

Any Hopf algebra fibers over an affine variety of the same dimension

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg
Strasbourg, France

Conference “Quantum Groups”
Université Blaise Pascal, Clermont-Ferrand
30 August 2010

Introduction 1

This lecture is based on joint work with [Eli Aljadeff](#) (Technion, Haifa) and with [Akira Masuoka](#) (University of Tsukuba)

- E. ALJADEFF, C. KASSEL, *Polynomial identities and noncommutative versal torsors*, Adv. Math. 218 (2008), 1453–1495
- C. KASSEL, A. MASUOKA, *Flatness and freeness properties of the generic Hopf Galois extensions*, Rev. Un. Mat. Argentina 51:1 (2010), 79–94
(see also arXiv:0911.3719)

Introduction 2

Fix a field k and let H be a **Hopf algebra** over k

- Aljadeff and I constructed an H -**Galois extension** $\mathcal{B}_H \subset \mathcal{A}_H$ whose algebra of coinvariants \mathcal{B}_H is **central** in \mathcal{A}_H
- This Galois extension possesses the following properties:
 - ▶ The commutative algebra \mathcal{B}_H is a **domain** of Krull dimension $\leq \dim_k H$
 - ▶ There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H such that

$$\mathcal{A}_H/\mathfrak{m}_0\mathcal{A}_H \cong H$$

as H -comodule algebras

- ▶ Under some **Condition (FP)** [see below], for any maximal ideal \mathfrak{m} of \mathcal{B}_H , the H -comodule algebra $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ is a **form** of H , meaning that $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ and H become isomorphic after extension of scalars to the algebraic closure of the field $\mathcal{B}_H/\mathfrak{m}$
- ▶ Conversely, any form of the H -comodule algebra H can be obtained in this way

Thus, $\mathcal{B}_H \subset \mathcal{A}_H$ is a **(weak) moduli space** for forms of H

Introduction 2

Fix a field k and let H be a **Hopf algebra** over k

- Aljadeff and I constructed an H -**Galois extension** $\mathcal{B}_H \subset \mathcal{A}_H$ whose algebra of coinvariants \mathcal{B}_H is **central** in \mathcal{A}_H
- This Galois extension possesses the following properties:
 - ▶ The commutative algebra \mathcal{B}_H is a **domain** of Krull dimension $\leq \dim_k H$
 - ▶ There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H such that

$$\mathcal{A}_H/\mathfrak{m}_0\mathcal{A}_H \cong H$$

as H -comodule algebras

- ▶ Under some **Condition (FP)** [see below], for any maximal ideal \mathfrak{m} of \mathcal{B}_H , the H -comodule algebra $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ is a **form** of H , meaning that $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ and H become isomorphic after extension of scalars to the algebraic closure of the field $\mathcal{B}_H/\mathfrak{m}$
- ▶ Conversely, any form of the H -comodule algebra H can be obtained in this way

Thus, $\mathcal{B}_H \subset \mathcal{A}_H$ is a **(weak) moduli space** for forms of H

Introduction 2

Fix a field k and let H be a **Hopf algebra** over k

- Aljadeff and I constructed an H -**Galois extension** $\mathcal{B}_H \subset \mathcal{A}_H$ whose algebra of coinvariants \mathcal{B}_H is **central** in \mathcal{A}_H
- This Galois extension possesses the following properties:
 - ▶ The commutative algebra \mathcal{B}_H is a **domain** of Krull dimension $\leq \dim_k H$
 - ▶ There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H such that

$$\mathcal{A}_H/\mathfrak{m}_0\mathcal{A}_H \cong H$$

as H -comodule algebras

- ▶ Under some **Condition (FP)** [see below], for any maximal ideal \mathfrak{m} of \mathcal{B}_H , the H -comodule algebra $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ is a **form** of H , meaning that $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ and H become isomorphic after extension of scalars to the algebraic closure of the field $\mathcal{B}_H/\mathfrak{m}$
- ▶ Conversely, any form of the H -comodule algebra H can be obtained in this way

Thus, $\mathcal{B}_H \subset \mathcal{A}_H$ is a **(weak) moduli space** for forms of H

