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Introduction 1

This lecture is based on joint work with Eli Aljadeff (Technion, Haifa) and
with Akira Masuoka (University of Tsukuba)

e E. ALJADEFF, C. KASSEL, Polynomial identities and noncommutative versal
torsors, Adv. Math. 218 (2008), 1453—1495

e C. KASSEL, A. MASUOKA, Flatness and freeness properties of the generic
Hopf Galois extensions, Rev. Un. Mat. Argentina 51:1 (2010), 79-94
(see also arXiv:0911.3719)



Introduction 2

Fix a field k and let H be a Hopf algebra over k

e Aljadeff and | constructed an H-Galois extension By C Ay whose algebra
of coinvariants By is central in Ay

e This Galois extension possesses the following properties:

» The commutative algebra By is a domain of Krull dimension < dimy H

Thus, By C Ay is a (weak) moduli space for forms of H
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Fix a field k and let H be a Hopf algebra over k

e Aljadeff and | constructed an H-Galois extension By C Ay whose algebra
of coinvariants By is central in Ay

e This Galois extension possesses the following properties:

» The commutative algebra By is a domain of Krull dimension < dimy H
» There is a maximal ideal mg of By such that

Ap/mo Ay = H

as H-comodule algebras

» Under some Condition (FP) [see below], for any maximal ideal m of By,
the H-comodule algebra Ay/m.Ay is a form of H, meaning that
Ap/mApy and H become isomorphic after extension of scalars to the
algebraic closure of the field By /m

» Conversely, any form of the H-comodule algebra H can be obtained in
this way

Thus, By C Ay is a (weak) moduli space for forms of H



Summary of Part |

e In geometric terms, By C Ay is a quantum principal fiber bundle with
“structural group” H over the domain By

Under Condition (FP) the fibers of this bundle are forms of H, and all forms
of H are isomorphic to such fibers

e In Part |
x we recall how to construct the domain By
* we state Condition (FP)
* we give examples for which the algebra B has been determined
* we state a simple open problem



Summary of Part I

e Masuoka and | determined classes of Hopf algebras for which
Condition (FP) is verified

e In Part Il we show that Condition (FP) is verified for all
* finite-dimensional Hopf algebras
*x commutative Hopf algebras
*x cocommutative Hopf algebras
* pointed Hopf algebras whose group-like elements are of finite order



Summary of Part Il

e There is a version of the previous constructions starting from a Hopf
algebra H together with a two-cocycle

a:HxH—k

In an analogous way we obtain a (weak) moduli space for the forms of any
given cleft Galois object of H

e In Part lll we show how to reduce this more general case to the one
considered in Parts | & Il
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A construction by Takeuchi (1971)

e Let C be a coalgebra with coproduct A : C — C® C and counite : C — k

Let tc be a copy of the underlying vector space of C and let x — t, denote
the identity map from C to fc

e Consider the symmetric algebra Sym(tc) over the vector space fc:
if {x;}ic/ is a linear basis of C, then Sym({c) is a polynomial algebra over the
symbols {i }ic

e There is a unique linear map x — t; ' from C to the fraction field
Frac Sym(i¢) of Sym(tc) such that for all x € C,

Dbty =e()1=> t 'ty
(x) ()
where A(x) = >,y X1 ® X2 (Sweedler’s notation)

e Definition. Let S¢ be the subalgebra of Frac Sym(tc) generated by t
and t;', (x € C):
Sc = Sym(te)[t; | x € C]



The algebra By and Condition (FP)

Now let C = H be a Hopf algebra
e For x, y € H consider the following elements of Sy:

o(x,¥)= > batyty, and o = by byt
() ()

o Definition (AK, 2008). Let By be the subalgebra of Sy generated by all
elements o(x, y) and o~ '(x, )

e Since By C 8¢ C Frac Sym(ty), the commutative algebra By is a domain
and its Krull dimension does not exceed dim, H

e We now state the above-mentioned Condition (FP):
Condition (FP): As a By-module, Sy is faithfully flat

This means that a sequence 0 — M’ — M — M" — 0 of By-modules is
exact if and only if the induced sequence

0—>SH®BHMI—>SH®BHM—>SH®BHMN—>O

of Sy-modules is exact



First example: group algebras

e The algebra H = kG of a group G is a Hopf algebra with
A(g)=g®g and e(@)=1 (g€
e Inthis case, t; ' = 1/t forallg € Gand
S =kltg, ty'|g € G
is an algebra of Laurent polynomials

e The algebra By is the subalgebra generated by the elements

tyt, _ f
a(g,h):fj: and o 1(g,h):§—t'; (g,h e G)

e From this description of Sy and By, it is easy to check that when G is finite,
then the algebra Sy is integral over By, and Condition (FP) is satisfied

