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¢,De qué se trata ?

¢ De una historia de palabras (con dos letras). . .

donde aparecen trenzas

e Se originé de un trabajo conjunto con
Christophe Reutenauer, UQAM, Montreal, Canada

e Nuestro articulo fue publicado en
Annali di Matematica Pura ed Applicata 186 (2007), 317-339
arXiv : math.GR/0507219
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Elwin Bruno Christoffel (1829—1900)

» Famoso matematico alemén del siglo XIX, especialista en
geometria, analisis tensorial (simbolos de Christoffel),
teoria de invariantes, polinomios ortogonales, fracciones
continuas, fisica (dispersion de la luz, ondas de choque)

» Profesor en Zurich, Berlin y Estrasburgo

» En 1872 Christoffel fundé el Instituto matematico de la
Universidad de Estrasburgo

(Después de la guerra franco-alemana de 1870, Alsacia y
Lorena fueron anexadas al Imperio aleman)
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La Observatio arithmetica de Christoffel

» Observatio arithmetica, Annali di Matematica Pura ed
Applicata, vol. 6 (1875), 148—152

» Christoffel escribié este articulo en latin (él public
también articulos en aleman, francés y italiano)

» Nombre del autor en la primera pagina del articulo :
auctore E. B. Christoffel, prof. Argentinensi

» Argentinensi es derivado de Argentoratum, nombre dado
por los Romanos a Estrasburgo cuando fundaron la ciudad
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Observatio arithmetica 1

» Designantibus a, b numeros positivos integros et primos inter
se, sintry, 2, 13,. .. residua minima non negativa numerorum a,
2a, 3a, ... secundum modulum b,. ..

» Designando por a, b nUmeros enteros positivos
relativamente primos, sean ry, o, 13, ... los restos de la
division de a, 2a, 3a, ... por b,...

» Agitur autem de quaestione, quando rn, crescat vel decrescat, si
m unitate augitur. ..

» Se trata de la pregunta de si rp, crece o decrece cuando m
aumenta en una unidad. . .
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Observatio arithmetica 2

» ...notatur littera ¢ vel d, prout ry, crescit vel decrescit. Hoc modo
nova series nascitur, e duabus tantum literis ¢, d, sed certo
quodam ordine composita. ..

» ...se nota la letra c o d segun ry, crezca o decrezca. De
esta manera nace una nueva serie, compuesta de las dos
letras ¢, d en cierto orden. ..
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Observatio arithmetica 3

» Exemplum I. Sita =4, b = 11, erit series (r.) notis ¢, d ornata

r= 4 8 1 5 9 2 6 10 3 7 0
g= ¢ d ¢ ¢ d ¢ ¢ d ¢ d c

» Recuperamos los enteros ay b a partir de la serie (g.) :

* el entero a es el numero de letras d en (g))
= el entero b es la longitud de la serie (g.)

» El resultado principal del articulo dice como recuperar el
desarollo en fraccion continua de a/b a partir de (g.)



Observatio arithmetica 4

Las series de letras ¢, d obtenidas de esta manera, por
ejemplo
cdccdecdede,

son llamadas palabras de Christoffel

Vamos a dar una construccién geométrica de los palabras de
Christoffel



Las palabras de Christoffel (y sus variantes infinitas)
intervienen en

e matematica
* dindamica simbolica (Morse)
* fracciones continuas

e informatica
* lenguajes formales
* algoritmos con palabras y combinatoria
* reconocimiento de formas
o fisica
* cristalografia

e biologia



Il. CONSTRUCCION GEOMETRICA
DE LAS PALABRAS DE CHRISTOFFEL
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Vectores primitivos de Z? y palabras de Christoffel

> (‘C’,) € 7?2 es primitivo si p y g son relativamente primos

» A un vector primitivo (?)
asociaremos una palabra de Christoffel

=

compuesta con las letras a,a~ ', b, b~ y tal que

e el numero “algebraico” de ocurrencias de aen w es igual
ap,y

e el numero “algebraico” de ocurrencias de b en w es igual
aq



Representacion planar de un vector primitivo

Si P = (£) es primitivo, entonces OP(Z? = {0, P}

P= ()