Introduction 2

Fix a field k and let H be a **Hopf algebra** over k

- Aljadeff and I constructed an H -**Galois extension** $\mathcal{B}_H \subset \mathcal{A}_H$ whose algebra of coinvariants \mathcal{B}_H is **central** in \mathcal{A}_H
- This Galois extension possesses the following properties:
 - ▶ The commutative algebra \mathcal{B}_H is a **domain** of Krull dimension $\leq \dim_k H$
 - ▶ There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H such that

$$\mathcal{A}_H/\mathfrak{m}_0\mathcal{A}_H \cong H$$

as H -comodule algebras

- ▶ Under some **Condition (FP)** [see below], for any maximal ideal \mathfrak{m} of \mathcal{B}_H , the H -comodule algebra $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ is a **form** of H , meaning that $\mathcal{A}_H/\mathfrak{m}\mathcal{A}_H$ and H become isomorphic after extension of scalars to the algebraic closure of the field $\mathcal{B}_H/\mathfrak{m}$
- ▶ Conversely, any form of the H -comodule algebra H can be obtained in this way

Thus, $\mathcal{B}_H \subset \mathcal{A}_H$ is a **(weak) moduli space** for forms of H

Summary of Part I

- In geometric terms, $\mathcal{B}_H \subset \mathcal{A}_H$ is a **quantum principal fiber bundle** with “structural group” H over the domain \mathcal{B}_H

Under Condition (FP) the **fibers** of this bundle are forms of H , and all forms of H are isomorphic to such fibers

- In **Part I**
 - * we recall how to construct **the domain** \mathcal{B}_H
 - * we state **Condition (FP)**
 - * we give **examples** for which the algebra \mathcal{B}_H has been determined
 - * we state a simple **open problem**

Summary of Part II

- Masuoka and I determined **classes of Hopf algebras** for which Condition (FP) is verified
- In **Part II** we show that Condition (FP) is verified for all
 - * **finite-dimensional** Hopf algebras
 - * **commutative** Hopf algebras
 - * **cocommutative Hopf** algebras
 - * **pointed** Hopf algebras whose group-like elements are of **finite order**

Summary of Part III

- There is a version of the previous constructions starting from a Hopf algebra H together with a **two-cocycle**

$$\alpha : H \times H \rightarrow k$$

In an analogous way we obtain a (weak) moduli space for the forms of any given **cleft Galois object** of H

- In Part III we show how to **reduce** this more general case to the one considered in Parts I & II

Plan

I. The algebra \mathcal{B}_H and Condition (FP)

II. Joint results with Masuoka

III. Twisting with a cocycle

References

Plan

I. The algebra \mathcal{B}_H and Condition (FP)

II. Joint results with Masuoka

III. Twisting with a cocycle

References

A construction by Takeuchi (1971)

- Let C be a **coalgebra** with coproduct $\Delta : C \rightarrow C \otimes C$ and counit $\varepsilon : C \rightarrow k$

Let t_C be a **copy** of the underlying vector space of C and let $x \mapsto t_x$ denote the identity map from C to t_C

- Consider the **symmetric algebra** $\text{Sym}(t_C)$ over the vector space t_C : if $\{x_i\}_{i \in I}$ is a linear basis of C , then $\text{Sym}(t_C)$ is a **polynomial algebra** over the symbols $\{t_{x_i}\}_{i \in I}$
- There is a unique linear map $x \mapsto t_x^{-1}$ from C to the fraction field $\text{Frac Sym}(t_C)$ of $\text{Sym}(t_C)$ such that for all $x \in C$,

$$\sum_{(x)} t_{x_1} t_{x_2}^{-1} = \varepsilon(x) 1 = \sum_{(x)} t_{x_1}^{-1} t_{x_2}$$

where $\Delta(x) = \sum_{(x)} x_1 \otimes x_2$ (Sweedler's notation)

- Definition.** Let \mathcal{S}_C be the **subalgebra** of $\text{Frac Sym}(t_C)$ generated by t_x and t_x^{-1} , ($x \in C$):

$$\mathcal{S}_C = \text{Sym}(t_C)[t_x^{-1} \mid x \in C]$$

The algebra \mathcal{B}_H and Condition (FP)

