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Introduction 1

This lecture is based on joint work with Eli Aljadeff (Technion, Haifa) and
with Akira Masuoka (University of Tsukuba)

• E. ALJADEFF, C. KASSEL, Polynomial identities and noncommutative versal
torsors, Adv. Math. 218 (2008), 1453–1495

• C. KASSEL, A. MASUOKA, Flatness and freeness properties of the generic
Hopf Galois extensions, Rev. Un. Mat. Argentina 51:1 (2010), 79–94
(see also arXiv:0911.3719)



Introduction 2

Fix a field k and let H be a Hopf algebra over k

• Aljadeff and I constructed an H-Galois extension BH ⊂ AH whose algebra
of coinvariants BH is central in AH

• This Galois extension possesses the following properties:

I The commutative algebra BH is a domain of Krull dimension ≤ dimk H
I There is a maximal ideal m0 of BH such that

AH/m0AH ∼= H

as H-comodule algebras
I Under some Condition (FP) [see below], for any maximal ideal m of BH ,

the H-comodule algebra AH/mAH is a form of H, meaning that
AH/mAH and H become isomorphic after extension of scalars to the
algebraic closure of the field BH/m

I Conversely, any form of the H-comodule algebra H can be obtained in
this way

Thus, BH ⊂ AH is a (weak) moduli space for forms of H



Introduction 2

Fix a field k and let H be a Hopf algebra over k

• Aljadeff and I constructed an H-Galois extension BH ⊂ AH whose algebra
of coinvariants BH is central in AH

• This Galois extension possesses the following properties:

I The commutative algebra BH is a domain of Krull dimension ≤ dimk H
I There is a maximal ideal m0 of BH such that

AH/m0AH ∼= H

as H-comodule algebras
I Under some Condition (FP) [see below], for any maximal ideal m of BH ,

the H-comodule algebra AH/mAH is a form of H, meaning that
AH/mAH and H become isomorphic after extension of scalars to the
algebraic closure of the field BH/m

I Conversely, any form of the H-comodule algebra H can be obtained in
this way

Thus, BH ⊂ AH is a (weak) moduli space for forms of H



Introduction 2

Fix a field k and let H be a Hopf algebra over k

• Aljadeff and I constructed an H-Galois extension BH ⊂ AH whose algebra
of coinvariants BH is central in AH

• This Galois extension possesses the following properties:

I The commutative algebra BH is a domain of Krull dimension ≤ dimk H
I There is a maximal ideal m0 of BH such that

AH/m0AH ∼= H

as H-comodule algebras
I Under some Condition (FP) [see below], for any maximal ideal m of BH ,

the H-comodule algebra AH/mAH is a form of H, meaning that
AH/mAH and H become isomorphic after extension of scalars to the
algebraic closure of the field BH/m

I Conversely, any form of the H-comodule algebra H can be obtained in
this way

Thus, BH ⊂ AH is a (weak) moduli space for forms of H



Introduction 2

Fix a field k and let H be a Hopf algebra over k

• Aljadeff and I constructed an H-Galois extension BH ⊂ AH whose algebra
of coinvariants BH is central in AH

• This Galois extension possesses the following properties:

I The commutative algebra BH is a domain of Krull dimension ≤ dimk H
I There is a maximal ideal m0 of BH such that

AH/m0AH ∼= H

as H-comodule algebras
I Under some Condition (FP) [see below], for any maximal ideal m of BH ,

the H-comodule algebra AH/mAH is a form of H, meaning that
AH/mAH and H become isomorphic after extension of scalars to the
algebraic closure of the field BH/m

I Conversely, any form of the H-comodule algebra H can be obtained in
this way

Thus, BH ⊂ AH is a (weak) moduli space for forms of H



Summary of Part I

• In geometric terms, BH ⊂ AH is a quantum principal fiber bundle with
“structural group” H over the domain BH

Under Condition (FP) the fibers of this bundle are forms of H, and all forms
of H are isomorphic to such fibers

• In Part I

∗ we recall how to construct the domain BH

∗ we state Condition (FP)

∗ we give examples for which the algebra BH has been determined

∗ we state a simple open problem



Summary of Part II

• Masuoka and I determined classes of Hopf algebras for which
Condition (FP) is verified

• In Part II we show that Condition (FP) is verified for all

∗ finite-dimensional Hopf algebras

∗ commutative Hopf algebras

∗ cocommutative Hopf algebras

∗ pointed Hopf algebras whose group-like elements are of finite order



Summary of Part III

• There is a version of the previous constructions starting from a Hopf
algebra H together with a two-cocycle