O = (0,0)



Aproximacién por "escaleras”

Sip, g > 0, se aproxima el segmento OP
por la escalera inferior mas préxima




Palabra de Christoffel asociada a
un vector primitivo positivo

Al vector (3) € N2 se asocia la palabra
w(3) = aabaabab = @?ba?bab € F,

(3)




Factorizacion candnica de una palabra de Christoffel :
un ejemplo
O : el punto de Z? méas proximo de OP
w(S) = (b)(@bab) = w(?) w(})

P=0




Factorizacion canonica de una palabra de Christoffel :
caso general

Teorema.
Si (5), (¢) € N? son primitivos y satisfacen

(as) = ()

=1,

p
q

r
S
tenemos



Palabras de Christoffel generales

ba~'ba 'ba?
()22 - (3)
o b a a | a’ba’bab
Zi2_1 bl 3 g aP
bl a1 2P a
. _50 ~L Y ala Bb182p-1
(o bl @ B[ s
()
a a



El grupo libre F»

e Las palabras en a, a ', b, b~ forman un grupo llamado el
grupo libre F»

* Ley de composicion : concatenacion de las palabras
* Elemento neutro : la palabra vacia
* Relaciones evidentes :

aa'=a'la=1=bb"1=b""b.

e Unapalabraen a, a ', b, b~ es reducida si no contiene las
subpalabras

aa~', a'a, bb~', b7 'b.
Cada elemento de F, puede representarse por una unica
palabra reducida



Contadorde ay de b

e Hay un Gnico homomorfismo de grupos
p: F2 — Zz

tal que p(a) = (o) y p(b) = (3)
Ejemplo :

p(a—3b°ab—2a) = <_31 >

e Por definicién de las palabras de Christoffel,

()=
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» {u,v} C F, esunabase de F, si {u, v} engendra F, como
grupo.
Ejemplo trivial : {a, b} es una base de F;
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Objetivo : Describir las bases de F;

» {u,v} C F, esunabase de F, si {u, v} engendra F, como
grupo.

Ejemplo trivial : {a, b} es una base de F;

» Dos bases {u, v}y {t/,v'}de F, son conjugadas si existe
weFytalque v =wuw' y v/ = wyvw!

» Recuerdo : Descripcidn de las bases de 7.2

{(%), ()} es unabase de Z? <= ps — qr = +1
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¢, Se puede levantar cada base de Z? en una base de F,
viap?

» Ejemplo :
> a@2b € F, es un levantamiento de (%)
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Levantamiento de bases de Z? a F»

» Nuestro objetivo : Describir las bases de F» y responder a
la...

» Pregunta :Sea p : F, — 7?2 la suryeccidn canonica.

¢, Se puede levantar cada base de Z? en una base de F,
viap?

» Ejemplo :
> a@2b € F, es un levantamiento de (%)
» ab? es un levantamiento de (3)

» {@?b,a’b?} no es una base de F»,
» {&’b, &®bab} es una base de F,



Descripcion completa de las bases de F»

Teorema.

> Si{(f). (s)} es una base de Z?, entonces

tla) (o)}

es una base de F, (llamada una base de Christoffel).

Esta base es un levantamiento de { (%), (¢) } a Fz



Descripcion completa de las bases de F»

Teorema.

> Si{(f). (s)} es una base de Z?, entonces

(@) (2))
q s
es una base de F, (llamada una base de Christoffel).