[We shall see later that Condition (FP) is satisfied for any group algebra and
more generally for any cocommutative Hopf algebra]



Special cases

e Let G = Z be the group of integers. If ym = tn/t]" for each m € Z, then
By = K[Ym, ym'|m € Z — {1}]
is an algebra of Laurent polynomials and
Sk = Bulti, 7]
As a By-module, Sy is free and Condition (FP) is satisfied
e If G=7Z/Nis a cyclic group of order N > 2, then
By =Klyo" ya o Wt ]

where yo,, ¥z, ..., yn—1 are as above and yy = /tV, and

Sn = Bulti]/(t' — yo/yn)

is an integral extension of By. Condition (FP) is satisfied



Second example: the Sweedler algebra

e The Sweedler algebra is the Hopf algebra
H=kix,y|x*=1, y* =0, yx = —xy)
with coproduct
AxX)=x®x and A(y)=1Qy+yex

It is four-dimensional with basis {1, x, y, z}, where z = xy

e In this case,
Sh=kK[ti, t; bt 'ty 1]

' a,a', b,c,dwhere

and By is generated by the elements e, e~

e=t, a=t;, b=2ukt, c=t, d=t

e The algebra By has the following presentation (AK, 2008):
By = k[e*', a*', b, ¢, d]/(b° — 4ac)

The algebra Sy is integral over By and Condition (FP) is satisfied



An open question

The reader is encouraged to solve the open problem below

e Let nbe an integer > 2. The Taft algebra H, is the algebra
He = k(x,y|x"=1,y" =0, yx = gxy)
where q is a root of unity of order n. The Taft algebra H, is Sweedler’s algebra
It has a Hopf algebra structure with coproduct
Ax)=x®x and A(y)=1Q@y+y®x

As a vector space, it is of dimension n?

e Problem: Give a presentation by generators and relations of the
algebra By when H = H
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Generators of the By-module Sy

We start with an observation
Lemma 1. As a By-module, Sy is generated by the elements t, (x € H)

Proof.
e Let M be the By-submodule generated by the elements & (x € H). The
relation o(X, y) = 3y, b b tuy, implies

ety = 3 00, 11) buys
(W)
Hence, &t, € Mforall x,y ¢ H
By an easy induction, any finite product of elements tx belong to M

o To prove that each t; ! belongs to M, we use the antipode S of H and the
identities
t7'=0""(1,1) € By
and
B = tsug o (SOe), Xa) b
()



A Hopf algebra structure on Sy

Takeuchi (1971): The algebra Sy is a commutative Hopf algebra with
coproduct A, counit ¢, and (involutive) antipode S given by

Alb)=> bt ®t, and A7) =) t' et
() 2

e(t) =e(t ') =e(x)

S(t)=t"' and S(t ") =t



A quotient of Sy

e Inside Sy consider the ideal (B};) generated by By N ker(e). It is easy to
prove the following

Proposition 1. There is an isomorphism of commutative Hopf algebras
Sn/(Bf) = Hap
where Hyy, is the largest commutative quotient of H

As a consequence, Sy is an Ha,-comodule algebra

e Using a result by Takeuchi (1979), we obtain the following

Proposition 2. If Condition (FP) is satisfied, then By is the subalgebra of
Hap-coinvariants of Sp:
BH _ (SH)CO —Hgp

This result allows to identity By, inside Sy (see examples below)



Flatness

Now comes a first step towards Condition (FP)
e Theorem 1. For any Hopf algebra H, the By-module Sy is flat

By Masuoka and Wigner (1994), any commutative Hopf algebra is flat over
any left coideal subalgebra. We apply their result to the following proposition.

e Proposition 3. For any Hopf algebra H, the algebra By is a left coideal
subalgebra of the commutative Hopf algebra Sy
Proof. This is a consequence of the following identities:

A(0(X,¥)) = by by bays ® (X2, y2)

and
AT (X,¥)) = tay b 1 @07 (%2, )



Faithful flatness

We next list examples of Hopf algebras satisfying Condition (FP)

e Theorem 2. For any cocommutative Hopf algebra H, the By-module Sy is
faithfully flat

Proof. If H is cocommutative, then so is Sy. In this case the identities in the
proof of Proposition 3 can be rewritten as

Ao(x,y)) = a(x1, 1) @ o(X, ye)

and

Al (x,y)) =0 (X, 51) @0 (X, 2)
Consequently, By is a Hopf subalgebra of Sy. We conclude by following
Takeuchi who observed that any cocommutative Hopf algebra is faithfully flat
over any Hopf subalgebra.