α : H × H → k

In an analogous way we obtain a (weak) moduli space for the forms of any
given cleft Galois object of H

• In Part III we show how to reduce this more general case to the one
considered in Parts I & II
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I. The algebra BH and Condition (FP)
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III. Twisting with a cocycle
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A construction by Takeuchi (1971)

• Let C be a coalgebra with coproduct ∆ : C → C ⊗ C and counit ε : C → k

Let tC be a copy of the underlying vector space of C and let x 7→ tx denote
the identity map from C to tC

• Consider the symmetric algebra Sym(tC) over the vector space tC :
if {xi}i∈I is a linear basis of C, then Sym(tC) is a polynomial algebra over the
symbols {txi }i∈I

• There is a unique linear map x 7→ t−1
x from C to the fraction field

Frac Sym(tC) of Sym(tC) such that for all x ∈ C,X
(x)

tx1 t−1
x2 = ε(x) 1 =

X
(x)

t−1
x1 tx2

where ∆(x) =
P

(x) x1 ⊗ x2 (Sweedler’s notation)

• Definition. Let SC be the subalgebra of Frac Sym(tC) generated by tx
and t−1

x , (x ∈ C):
SC = Sym(tC)[t−1

x | x ∈ C]



The algebra BH and Condition (FP)

Now let C = H be a Hopf algebra

• For x , y ∈ H consider the following elements of SH :

σ(x , y) =
X

(x)(y)

tx1 ty1 t−1
x2y2 and σ−1(x , y) =

X
(x)(y)

tx1y1 t−1
x2 t−1

y2

• Definition (AK, 2008). Let BH be the subalgebra of SH generated by all
elements σ(x , y) and σ−1(x , y)

• Since BH ⊂ SC ⊂ Frac Sym(tH), the commutative algebra BH is a domain
and its Krull dimension does not exceed dimk H

•We now state the above-mentioned Condition (FP):

Condition (FP): As a BH -module, SH is faithfully flat

This means that a sequence 0→ M ′ → M → M ′′ → 0 of BH -modules is
exact if and only if the induced sequence

0→ SH ⊗BH M ′ → SH ⊗BH M → SH ⊗BH M ′′ → 0

of SH -modules is exact



First example: group algebras

• The algebra H = kG of a group G is a Hopf algebra with

∆(g) = g ⊗ g and ε(g) = 1 (g ∈ G)

• In this case, t−1
g = 1/tg for all g ∈ G and

SH = k [tg , t−1
g | g ∈ G]

is an algebra of Laurent polynomials

• The algebra BH is the subalgebra generated by the elements

σ(g, h) =
tg th
tgh

and σ−1(g, h) =
tgh

tg th
(g, h ∈ G)

• From this description of SH and BH , it is easy to check that when G is finite,
then the algebra SH is integral over BH , and Condition (FP) is satisfied

[We shall see later that Condition (FP) is satisfied for any group algebra and
more generally for any cocommutative Hopf algebra]



Special cases

• Let G = Z be the group of integers. If ym = tm/tm
1 for each m ∈ Z, then

BH = k [ym, y−1
m |m ∈ Z− {1}]

is an algebra of Laurent polynomials and

SH = BH [t1, t−1]

As a BH -module, SH is free and Condition (FP) is satisfied

• If G = Z/N is a cyclic group of order N ≥ 2, then

BH = k [y±1
0 , y±1

2 , . . . , y±1
N−1, y

±1
N ]

where y0, , y2, . . . , yN−1 are as above and yN = t0/tN
1 , and

SH = BH [t1]/(tN
1 − y0/yN)

is an integral extension of BH . Condition (FP) is satisfied



Second example: the Sweedler algebra

• The Sweedler algebra is the Hopf algebra

H = k〈x , y | x2 = 1, y2 = 0, yx = −xy〉

with coproduct

∆(x) = x ⊗ x and ∆(y) = 1⊗ y + y ⊗ x

It is four-dimensional with basis {1, x , y , z}, where z = xy

• In this case,
SH = k [t1, t−1

1 , tx , t−1
x , ty , tz ]

and BH is generated by the elements e, e−1, a, a−1, b, c, d where

e = t1, a = t2
x , b = 2tx ty , c = t2

y , d = tz

• The algebra BH has the following presentation (AK, 2008):

