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¿De qué se trata ?

• De una historia de palabras (con dos letras). . .

donde aparecen trenzas

• Se originó de un trabajo conjunto con
Christophe Reutenauer, UQAM, Montreal, Canadá

• Nuestro artículo fue publicado en
Annali di Matematica Pura ed Applicata 186 (2007), 317–339
arXiv : math.GR/0507219



I. HISTORIA



Elwin Bruno Christoffel (1829–1900)

I Famoso matemático alemán del siglo XIX, especialista en
geometría, análisis tensorial (símbolos de Christoffel),
teoría de invariantes, polinomios ortogonales, fracciones
continuas, física (dispersión de la luz, ondas de choque)

I Profesor en Zurich, Berlín y Estrasburgo
I En 1872 Christoffel fundó el Instituto matemático de la

Universidad de Estrasburgo
(Después de la guerra franco-alemana de 1870, Alsacia y
Lorena fueron anexadas al Imperio alemán)
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La Observatio arithmetica de Christoffel

I Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148–152

I Christoffel escribió este artículo en latín (él publicó
también artículos en alemán, francés y italiano)

I Nombre del autor en la primera página del artículo :
auctore E. B. Christoffel, prof. Argentinensi

I Argentinensi es derivado de Argentoratum, nombre dado
por los Romanos a Estrasburgo cuando fundaron la ciudad
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Observatio arithmetica 1

I Designantibus a, b numeros positivos integros et primos inter
se, sint r1, r2, r3, . . . residua minima non negativa numerorum a,
2a, 3a, . . . secundum modulum b,. . .

I Designando por a, b números enteros positivos
relativamente primos, sean r1, r2, r3, . . . los restos de la
división de a, 2a, 3a, . . . por b,. . .

I Agitur autem de quaestione, quando rm crescat vel decrescat, si
m unitate augitur. . .

I Se trata de la pregunta de si rm crece o decrece cuando m
aumenta en una unidad. . .
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Observatio arithmetica 2

I . . .notatur littera c vel d, prout rm crescit vel decrescit. Hoc modo
nova series nascitur, e duabus tantum literis c, d, sed certo
quodam ordine composita. . .

I . . .se nota la letra c o d según rm crezca o decrezca. De
esta manera nace una nueva serie, compuesta de las dos
letras c, d en cierto orden. . .
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Observatio arithmetica 3

I Exemplum I. Sit a = 4, b = 11, erit series (r.) notis c, d ornata

r. = 4 8 1 5 9 2 6 10 3 7 0
g. = c d c c d c c d c d c

I Recuperamos los enteros a y b a partir de la serie (g.) :
? el entero a es el número de letras d en (g.)
? el entero b es la longitud de la serie (g.)

I El resultado principal del artículo dice como recuperar el
desarollo en fracción continua de a/b a partir de (g.)
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Observatio arithmetica 4

Las series de letras c, d obtenidas de esta manera, por
ejemplo

cdccdccdcdc ,

son llamadas palabras de Christoffel

Vamos a dar una construcción geométrica de los palabras de
Christoffel



Las palabras de Christoffel (y sus variantes infinitas)
intervienen en

• matemática
? dinámica simbólica (Morse)
? fracciones continuas

• informática
? lenguajes formales
? algoritmos con palabras y combinatoria
? reconocimiento de formas

• física
? cristalografía

• biología



II. CONSTRUCCIÓN GEOMÉTRICA

DE LAS PALABRAS DE CHRISTOFFEL



Vectores primitivos de Z2 y palabras de Christoffel

I
(p

q

)
∈ Z2 es primitivo si p y q son relativamente primos

I A un vector primitivo
(p

q

)
asociaremos una palabra de Christoffel

w = w
(

p
q

)
compuesta con las letras a, a−1, b, b−1 y tal que
• el número “algebraico” de ocurrencias de a en w es igual
a p, y
• el número “algebraico” de ocurrencias de b en w es igual
a q
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Representación planar de un vector primitivo
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O = (0, 0)

P =
(p

q

)
Si P =

(p
q

)
es primitivo, entonces OP

⋂
Z2 = {O, P}



Aproximación por "escaleras"
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P =
(p

q

)
Si p, q ≥ 0, se aproxima el segmento OP

por la escalera inferior más próxima



Palabra de Christoffel asociada a
un vector primitivo positivo
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Al vector

(5
3

)
∈ N2 se asocia la palabra

w
(5

3

)
= aabaabab = a2ba2bab ∈ F2



Factorización canónica de una palabra de Christoffel :
un ejemplo
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j

j: el punto de Z2 más próximo de OP

w
(5
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)
= (a2b)(a2bab) = w
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1

)
w

(3
2

)



Factorización canonica de una palabra de Christoffel :
caso general

Teorema.