Esta base es un levantamiento de { (%), (¢) } a Fz

» Cada base de F, es conjugada a una (unica) base de
Christoffel



I1l. SUBSTITUCIONES QUE PRESERVAN
LAS PALABRAS DE CHRISTOFFEL



Palabras de Christoffel positivas y conjugadas

e Una palabra de Christoffel positiva es una palabraen ay b
que es de la forma
“(2)
q

donde p, g son enteros no negativos relativamente primos

e Dos palabras w, w’ son conjugadas si hay palabras u, v tales
que
w=u y w=w

(En un grupo tendriamos w’ = vwv 1)
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» Una substitucién es una transformacion que reemplaza ay
b por palabras (positivas) en ay b

Las substituciones se componen y forman un monoide
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Morfismos de Christoffel

» Una substitucién es una transformacion que reemplaza ay
b por palabras (positivas) en ay b

Las substituciones se componen y forman un monoide

» Un morfismo de Christoffel es una substituciéon que
transforma cada palabra de Christoffel positiva en una
conjugada de alguna palabra de Christoffel

» Componiéndose, los morfismos de Christoffel forman un
monoide M



Ejemplos de morfismos de Christoffel

, a— a a—b
'd—(be) Y E_(b%)

Tenemos E2 = id
[ ]
ar— a ar— a
La= (bH ab) y Ha= (bea)

a— ba

%zEQEz(be

) y Ry — ER,E — (aHab)

b—b



El monoide M como submonoide de Aut(F;)

» Mignosi & Séébold (1993) :
El monoide M esta engendrado por {E, L, Ra} 0 por
{E7 Lb-/ Rb}
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» Mignosi & Séébold (1993) :
El monoide M esta engendrado por {E, L, Ra} 0 por
{E7 Lb-/ Rb}

» Considerados como endomorfismos del grupo F,, los
generadores de M son inversibles

Tenemos E~' = E,

-1 _ a— a -1 ar— a
G = (o2 %) Y A = (5 ba)



El monoide M como submonoide de Aut(F;)

» Mignosi & Séébold (1993) :
El monoide M esta engendrado por {E, L, Ra} 0 por
{E7 Lb-/ Rb}

» Considerados como endomorfismos del grupo F,, los
generadores de M son inversibles

Tenemos E~' = E,
-1 _ a— a -1 ar— a
L= (pr ) ¥ A= (o )

» Entonces, M C Aut(F)



Linealizacién de un automorfismo de F»

e Cada automorfismo de grupos
f . F2 — Fg
induce un automorfismo de grupos

n(f): 7% — 72

e La linealizacion f +— m(f) es un homomorfismo suryectivo

7 Aut(Fp) — Aut(Z?) = GLy(Z)



Effecto de la linealizacidén sobre los generadores de M

@-(34)
1 1

(L) =n(Ra) =A=( g | ) € SL(@)

m(Lp) = m(Rp) = B= < ] ? ) € SLy(Z)



Presentacion de SL,(Z)

» Generadores : A= <



Presentacion de SL,(Z)

» Generadores : A= <

» Relaciones :

O —

1
1

)yB

(1

- O



Presentacion de SL,(Z)

A (11 (10
»Generadores.A_<o 1>y8_(1 1>

» Relaciones :
» Relacion de Coxeter o de trenza :

AB1A_B‘AB1_( 0 1 )



Presentacion de SL,(Z)

0 1

» Generadores : A= <1 ! )yB:(l

» Relaciones :
» Relacion de Coxeter o de trenza :

AB'A=B'AB ' = (

» Relacion de torsion : (AB~1A)* = 1



Presentacion de SL,(Z)

A (11 (10
»Generadores.A_<o 1)y8_<1 1>

» Relaciones :
» Relacion de Coxeter o de trenza :

—1a_ p-1ap—1 _ 0o 1
AB~'A=B"'AB _(_1 0

» Relacion de torsion : (AB~1A)* = 1

» Pregunta : Sea 7 : Aut(F2) — GLo(Z) la linealizacion.

¢ Se pueden levantar las dos relaciones precedentes
a Aut(F,) utilisando los levantamientos L,, Ry de A y los
levantamientos Ly, Ry, de B ?