BH ∼= k [e±1, a±1, b, c, d ]/(b2 − 4ac)

The algebra SH is integral over BH and Condition (FP) is satisfied



An open question

The reader is encouraged to solve the open problem below

• Let n be an integer ≥ 2. The Taft algebra Hn2 is the algebra

Hn2 = k〈x , y | xn = 1, yn = 0, yx = qxy〉

where q is a root of unity of order n. The Taft algebra H4 is Sweedler’s algebra

It has a Hopf algebra structure with coproduct

∆(x) = x ⊗ x and ∆(y) = 1⊗ y + y ⊗ x

As a vector space, it is of dimension n2

• Problem: Give a presentation by generators and relations of the
algebra BH when H = Hn2
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Generators of the BH-module SH

We start with an observation

Lemma 1. As a BH -module, SH is generated by the elements tx (x ∈ H)

Proof.
• Let M be the BH -submodule generated by the elements tx (x ∈ H). The
relation σ(x , y) =

P
(x)(y) tx1 ty1 t−1

x2y2 implies

tx ty =
X

(x)(y)

σ(x1, y1) tx2y2

Hence, tx ty ∈ M for all x , y ∈ H

By an easy induction, any finite product of elements tx belong to M

• To prove that each t−1
x belongs to M, we use the antipode S of H and the

identities
t−1
1 = σ−1(1, 1) ∈ BH

and
t−1
x =

X
(x)

tS(x1) σ
−1(S(x2), x3) t−1

1



A Hopf algebra structure on SH

Takeuchi (1971): The algebra SH is a commutative Hopf algebra with
coproduct ∆, counit ε, and (involutive) antipode S given by

∆(tx ) =
X
(x)

tx1 ⊗ tx2 and ∆(t−1
x ) =

X
(x)

t−1
x2 ⊗ t−1

x1

ε(tx ) = ε(t−1
x ) = ε(x)

S(tx ) = t−1
x and S(t−1

x ) = tx



A quotient of SH

• Inside SH consider the ideal (B+
H ) generated by BH ∩ ker(ε). It is easy to

prove the following

Proposition 1. There is an isomorphism of commutative Hopf algebras

SH/(B+
H ) ∼= Hab

where Hab is the largest commutative quotient of H

As a consequence, SH is an Hab-comodule algebra

• Using a result by Takeuchi (1979), we obtain the following

Proposition 2. If Condition (FP) is satisfied, then BH is the subalgebra of
Hab-coinvariants of SH :

BH = (SH)co−Hab

This result allows to identity BH inside SH (see examples below)



Flatness

Now comes a first step towards Condition (FP)

• Theorem 1. For any Hopf algebra H, the BH -module SH is flat

By Masuoka and Wigner (1994), any commutative Hopf algebra is flat over
any left coideal subalgebra. We apply their result to the following proposition.

• Proposition 3. For any Hopf algebra H, the algebra BH is a left coideal
subalgebra of the commutative Hopf algebra SH

Proof. This is a consequence of the following identities:

∆(σ(x , y)) = tx1 ty1 t−1
x3y3 ⊗ σ(x2, y2)

and
∆(σ−1(x , y)) = tx1y1 t−1

x3 t−1
y3 ⊗ σ

−1(x2, y2)



Faithful flatness

We next list examples of Hopf algebras satisfying Condition (FP)

• Theorem 2. For any cocommutative Hopf algebra H, the BH -module SH is
faithfully flat

Proof. If H is cocommutative, then so is SH . In this case the identities in the
proof of Proposition 3 can be rewritten as

∆(σ(x , y)) = σ(x1, y1)⊗ σ(x2, y2)

and
∆(σ−1(x , y)) = σ−1(x1, y1)⊗ σ−1(x2, y2)

Consequently, BH is a Hopf subalgebra of SH . We conclude by following
Takeuchi who observed that any cocommutative Hopf algebra is faithfully flat
over any Hopf subalgebra.



