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I bases of the free group F2 on two generators
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I. HISTORICAL BACKGROUND



Elwin Bruno Christoffel (1829–1900)

I Worked on conformal mappings, geometry and tensor
analysis (Christoffel symbols), theory of invariants,
orthogonal polynomials, continued fractions, and
applications to the theory of shock waves, to the dispersion
of light.

I Held positions at Polytechnicum Zurich, TU Berlin, and. . .
I in Strasbourg

After French-Prussian War in 1870, France lost
Alsace-Lorraine to the German Empire
The Prussians created a new university in Strasbourg
Christoffel founded the Mathematisches Institut in 1872
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Christoffel’s Observatio arithmetica

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Published in Latin (he also published papers in German,
French, Italian)

I Author’s name appears on paper as
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi derived from Argentoratum, name of the city
founded by the Romans, later Strasbourg
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Observatio arithmetica 1

I Designantibus a, b numeros positivos integros et primos inter
se, sint r1, r2, r3, . . . residua minima non negativa numerorum a,
2a, 3a, . . . secundum modulum b,. . .

I Denoting coprime positive integers a, b, let r1, r2, r3, . . . be
the minimal non-negative remainders of the numbers a, 2a,
3a, . . . modulo b,. . .

I Agitur autem de quaestione, quando rm crescat vel decrescat, si
m unitate augitur. . .

I The question is whether rm increases or decreases if m
grows by one. . .
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I . . . notatur littera c vel d, prout rm crescit vel decrescit. Hoc
modo nova series nascitur, e duabus tantum literis c, d, sed
certo quodam ordine composita. . .

I . . . write down the letter c or d according as rm increases or
decreases. In this way a new sequence arises, made of
the two letters c, d arranged in a certain precise order. . .
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I Exemplum I. Sit a = 4, b = 11, erit series (r.) notis c, d ornata

r. = 4 8 1 5 9 2 6 10 3 7 0
g. = c d c c d c c d c d c

I The integers a and b can be recovered from the
sequence (g.):

I a is the number of d ’s in (g.)
I b is the length of (g.)

I Main result of the paper tells how to recover the continued
fraction expansion of a/b from (g.)
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Sequences of letters c et d thus obtained, e.g.,

cdccdccdcdc ,

are called Christoffel words



Christoffel words (and infinite variants) come up in

• mathematics
? symbolic dynamics (Morse)
? continued fractions

• computer science
? formal language theory
? algorithms on words
? pattern recognition

• physics
? crystallography

• biology



II. A GEOMETRICAL CONSTRUCTION

OF CHRISTOFFEL WORDS



Primitive vectors of Z2 and Christoffel words

I
(p

q

)
∈ Z2 is primitive if p, q are coprime

I To
(p

q

)
we shall attach a Christoffel word

w = w
(

p
q

)
in the letters a, a−1, b, b−1

I w represents an element of free group F2 = F (a, b)

I the image of w in Z2 is
(p

q

)
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Planar representation of a primitive vector

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

O = (0, 0)

P =
(p

q

)
If P =

(p
q

)
is primitive, then [OP]

⋂
Z2 = {O, P}



Stair-case approximation

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

O

P =
(p

q

)
If p, q ≥ 0, then approximate segment OP

by closest stair-case path from beneath



Christoffel word of a positive primitive vector

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

a a

a a

a

b

b

b

O

(5
3

)
To the vector

(5
3

)
∈ N2 we attach the word

w
(5

3

)
= aabaabab = a2ba2bab ∈ F2



Christoffel words: factorization property 1

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""

���
���

�*�
�

�
�

�
�

�
�

�
��3

a a

a a

a

b

b

b

O

P =
(5

3

)

j

j: closest point of Z2 to segment OP

w
(5

3

)
= (a2b)(a2bab) = w

(2
1

)
w

(3
2

)



Christoffel words: factorization property 2

Theorem
If

(p
q

)
,
(r

s

)
∈ N2 satisfy

∣∣∣∣ p r
q s

∣∣∣∣ = 1 , then

w
(

p + r
q + s

)
= w

(
p
q

)
w

(
r
s

)



General Christoffel words

"
"

"
"

"
"

"
"

"
"

""

aaaaaaaaaaaa

Z
Z

Z
Z

Z
Z

Z
Z

Z

�
�

�
�

�
��

a a

a a

a

b

b

b
↑↑

a a a

a ab̄

b̄↓↓

ā

ā

āā

b

b

b
←←

ā

ā

b̄

b̄

ā
←←

O

(5
3

)

( 5
−2

)

(−4
3

)