Si
(p

q

)
,
(r

s

)
∈ N2 son primitivos y satisfacen

∣∣∣∣ p r
q s

∣∣∣∣ = 1 ,

tenemos

w
(

p + r
q + s

)
= w

(
p
q

)
w

(
r
s

)



Palabras de Christoffel generales
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a2ba2bab

a3b−1a2b−1

ba−1ba−1ba−2

b−1a−1b−1a−2

ā = a−1

b̄ = b−1



El grupo libre F2

• Las palabras en a, a−1, b, b−1 forman un grupo llamado el
grupo libre F2

? Ley de composición : concatenación de las palabras
? Elemento neutro : la palabra vacía
? Relaciones evidentes :

aa−1 = a−1a = 1 = bb−1 = b−1b .

• Una palabra en a, a−1, b, b−1 es reducida si no contiene las
subpalabras

aa−1, a−1a, bb−1, b−1b .

Cada elemento de F2 puede representarse por una única
palabra reducida



Contador de a y de b

• Hay un único homomorfismo de grupos

p : F2 → Z2

tal que p(a) =
(1

0

)
y p(b) =

(0
1

)
Ejemplo :

p(a−3b5ab−2a) =

(
−1
3

)
• Por definición de las palabras de Christoffel,

p
(

w
(

p
q

))
=

(
p
q

)



Objetivo : Describir las bases de F2

I {u, v} ⊂ F2 es una base de F2 si {u, v} engendra F2 como
grupo.

Ejemplo trivial : {a, b} es una base de F2

I Dos bases {u, v} y {u′, v ′}de F2 son conjugadas si existe
w ∈ F2 tal que u′ = wuw−1 y v ′ = wvw−1

I Recuerdo : Descripción de las bases de Z2

{
(p

q

)
,
(r

s

)
} es una base de Z2 ⇐⇒ ps − qr = ±1
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Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Levantamiento de bases de Z2 a F2

I Nuestro objetivo : Describir las bases de F2 y responder a
la. . .

I Pregunta : Sea p : F2 → Z2 la suryección canónica.
¿ Se puede levantar cada base de Z2 en una base de F2

via p ?

I Ejemplo :
I a2b ∈ F2 es un levantamiento de

(2
1

)
I a3b2 es un levantamiento de

(3
2

)
I {a2b, a3b2} no es una base de F2,
I {a2b, a2bab} es una base de F2



Descripción completa de las bases de F2

Teorema.

I Si
{(p

q

)
,
(r

s

)}
es una base de Z2, entonces{

w
(

p
q

)
, w

(
r
s

)}
es una base de F2 (llamada una base de Christoffel).

Esta base es un levantamiento de
{(p

q

)
,
(r

s

)}
a F2

I Cada base de F2 es conjugada a una (única) base de
Christoffel
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III. SUBSTITUCIONES QUE PRESERVAN

LAS PALABRAS DE CHRISTOFFEL



Palabras de Christoffel positivas y conjugadas

• Una palabra de Christoffel positiva es una palabra en a y b
que es de la forma

w
(

p
q

)
donde p, q son enteros no negativos relativamente primos

• Dos palabras w , w ′ son conjugadas si hay palabras u, v tales
que

w = uv y w ′ = vu

(En un grupo tendríamos w ′ = vwv−1)



Morfismos de Christoffel

I Una substitución es una transformación que reemplaza a y
b por palabras (positivas) en a y b

Las substituciones se componen y forman un monoide

I Un morfismo de Christoffel es una substitución que
transforma cada palabra de Christoffel positiva en una
conjugada de alguna palabra de Christoffel

I Componiéndose, los morfismos de Christoffel forman un
monoide M
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Ejemplos de morfismos de Christoffel

•
id =

(
a 7→ a
b 7→ b

)
y E =

(
a 7→ b
b 7→ a

)
Tenemos E2 = id
•

La =

(
a 7→ a

b 7→ ab

)
y Ra =

(
a 7→ a

b 7→ ba

)
•

Lb = ELaE =

(
a 7→ ba
b 7→ b

)
y Rb = ERaE =

(
a 7→ ab
b 7→ b

)



El monoide M como submonoide de Aut(F2)

I Mignosi & Séébold (1993) :
El monoide M esta engendrado por {E , La, Ra} o por
{E , Lb, Rb}

I Considerados como endomorfismos del grupo F2, los
generadores de M son inversibles

Tenemos E−1 = E ,

L−1
a =

(
a 7→ a

b 7→ a−1b

)
y R−1

a =

(
a 7→ a

b 7→ ba−1

)

I Entonces, M ⊂ Aut(F2)
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Linealización de un automorfismo de F2

• Cada automorfismo de grupos

f : F2 → F2

induce un automorfismo de grupos

π(f ) : Z2 → Z2

• La linealización f 7→ π(f ) es un homomorfismo suryectivo

π : Aut(F2)→ Aut(Z2) = GL2(Z)