Now let $C = H$ be a Hopf algebra

- For $x, y \in H$ consider the following elements of \mathcal{S}_H :

$$\sigma(x, y) = \sum_{(x)(y)} t_{x_1} t_{y_1} t_{x_2 y_2}^{-1} \quad \text{and} \quad \sigma^{-1}(x, y) = \sum_{(x)(y)} t_{x_1 y_1} t_{x_2}^{-1} t_{y_2}^{-1}$$

- **Definition (AK, 2008).** Let \mathcal{B}_H be the subalgebra of \mathcal{S}_H generated by all elements $\sigma(x, y)$ and $\sigma^{-1}(x, y)$
- Since $\mathcal{B}_H \subset \mathcal{S}_C \subset \text{Frac Sym}(t_H)$, the commutative algebra \mathcal{B}_H is a domain and its Krull dimension does not exceed $\dim_k H$
- We now state the above-mentioned Condition (FP):

Condition (FP): As a \mathcal{B}_H -module, \mathcal{S}_H is faithfully flat

This means that a sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of \mathcal{B}_H -modules is exact if and only if the induced sequence

$$0 \rightarrow \mathcal{S}_H \otimes_{\mathcal{B}_H} M' \rightarrow \mathcal{S}_H \otimes_{\mathcal{B}_H} M \rightarrow \mathcal{S}_H \otimes_{\mathcal{B}_H} M'' \rightarrow 0$$

of \mathcal{S}_H -modules is exact

First example: group algebras

- The algebra $H = kG$ of a **group** G is a Hopf algebra with

$$\Delta(g) = g \otimes g \quad \text{and} \quad \varepsilon(g) = 1 \quad (g \in G)$$

- In this case, $t_g^{-1} = 1/t_g$ for all $g \in G$ and

$$\mathcal{S}_H = k[t_g, t_g^{-1} \mid g \in G]$$

is an algebra of **Laurent polynomials**

- The algebra \mathcal{B}_H is the **subalgebra** generated by the elements

$$\sigma(g, h) = \frac{t_g t_h}{t_{gh}} \quad \text{and} \quad \sigma^{-1}(g, h) = \frac{t_{gh}}{t_g t_h} \quad (g, h \in G)$$

- From this description of \mathcal{S}_H and \mathcal{B}_H , it is easy to check that when G is **finite**, then the algebra \mathcal{S}_H is **integral** over \mathcal{B}_H , and Condition (FP) is satisfied

[We shall see later that Condition (FP) is satisfied for any group algebra and more generally for any cocommutative Hopf algebra]

Special cases

- Let $G = \mathbb{Z}$ be the group of integers. If $y_m = t_m/t_1^m$ for each $m \in \mathbb{Z}$, then

$$\mathcal{B}_H = k[y_m, y_m^{-1} \mid m \in \mathbb{Z} - \{1\}]$$

is an algebra of Laurent polynomials and

$$\mathcal{S}_H = \mathcal{B}_H[t_1, t^{-1}]$$

As a \mathcal{B}_H -module, \mathcal{S}_H is free and Condition (FP) is satisfied

- If $G = \mathbb{Z}/N$ is a cyclic group of order $N \geq 2$, then

$$\mathcal{B}_H = k[y_0^{\pm 1}, y_2^{\pm 1}, \dots, y_{N-1}^{\pm 1}, y_N^{\pm 1}]$$

where y_0, y_2, \dots, y_{N-1} are as above and $y_N = t_0/t_1^N$, and

$$\mathcal{S}_H = \mathcal{B}_H[t_1]/(t_1^N - y_0/y_N)$$

is an integral extension of \mathcal{B}_H . Condition (FP) is satisfied

Second example: the Sweedler algebra

- The **Sweedler algebra** is the Hopf algebra

$$H = k\langle x, y \mid x^2 = 1, y^2 = 0, yx = -xy \rangle$$

with coproduct

$$\Delta(x) = x \otimes x \quad \text{and} \quad \Delta(y) = 1 \otimes y + y \otimes x$$