Finite-dimensional Hopf algebras

Condition (FP) is satisfied for all finite-dimensional Hopf algebras as a
consequence of the following

e Theorem 3. If H is a finite-dimensional Hopf algebra, then the By-module
Sw is finitely generated projective

e Corollary 1. If H is a finite-dimensional Hopf algebra, then the Krull
dimension of By is equal to dimyx H

In other words, By C Ay represents a deformation of H as an H-comodule
algebra over an affine algebraic variety that has the same dimension as H

o Recall from above: If H is Sweedler’s four-dimensional algebra, then the
spectrum of By is a quadric of dimension 4



Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras
listed below (no condition is assumed on the dimension)

e Theorem 4. The By-module Sy is free in each of the following cases:

(i) H is commutative

Here G(H) is the group of group-like elements of H:

G(H)={geH|A(9)=g®g and (g) =1}

and Gy, is the largest abelian quotient of G
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Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras
listed below (no condition is assumed on the dimension)

e Theorem 4. The By-module Sy is free in each of the following cases:

(i) H is commutative
(i) H is pointed and cocommutative

(ii) H is pointed and the natural embedding kG(H) — H splits as an
algebra map

(iv) H is pointed and each element of the kernel of the homomorphism
G(H)ap — G(Hab)
is of finite order
Here G(H) is the group of group-like elements of H:

G(H)={g e HIA(9)=g®g and ¢(g) =1}

and Gy, is the largest abelian quotient of G



Group algebras again

e Consider the Hopf algebra H = kG, where G is a group. We have
Hab = kGab

e By Proposition 1, the Laurent polynomial algebra Sy is a kGa,-comodule
algebra. This means that the algebra Sy is graded by the abelian group Gap

Explicitly, if g is the image of g € G in Gap, then the generator ;' of
Sy =kKltg, 1y '|g € G]

is of degree +g (we write the composition law of G, additively)

e Since the Hopf algebra H = kG is cocommutative, Condition (FP) is
satisfied by Theorem 2, and by Proposition 2 the subalgebra By is the
degree 0 summand of Sy

In other words, By is spanned by the monomials tg/ - - - t;* such that

E1t;1 +~~~+Ekt;k =0 in Gy



Function algebras

e Let G be a finite group and H = (kG)* be the dual of the group algebra. It is
a commutative Hopf algebra whose elements can be identified with scalar-
valued functions on G. In this case,

1
Sn=K[tg| g € G] [GTG]

where Og is the Dedekind determinant of G:
Oc = det (gn-1),

e By Proposition 1, the algebra Sy is a H-comodule algebra, which means
that it is an algebra with a G-action. Explicitly, g € G acts on t, by

g'th:tgh

o Condition (FP) is satisfied by Theorem 3, and by Proposition 2 the
subalgebra By is the subalgebra of G-invariant elements of Sy:

By = (Sw)¢ = Kty g € G|° [@ié]
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Twisted comodule algebras

Let H be a Hopf algebra

e A two-cocycle oo on H is a bilinear form o : H x H — k such that

D alan)aleye,z) = Y aly,z)alx,yez2)  (x,y,z€ H)

)W) (@)
We assume that « is convolution-invertible and denote its inverse by o'
e Consider the “twisted” H-comodule algebra *H defined as follows:

(a) as a right H-comodule, “H = H
(b) as an algebra it is equipped with the associative product

Xy = Z a(X1, y1) Xe)o
)

All cleft Galois objects of H are of the form “H

o If o is the trivial cocycle a(x, y) = e(x)e(y), then “H = H



The algebra B,

Let H be a Hopf algebra and « a two-cocycle on H

e For x, y € H consider the following elements of Sy:
Z b By X27 y2) X3y3
(€9107)]

and
ga ()= Y bay (e, ) by by
)W)
o Definition. Let By be the subalgebra of Sy generated by all elements
oa(x,y)and o5 (x,y)

e Remark. If H is cocommutative or more generally if « is lazy, i.e.

D alxy)xeye = alxe,y2) xys
W) (€9167)

forall x,y € H, then B, = By



Reduction to the trivial cocycle
Let H be a Hopf algebra and « a two-cocycle on H

e Consider the Hopf algebra L = @He"" defined as follows:
(a) as acoalgebra, L =H
(b) as an algebra, it is equipped with the associative product

X*xy = Z a(xi, 1) xeyz o ' (xa, ¥s) .
(X))

e Proposition. We have B = B; inside S(ty)e

e Remark. If o and g are cohomologous two-cocycles, then
Bfi = B}

Hence by the remark on the previous slide, if a two-cocycle « is
cohomologous to a lazy two-cocycle, then

Bi = By

Note that all two-cocycles on a Taft algebra (on the Sweedler algebra) are
cohomologous to lazy two-cocycles
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