Effecto de la linealización sobre los generadores de M

π(E) =

(
0 1
1 0

)

π(La) = π(Ra) = A =

(
1 1
0 1

)
∈ SL2(Z)

π(Lb) = π(Rb) = B =

(
1 0
1 1

)
∈ SL2(Z)



Presentación de SL2(Z)

I Generadores : A =

(
1 1
0 1

)
y B =

(
1 0
1 1

)
I Relaciones :

I Relación de Coxeter o de trenza :

AB−1A = B−1AB−1 =

(
0 1
−1 0

)
I Relación de torsión : (AB−1A)4 = 1

I Pregunta : Sea π : Aut(F2)→ GL2(Z) la linealización.

¿ Se pueden levantar las dos relaciones precedentes
a Aut(F2) utilisando los levantamientos La, Ra de A y los
levantamientos Lb, Rb de B ?
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Levantemos las relaciones de SL2(Z) a Aut(F2)

I Relaciones de conmutación :

La Ra = Ra La y Lb Rb = RbLb

I Relaciones de trenzas :

La L−1
b La = L−1

b La L−1
b , La R−1

b La = R−1
b La R−1

b ,

Ra L−1
b Ra = L−1

b Ra L−1
b , Ra R−1

b Ra = R−1
b Ra R−1

b .

I Relaciones de torsión :

(LaL−1
b Ra)

4 = (L−1
b RaR−1

b )4 = 1 ,

(RaR−1
b La)

4 = (R−1
b LaL−1

b )4 = 1 .

(Fue el punto de partida del trabajo con Reutenauer)
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IV. ¡ TRENZAS, EN FIN !



El grupo de trenzas Bn con n hebras

Presentación de Bn :

Generadores :
σ1, . . . , σn−1

Relaciones :
σi σj = σj σi si |i − j | ≥ 2

σi σi+1 σi = σi+1 σi σi+1



Representación geométrica de los generadores de Bn

A
A

�
�

�
�

�

A
A· · · · · ·

1 2 i i + 1 n

σi

A
A

A
A

A �
�

�
�

· · · · · ·

1 2 i i + 1 n

σ−1
i



Relación entre B4 y Aut(F2)

I Las fórmulas

f (σ1) = La , f (σ2) = L−1
b , f (σ3) = Ra

definen un homomorfismo de grupos f : B4 → Aut(F2)

I Teorema. Tenemos la sucesión exacta siguiente :

1 −→ Z −→ B4
f−→ Aut(F2) −→ Z/2 −→ 0

• El núcleo Z es el centro de B4 : es un grupo infinito
cíclico engendrado por (σ1σ2σ3)

4
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El monoide especial M0

I Recuerdo : El monoide M está engendrado por E , La, Ra o
por E , Lb, Rb

I Definición

M0 = {ϕ ∈ M | det
(
π(ϕ)

)
= 1} ⊂ Aut(F2)

I Las substituciones La, Ra, Lb, Rb pertenecen a M0 (pero
E /∈ M0)

I Lema. El monoide M0 está engendrado por La, Ra, Lb, Rb.
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Presentación del monoide M0

Teorema. El monoide M0 tiene la presentación siguiente :

Generadores : La, Ra, Lb, Rb

Relaciones : La Ra = Ra La , Lb Rb = Rb Lb ,
y

La Lk
b Ra = Ra Rk

b La , Lb Lk
a Rb = Rb Rk

a Lb

para todo k ≥ 1.

(Esta presentación tiene una infinidad de relaciones)



M0 es un submonoide de B4

Milagro : Se levanta M0 ⊂ Aut(F2) en un submonoide de B4

I Teorema. Existe un morfismo de monoides i : M0 → B4 tal
que el morfismo compuesto

M0
i−→ B4

f−→ Aut(F2)

es la inclusión.

I El morfismo i : M0 → B4 se define por

i(La) = σ1 , i(Lb) = σ−1
2 , i(Ra) = σ3 , i(Rb) = σ−1

4 .

I ¿ Cuál es la trenza σ−1
4 ?
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Las trenzas σ1, σ−1
2 , σ3

A
A
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A
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A
A

A
A

A �
�

�
�

σ−1
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A

σ3



La trenza σ−1
4

Ella "cruza" la primera y la cuarta hebra (cruzamiento negativo)
detrás de la segunda y de la tercera hebra
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σ−1
4 = (σ1σ
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Conclusión :
¡ De las palabras a las trenzas !

El submonoide de B4 engendrado por σ1, σ−1
2 , σ3, σ−1

4 es
isomorfo al monoide M0, cuyos elementos preservan las clases
de conjugación de la palabras de Christoffel :

〈σ1 , σ−1
2 , σ3 , σ−1

4 〉
+ ∼= M0
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