It is **four-dimensional** with basis $\{1, x, y, z\}$, where $z = xy$

- In this case,

$$\mathcal{S}_H = k[t_1, t_1^{-1}, t_x, t_x^{-1}, t_y, t_z]$$

and \mathcal{B}_H is generated by the elements $e, e^{-1}, a, a^{-1}, b, c, d$ where

$$e = t_1, \quad a = t_x^2, \quad b = 2t_x t_y, \quad c = t_y^2, \quad d = t_z$$

- The algebra \mathcal{B}_H has the following **presentation** (AK, 2008):

$$\mathcal{B}_H \cong k[e^{\pm 1}, a^{\pm 1}, b, c, d]/(b^2 - 4ac)$$

The algebra \mathcal{S}_H is **integral** over \mathcal{B}_H and Condition (FP) is satisfied

An open question

The reader is encouraged to solve the open problem below

- Let n be an integer ≥ 2 . The **Taft algebra** H_{n^2} is the algebra

$$H_{n^2} = k\langle x, y \mid x^n = 1, y^n = 0, yx = qxy \rangle$$

where q is a root of unity of order n . The Taft algebra H_4 is **Sweedler's algebra**

It has a **Hopf algebra** structure with coproduct

$$\Delta(x) = x \otimes x \quad \text{and} \quad \Delta(y) = 1 \otimes y + y \otimes x$$

As a vector space, it is of dimension n^2

- **Problem:** Give a presentation by generators and relations of the algebra \mathcal{B}_H when $H = H_{n^2}$

Plan

I. The algebra \mathcal{B}_H and Condition (FP)

II. Joint results with Masuoka

III. Twisting with a cocycle

References

Generators of the \mathcal{B}_H -module \mathcal{S}_H

We start with an **observation**

Lemma 1. *As a \mathcal{B}_H -module, \mathcal{S}_H is generated by the elements t_x ($x \in H$)*

Proof.

- Let M be the \mathcal{B}_H -submodule generated by the elements t_x ($x \in H$). The relation $\sigma(x, y) = \sum_{(x)(y)} t_{x_1} t_{y_1} t_{x_2 y_2}^{-1}$ implies

$$t_x t_y = \sum_{(x)(y)} \sigma(x_1, y_1) t_{x_2 y_2}$$

Hence, $t_x t_y \in M$ for all $x, y \in H$

By an easy induction, any finite product of elements t_x belong to M

- To prove that each t_x^{-1} belongs to M , we use the antipode S of H and the identities

$$t_1^{-1} = \sigma^{-1}(1, 1) \in \mathcal{B}_H$$

and

$$t_x^{-1} = \sum_{(x)} t_{S(x_1)} \sigma^{-1}(S(x_2), x_3) t_1^{-1}$$

A Hopf algebra structure on \mathcal{S}_H

Takeuchi (1971): The algebra \mathcal{S}_H is a **commutative Hopf algebra** with coproduct Δ , counit ε , and (involutive) antipode S given by

$$\Delta(t_x) = \sum_{(x)} t_{x_1} \otimes t_{x_2} \quad \text{and} \quad \Delta(t_x^{-1}) = \sum_{(x)} t_{x_2}^{-1} \otimes t_{x_1}^{-1}$$

$$\varepsilon(t_x) = \varepsilon(t_x^{-1}) = \varepsilon(x)$$

$$S(t_x) = t_x^{-1} \quad \text{and} \quad S(t_x^{-1}) = t_x$$

A quotient of \mathcal{S}_H

- Inside \mathcal{S}_H consider the ideal (\mathcal{B}_H^+) generated by $\mathcal{B}_H \cap \ker(\varepsilon)$. It is easy to prove the following

Proposition 1. *There is an isomorphism of commutative Hopf algebras*

$$\mathcal{S}_H / (\mathcal{B}_H^+) \cong H_{ab}$$

where H_{ab} is the largest commutative quotient of H

As a consequence, \mathcal{S}_H is an H_{ab} -comodule algebra

- Using a result by Takeuchi (1979), we obtain the following

Proposition 2. *If Condition (FP) is satisfied, then \mathcal{B}_H is the subalgebra of H_{ab} -coinvariants of \mathcal{S}_H :*

$$\mathcal{B}_H = (\mathcal{S}_H)^{co-H_{ab}}$$

This result allows to identify \mathcal{B}_H inside \mathcal{S}_H (see examples below)

Flatness

Now comes a first step towards Condition (FP)

- **Theorem 1.** For any Hopf algebra H , the \mathcal{B}_H -module \mathcal{S}_H is flat

By Masuoka and Wigner (1994), any commutative Hopf algebra is flat over any left coideal subalgebra. We apply their result to the following proposition.

