: Yes, see next slide
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Lifting the braid relations to Aut(F?)
» Commutation relations: [the lifts of A (or of B) commute]
LaRs=Rals and Ly R, = Rplyp
» Braid relations: [between any lift of A and the inverse of any lift of B]
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Lifting the braid relations to Aut(F?)

» Commutation relations: [the lifts of A (or of B) commute]

» Braid relations: [between any lift of A and the inverse of any lift of B]

Laly'La=L,"Lal,", LaRy'La=R, " LaR,",
RiL,'Ra= L, RaL,",

R.R,'R.=R,"R.R,".
» Torsion relation:

(Laly'Ra)* = (L, 'RaR, M) = 1,

(RaRy'La)* = (R, 'LaL, ') = 1.

(This was the starting point of joint work with Reutenauer)



IV. BRAIDS



The braid group B, on n strands

Presentation of B,:

Generators:

Defining relations:
oj0j = 0j0; if|i—j|>2

0j0i410i = 0j11 0 Ojy1



Generators of the braid group on n strands




Relation between B, and Aut(F,)

» Group homomorphism f : By — Aut(F2) defined by

f(o1) = La, f(o2)=1L,", f(o3) = Ra.



Relation between B, and Aut(F,)

» Group homomorphism f : By — Aut(F,) defined by
f(o1) = La, f(o2)=Ly", f(03) = Ra.
» Theorem. The following sequence is exact:

1— 2, — By - Aut(R) — Z/2 —0

e Z, = center of By, infinite cyclic generated by (o10003)*



The complete picture

Theorem. There is a map of exact sequences

1— 2y, — By - Au(R) & z/2 —1

= i ﬂ'/l« 7rl :l

1— 2Z3 — By — GlLy(2) det, zj2 — 1

eB;=(AB|AB'A=B1AB™")
e 273 subgroup of center of Bs, generated by (AB~!A)*
e 7' : By — B3 defined by 7'(01) = 7/(03) = Aand 7'(0) = B~

e Z,; = center of By, generated by (o10203)*



The special Sturmian monoid Sty

» Recall: Monoid St generated by E, L5, R;or by E, Ly, Rp
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The special Sturmian monoid Sty

» Recall: Monoid St generated by E, L5, R;or by E, Ly, Rp

» Definition

Sty = {p € St | det(y) =1} C Aut(F2)

» The substitutions L, Rs, Ly, Ry belong to Sty

» The monoid Sty is generated by Lg, Ra, Lp, Rp



Presentation of the monoid Sty

Theorem. The monoid Sty has the following presentation:
Generators: L, Ra, Lp, Rp

Defining relations: Ly Ry = Rals, Ly Ry = Rplp,
and
Lol Ro=RaRELy, LpLXR,=R,REL

for all k > 1.

(This presentation is infinite)



Sty is a submonoid of B,

The monoid Sty C Aut(F2) can be lifted to a monoid in By

» Theorem. There is a monoid morphism i : Sty — By such
that _ .
Sto SN By — AUt(Fg)

is the inclusion.
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» Theorem. There is a monoid morphism i : Sty — By such
that _ .
Sto SN By — AUt(Fg)

is the inclusion.
» The monoid embedding i : Sty — B, is defined by

i(La) =01, i(Lp) =0y, i(Ra) =03, i(Rp)=0,".



Sty is a submonoid of B,

The monoid Sty C Aut(F2) can be lifted to a monoid in By

» Theorem. There is a monoid morphism i : Sty — By such

that _ .
Sto SN By — AUt(Fg)

is the inclusion.
» The monoid embedding i : Sty — B, is defined by

i(La) =01, i(Lp) =0y, i(Ra) =03, i(Rp)=0,".

» What is the braid o, '?



The braids o1, 02_1, 03

AT TR TR



The braid o,

It braids the 1st and the 4th strands with a negative crossing

behind the 2nd and 3rd strands

N

/

1

o, = (0103_1)02 (01051)_

X

/
AN

1



Conclusion

» The monoid generated by o1, o, ', 03, o ' in By is
isomorphic to the special Sturmian monoid Sty

<017051 70330;1>+ = StO



Conclusion

» The monoid generated by o1, o, ', 03, o ' in By is
isomorphic to the special Sturmian monoid Sty

<017051 70330;1>+ = StO

» Note: The subgroup generated by a4, o, ', 03, 0, " is By
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