(−3
−2

)

a2ba2bab

a3b−1a2b−1

ba−1ba−1ba−2

b−1a−1b−1a−2

ā = a−1

b̄ = b−1



Bases of the free group F2

Let F2 = F (a, b) be the free group on two generators a, b

I {u, v} ⊂ F2 is a basis if {u, v} generates F2

Equivalently, {u, v} is a basis if there is ϕ ∈ Aut(F2) with

ϕ(a) = u and ϕ(b) = v

I Two bases {u, v} and {u′, v ′} of F2 are conjugate if there is
w ∈ F2 such that u′ = wuw−1 and v ′ = wvw−1
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Lifting bases of Z2 to F2

I Recall: {
(p

q

)
,
(r

s

)
} is a basis of Z2 ⇐⇒ ps − qr = ±1

I Question:
Can we lift {

(p
q

)
,
(r

s

)
} to a basis of F2?

I Example:
I a2b ∈ F2 is a lift of

(2
1

)
I a3b2 is a lift of

(3
2

)
I {a2b, a3b2} is not a basis of F2,
I {a2b, a2bab} is a basis of F2
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p
q
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(
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is a basis of F2 (called a Christoffel basis). It lifts the basis{(p
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I Any basis of F2 is conjugate of a (unique) Christoffel basis
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Palindromes

I The reverse of a word w is the word w̃ obtained by
reading w from right to left

I A palindrome is a word w such that w̃ = w

I A basis {u, v} of F2 is palindromic if both u and v are
palindromes
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Existence of palindromic bases

Let |w | be the length of a word w with respect to the alphabet
{a, b, a−1, b−1}

Theorem
Any basis {u, v} of F2 with |u|, |v | odd is the conjugate of a
unique (cyclically reduced) palindromic basis

Example:
• {aba2b, a2b} is a non-palindromic basis of F2,
• but is conjugated to the palindromic basis {ababa, aba}



III. STURMIAN SEQUENCES AND
MORPHISMS



Infinite version of Christoffel words

I Let L ⊂ R2
+ be a half-line originating from O and satisfying

L
⋂

Z2 = {O}
The slope of L is irrational

I The infinite sequence in a, b encoding the stair-case
approximation of L is a Sturmian sequence
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Sturmian sequences: formal definition

I Infinite word in a, b: map {0, 1, 2, . . .} → {a, b}
Example: abaababaabaab · · ·

I Sturmian sequence: infinite word w in a, b such that the
number of distinct factors of w of length n is n + 1 for each
n ≥ 1 (w1 is a factor of w = w0w1w2)

I n = 1: Number of distinct letters is 2
I n = 2: Three possible length-two factors out of four:

aa, ab, ba, bb
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The Fibonacci sequence

I Obtain Sturmian sequences dynamically by iterating an
appropriate substitution ϕ : {a, b}∗ → {a, b}∗

I Example: Let ϕ(a) = ab and ϕ(b) = a. Then wn = ϕn(a)
converges to a Sturmian sequence w

I w0 = a
I w1 = ab
I w2 = aba
I w3 = abaab
I w4 = abaababa
I w5 = abaababaabaab · · ·

I w approximates half-line of slope (
√

5− 1)/2 (inverse of
golden ratio)
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Sturmian morphisms

I A substitution replaces a et b by (positive) words in a and b
(i.e., it is an endomorphism of free monoid {a, b}∗)

Substitutions can be composed and form a monoid

I A Sturmian morphism is a substitution preserving the
Sturmian sequences

I The Sturmian morphisms form a monoid under
composition, the Sturmian monoid St
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Examples of Sturmian morphisms

I

id =

(
a 7→ a
b 7→ b

)
and E =

(
a 7→ b
b 7→ a

)
We have E2 = id

I

La =

(
a 7→ a

b 7→ ab

)
and Ra =

(
a 7→ a

b 7→ ba

)
I

Lb = ELaE =

(
a 7→ ba
b 7→ b

)
and Rb = ERaE =

(
a 7→ ab
b 7→ b

)
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The Sturmian monoid as a submonoid of Aut(F2)

I Mignosi & Séébold (1993): The monoid St is generated by
{E , La, Ra} or by {E , Lb, Rb}

I Considered as endomorphisms of the free group F2, the
generators E , La, Ra of St are invertible in End(F2)

I Therefore, St is a submonoid of the group Aut(F2)

St ⊂ Aut(F2)

I Note: the subgroup generated by {E , La, Ra} is Aut(F2)
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Projecting onto GL2(Z)

Linearization map: π : Aut(F2)→ Aut(Z2) = GL2(Z)

I

π(E) =

(
0 1
1 0

)
I

π(La) = π(Ra) = A =

(
1 1
0 1

)
∈ SL2(Z)

I

π(Lb) = π(Rb) = B =

(
1 0
1 1

)
∈ SL2(Z)

I The set {A, B} generates SL2(Z)
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Presentation of SL2(Z)

I Generators: A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)
I Defining relations:

I Braid relation: AB−1A = B−1AB−1

I Torsion relation: (AB−1A)4 = 1

I Question: Can we lift these relations to Aut(F2) using the
lifts La, Ra of A and the lifts Lb, Rb of B?