- **Proposition 3.** For any Hopf algebra H , the algebra \mathcal{B}_H is a **left coideal subalgebra** of the commutative Hopf algebra \mathcal{S}_H

Proof. This is a consequence of the following identities:

$$\Delta(\sigma(x, y)) = t_{x_1} t_{y_1} t_{x_3 y_3}^{-1} \otimes \sigma(x_2, y_2)$$

and

$$\Delta(\sigma^{-1}(x, y)) = t_{x_1 y_1} t_{x_3}^{-1} t_{y_3}^{-1} \otimes \sigma^{-1}(x_2, y_2)$$

Faithful flatness

We next list examples of Hopf algebras satisfying Condition (FP)

- **Theorem 2.** *For any cocommutative Hopf algebra H , the \mathcal{B}_H -module \mathcal{S}_H is faithfully flat*

Proof. If H is cocommutative, then so is \mathcal{S}_H . In this case the identities in the proof of Proposition 3 can be rewritten as

$$\Delta(\sigma(x, y)) = \sigma(x_1, y_1) \otimes \sigma(x_2, y_2)$$

and

$$\Delta(\sigma^{-1}(x, y)) = \sigma^{-1}(x_1, y_1) \otimes \sigma^{-1}(x_2, y_2)$$

Consequently, \mathcal{B}_H is a Hopf subalgebra of \mathcal{S}_H . We conclude by following Takeuchi who observed that any cocommutative Hopf algebra is faithfully flat over any Hopf subalgebra.

Finite-dimensional Hopf algebras

Condition (FP) is satisfied for all finite-dimensional Hopf algebras as a consequence of the following

- **Theorem 3.** *If H is a **finite-dimensional** Hopf algebra, then the \mathcal{B}_H -module \mathcal{S}_H is **finitely generated projective***
- **Corollary 1.** *If H is a **finite-dimensional** Hopf algebra, then the Krull dimension of \mathcal{B}_H is equal to $\dim_K H$*

In other words, $\mathcal{B}_H \subset \mathcal{A}_H$ represents a **deformation** of H as an H -comodule algebra over an **affine algebraic variety** that has the same dimension as H

- **Recall from above:** If H is Sweedler's four-dimensional algebra, then the spectrum of \mathcal{B}_H is a **quadric of dimension 4**

Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras listed below (no condition is assumed on the dimension)

- **Theorem 4.** *The \mathcal{B}_H -module \mathcal{S}_H is **free** in each of the following cases:*

- H is **commutative***
- H is **pointed and cocommutative***
- H is **pointed** and the natural embedding $kG(H) \rightarrow H$ **splits** as an algebra map*
- H is **pointed** and each element of the kernel of the homomorphism*

$$G(H)_{ab} \rightarrow G(H_{ab})$$

*is of **finite order***

Here $G(H)$ is the group of **group-like elements** of H :

$$G(H) = \{g \in H \mid \Delta(g) = g \otimes g \text{ and } \varepsilon(g) = 1\}$$

and G_{ab} is the largest abelian quotient of G

Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras listed below (no condition is assumed on the dimension)

- **Theorem 4.** *The \mathcal{B}_H -module S_H is **free** in each of the following cases:*

- H is **commutative***
- H is **pointed and cocommutative***
- H is **pointed** and the natural embedding $kG(H) \rightarrow H$ **splits** as an algebra map*
- H is **pointed** and each element of the kernel of the homomorphism*

$$G(H)_{ab} \rightarrow G(H_{ab})$$

*is of **finite order***

Here $G(H)$ is the group of **group-like elements** of H :

$$G(H) = \{g \in H \mid \Delta(g) = g \otimes g \text{ and } \varepsilon(g) = 1\}$$

and G_{ab} is the largest abelian quotient of G

Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras listed below (no condition is assumed on the dimension)