Finite-dimensional Hopf algebras

Condition (FP) is satisfied for all finite-dimensional Hopf algebras as a
consequence of the following

• Theorem 3. If H is a finite-dimensional Hopf algebra, then the BH -module
SH is finitely generated projective

• Corollary 1. If H is a finite-dimensional Hopf algebra, then the Krull
dimension of BH is equal to dimK H

In other words, BH ⊂ AH represents a deformation of H as an H-comodule
algebra over an affine algebraic variety that has the same dimension as H

• Recall from above: If H is Sweedler’s four-dimensional algebra, then the
spectrum of BH is a quadric of dimension 4



Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras
listed below (no condition is assumed on the dimension)

• Theorem 4. The BH -module SH is free in each of the following cases:

(i) H is commutative

(ii) H is pointed and cocommutative

(iii) H is pointed and the natural embedding kG(H)→ H splits as an
algebra map

(iv) H is pointed and each element of the kernel of the homomorphism

G(H)ab → G(Hab)

is of finite order

Here G(H) is the group of group-like elements of H:

G(H) = {g ∈ H |∆(g) = g ⊗ g and ε(g) = 1}

and Gab is the largest abelian quotient of G
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Group algebras again

• Consider the Hopf algebra H = kG, where G is a group. We have

Hab = kGab

• By Proposition 1, the Laurent polynomial algebra SH is a kGab-comodule
algebra. This means that the algebra SH is graded by the abelian group Gab

Explicitly, if ḡ is the image of g ∈ G in Gab, then the generator t±1
g of

SH = k [tg , t−1
g | g ∈ G]

is of degree ±ḡ (we write the composition law of Gab additively)

• Since the Hopf algebra H = kG is cocommutative, Condition (FP) is
satisfied by Theorem 2, and by Proposition 2 the subalgebra BH is the
degree 0 summand of SH

In other words, BH is spanned by the monomials tε1
g1
· · · tεk

gk
such that

ε1 ¯tg1 + · · ·+ εk ¯tgk = 0 in Gab



Function algebras
• Let G be a finite group and H = (kG)∗ be the dual of the group algebra. It is
a commutative Hopf algebra whose elements can be identified with scalar-
valued functions on G. In this case,

SH = k [tg | g ∈ G]

»
1

ΘG

–
where ΘG is the Dedekind determinant of G:

ΘG = det
`
tgh−1

´
g,h∈G

• By Proposition 1, the algebra SH is a H-comodule algebra, which means
that it is an algebra with a G-action. Explicitly, g ∈ G acts on th by

g · th = tgh

• Condition (FP) is satisfied by Theorem 3, and by Proposition 2 the
subalgebra BH is the subalgebra of G-invariant elements of SH :

BH = (SH)G = k [tg | g ∈ G]G
»

1
Θ2

G

–
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Twisted comodule algebras

Let H be a Hopf algebra

• A two-cocycle α on H is a bilinear form α : H × H → k such thatX
(x)(y)

α(x1, y1)α(x2y2, z) =
X

(y)(z)

α(y1, z1)α(x , y2z2) (x , y , z ∈ H)

We assume that α is convolution-invertible and denote its inverse by α−1

• Consider the “twisted” H-comodule algebra αH defined as follows:

(a) as a right H-comodule, αH = H

(b) as an algebra it is equipped with the associative product

x ·α y =
X

(x)(y)

α(x1, y1) x2y2

All cleft Galois objects of H are of the form αH

• If α is the trivial cocycle α(x , y) = ε(x)ε(y), then αH = H



The algebra Bα
H

Let H be a Hopf algebra and α a two-cocycle on H

• For x , y ∈ H consider the following elements of SH :

σα(x , y) =
X

(x)(y)

tx1 ty1 α(x2, y2) t−1
x3y3

and
σ−1
α (x , y) =

X
(x)(y)

tx1y1 α
−1(x2, y2) t−1

x3 t−1
y3

• Definition. Let BαH be the subalgebra of SH generated by all elements
σα(x , y) and σ−1

α (x , y)

• Remark. If H is cocommutative or more generally if α is lazy, i.e.X
(x)(y)

α(x1, y1) x2y2 =
X

(x)(y)

α(x2, y2) x1y1

for all x , y ∈ H, then BαH = BH



Reduction to the trivial cocycle
Let H be a Hopf algebra and α a two-cocycle on H

• Consider the Hopf algebra L = αHα−1
defined as follows:

(a) as a coalgebra, L = H

(b) as an algebra, it is equipped with the associative product

x ∗ y =
X

(x)(y)

α(x1, y1) x2y2 α
−1(x3, y3) .

• Proposition. We have BαH = BL inside S(tH)Θ

• Remark. If α and β are cohomologous two-cocycles, then

BαH ∼= BβH

Hence by the remark on the previous slide, if a two-cocycle α is
cohomologous to a lazy two-cocycle, then

BαH ∼= BH

Note that all two-cocycles on a Taft algebra (on the Sweedler algebra) are
cohomologous to lazy two-cocycles
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