I Answer: Yes, see next slide
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Lifting the braid relations to Aut(F2)

I Commutation relations: [the lifts of A (or of B) commute]

La Ra = Ra La and Lb Rb = RbLb

I Braid relations: [between any lift of A and the inverse of any lift of B]

La L−1
b La = L−1

b La L−1
b , La R−1

b La = R−1
b La R−1

b ,

Ra L−1
b Ra = L−1

b Ra L−1
b , Ra R−1

b Ra = R−1
b Ra R−1

b .

I Torsion relation:

(LaL−1
b Ra)

4 = (L−1
b RaR−1

b )4 = 1 ,

(RaR−1
b La)

4 = (R−1
b LaL−1

b )4 = 1 .

(This was the starting point of joint work with Reutenauer)
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IV. BRAIDS



The braid group Bn on n strands

Presentation of Bn:

Generators:
σ1, . . . , σn−1

Defining relations:

σi σj = σj σi if |i − j | ≥ 2

σi σi+1 σi = σi+1 σi σi+1



Generators of the braid group on n strands

A
A

�
�

�
�

�

A
A· · · · · ·

1 2 i i + 1 n

σi

A
A

A
A

A �
�

�
�

· · · · · ·

1 2 i i + 1 n

σ−1
i



Relation between B4 and Aut(F2)

I Group homomorphism f : B4 → Aut(F2) defined by

f (σ1) = La , f (σ2) = L−1
b , f (σ3) = Ra .

I Theorem. The following sequence is exact:

1 −→ Z4 −→ B4
f−→ Aut(F2) −→ Z/2 −→ 0

• Z4 = center of B4, infinite cyclic generated by (σ1σ2σ3)
4
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The complete picture

Theorem. There is a map of exact sequences

1 −→ Z4 −→ B4
f−→ Aut(F2)

det−→ Z/2 −→ 1
∼= ↓ π′↓ π↓ =↓

1 −→ 2Z3 −→ B3 −→ GL2(Z)
det−→ Z/2 −→ 1

• B3 = 〈A, B |AB−1A = B−1AB−1〉
• 2Z3 subgroup of center of B3, generated by (AB−1A)4

• π′ : B4 → B3 defined by π′(σ1) = π′(σ3) = A and π′(σ2) = B−1

• Z4 = center of B4, generated by (σ1σ2σ3)
4



The special Sturmian monoid St0

I Recall: Monoid St generated by E , La, Ra or by E , Lb, Rb

I Definition

St0 = {ϕ ∈ St | det(ϕ) = 1} ⊂ Aut(F2)

I The substitutions La, Ra, Lb, Rb belong to St0

I The monoid St0 is generated by La, Ra, Lb, Rb
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Presentation of the monoid St0

Theorem. The monoid St0 has the following presentation:

Generators: La, Ra, Lb, Rb

Defining relations: La Ra = Ra La , Lb Rb = Rb Lb ,
and

La Lk
b Ra = Ra Rk

b La , Lb Lk
a Rb = Rb Rk

a Lb

for all k ≥ 1.

(This presentation is infinite)



St0 is a submonoid of B4

The monoid St0 ⊂ Aut(F2) can be lifted to a monoid in B4

I Theorem. There is a monoid morphism i : St0 → B4 such
that

St0
i−→ B4

f−→ Aut(F2)

is the inclusion.
I The monoid embedding i : St0 → B4 is defined by

i(La) = σ1 , i(Lb) = σ−1
2 , i(Ra) = σ3 , i(Rb) = σ−1

4 .

I What is the braid σ−1
4 ?
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The braids σ1, σ−1
2 , σ3

A
A

�
�

�
�

�

A
A

σ1

A
A

A
A

A �
�

�
�

σ−1
2

A
A

�
�

�
�

�

A
A

σ3



The braid σ−1
4

It braids the 1st and the 4th strands with a negative crossing
behind the 2nd and 3rd strands

�
��

�
��

��

��

�
��

�
��

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

σ−1
4 = (σ1σ

−1
3 ) σ2 (σ1σ

−1
3 )−1



Conclusion

I The monoid generated by σ1, σ−1
2 , σ3, σ−1

4 in B4 is
isomorphic to the special Sturmian monoid St0

〈σ1 , σ−1
2 , σ3 , σ−1

4 〉
+ ∼= St0

I Note: The subgroup generated by σ1, σ−1
2 , σ3, σ−1

4 is B4
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