Levantemos las relaciones de SL,(Z) a Aut(F»)

» Relaciones de conmutacion :

LaRa=RaLs y LpRp= Rplyp



Levantemos las relaciones de SL,(Z) a Aut(F»)

» Relaciones de conmutacion :
LaRa=Rala y LpRp= Rblp
» Relaciones de trenzas :
Laly'La=L,"Lal,", LaR,'La=R,'LaR,",

R.L,"Ry=L," Ral,', R.R,"Ra=R,'R.R,".



Levantemos las relaciones de SL,(Z) a Aut(F»)

» Relaciones de conmutacion :
LaRa=Rala y LpRp= Rblp
» Relaciones de trenzas :
Laly ' La= Ly Laly', LaRy'La=Ry'LaR,",
R.L,"Ry=L," Ral,', R.R,"Ra=R,'R.R,".
» Relaciones de torsioén :
(Laly'Ra)* = (L, 'RaR, 1) =1,
(RaR,'La)* = (R, 'Lal, ') = 1.

(Fue el punto de partida del trabajo con Reutenauer)



IV.i TRENZAS, EN FIN!



El grupo de trenzas B, con n hebras

Presentacién de B; :

Generadores :

Relaciones :
oj0j = 0j0; si|i—jl>2

0j0j41 0} = Oj41 0; Ot



Representacion geométrica de los generadores de Bj,

1 2 i i+1 n 1 2 i i+1 n



Relacion entre By y Aut(F)

» Las formulas
f(o1) = La, f(o2)=L,", f(o3)=Ra

definen un homomorfismo de grupos f : By — Aut(F2)



Relacion entre By y Aut(F)

» Las formulas
f(o1) = La, f(o2)=L,", f(o3)=Ra
definen un homomorfismo de grupos f : By — Aut(F)
» Teorema. Tenemos la sucesion exacta siguiente :

1— Z — By  Au(F) — 2/2 —0

e El nlcleo Z es el centro de By : es un grupo infinito
ciclico engendrado por (oy0203)*
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El monoide especial Mg

» Recuerdo : El monoide M esta engendrado por E, L5, R; 0
por E, Ly, Ry

» Definicion
Mo = {¢ € M| det(r(¢)) = 1} C Aut(F?)
» Las substituciones L,, Ra, Ly, Rp pertenecen a Mg (pero
E ¢ My)

» Lema. E/ monoide My esta engendrado por L,, Ra, Ly, Rp.



Presentacion del monoide Mg

Teorema. El monoide My tiene la presentacion siguiente :
Generadores : Lg, Ra, Lp, Rp

Relaciones : LaR; = RaLs, LyRp=Rplyp,

y
Lol Ra=RaRELsy, LpLXR,=R,REL

para todo k > 1.

(Esta presentacion tiene una infinidad de relaciones)



Mo es un submonoide de B,

Milagro : Se levanta My C Aut(F,) en un submonoide de B,

» Teorema. Existe un morfismo de monoides i : My — By tal
que el morfismo compuesto

Mo — By —1 Aut(F>)

es la inclusién.
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» Teorema. Existe un morfismo de monoides i : My — By tal
que el morfismo compuesto

Mo — By —1 Aut(F>)
es la inclusién.
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Mo es un submonoide de B,

Milagro : Se levanta My C Aut(F,) en un submonoide de B,

» Teorema. Existe un morfismo de monoides i : My — By tal
que el morfismo compuesto

Mo — By —1 Aut(F>)
es la inclusion.

» El morfismo i : Mg — B, se define por
i(La) = o1, i(Lp) =05, i(Ra) =03, i(Rp)=0,".

» ¢ Cudleslatrenzao,'?



AT TR TR



La trenza o,

Ella "cruza" la primera y la cuarta hebra (cruzamiento negativo)
detras de la segunda y de la tercera hebra

AN
/

O'Z1 = (U1ag1)02 (010§1)_

X

/
AN

1



Conclusién :
i De las palabras a las trenzas !

El submonoide de B, engendrado por o1, o, ', 03, 7, ' €s
isomorfo al monoide Mg, cuyos elementos preservan las clases
de conjugacion de la palabras de Christoffel :

<U17051 70—370-;1 >+ = MO
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