- **Theorem 4.** *The \mathcal{B}_H -module \mathcal{S}_H is **free** in each of the following cases:*

- (i) *H is **commutative***
- (ii) *H is **pointed and cocommutative***
- (iii) *H is **pointed** and the natural embedding $kG(H) \rightarrow H$ **splits** as an algebra map*
- (iv) *H is **pointed** and each element of the kernel of the homomorphism*

$$G(H)_{ab} \rightarrow G(H_{ab})$$

*is of **finite order***

Here $G(H)$ is the group of **group-like elements** of H :

$$G(H) = \{g \in H \mid \Delta(g) = g \otimes g \text{ and } \varepsilon(g) = 1\}$$

and G_{ab} is the largest abelian quotient of G

Freeness

The following implies that Condition (FP) is satisfied for the Hopf algebras listed below (no condition is assumed on the dimension)

- **Theorem 4.** *The \mathcal{B}_H -module \mathcal{S}_H is **free** in each of the following cases:*

- H is **commutative***
- H is **pointed and cocommutative***
- H is **pointed** and the natural embedding $kG(H) \rightarrow H$ **splits** as an algebra map*
- H is **pointed** and each element of the kernel of the homomorphism*

$$G(H)_{ab} \rightarrow G(H_{ab})$$

*is of **finite order***

Here $G(H)$ is the group of **group-like elements** of H :

$$G(H) = \{g \in H \mid \Delta(g) = g \otimes g \text{ and } \varepsilon(g) = 1\}$$

and G_{ab} is the largest abelian quotient of G

Group algebras again

- Consider the Hopf algebra $H = kG$, where G is a **group**. We have

$$H_{ab} = kG_{ab}$$

- By Proposition 1, the **Laurent polynomial algebra** S_H is a kG_{ab} -comodule algebra. This means that the algebra S_H is **graded by the abelian group** G_{ab}

Explicitly, if \bar{g} is the image of $g \in G$ in G_{ab} , then the generator $t_g^{\pm 1}$ of

$$S_H = k[t_g, t_g^{-1} \mid g \in G]$$

is of degree $\pm \bar{g}$ (we write the composition law of G_{ab} additively)

- Since the Hopf algebra $H = kG$ is cocommutative, Condition (FP) is satisfied by Theorem 2, and by Proposition 2 the subalgebra \mathcal{B}_H is the **degree 0 summand** of S_H

In other words, \mathcal{B}_H is **spanned by the monomials** $t_{g_1}^{\varepsilon_1} \cdots t_{g_k}^{\varepsilon_k}$ such that

$$\varepsilon_1 \bar{t}_{g_1} + \cdots + \varepsilon_k \bar{t}_{g_k} = 0 \text{ in } G_{ab}$$

Function algebras

- Let G be a **finite group** and $H = (kG)^*$ be the **dual** of the group algebra. It is a **commutative Hopf algebra** whose elements can be identified with scalar-valued functions on G . In this case,

$$\mathcal{S}_H = k[t_g \mid g \in G] \left[\frac{1}{\Theta_G} \right]$$

where Θ_G is the **Dedekind determinant** of G :

$$\Theta_G = \det (t_{gh^{-1}})_{g,h \in G}$$

- By Proposition 1, the algebra \mathcal{S}_H is a H -comodule algebra, which means that it is an algebra with a **G -action**. Explicitly, $g \in G$ acts on t_h by

$$g \cdot t_h = t_{gh}$$

- Condition (FP) is satisfied by Theorem 3, and by Proposition 2 the subalgebra \mathcal{B}_H is the subalgebra of **G -invariant elements** of \mathcal{S}_H :

$$\mathcal{B}_H = (\mathcal{S}_H)^G = k[t_g \mid g \in G]^G \left[\frac{1}{\Theta_G^2} \right]$$

Plan

I. The algebra \mathcal{B}_H and Condition (FP)

II. Joint results with Masuoka

III. Twisting with a cocycle

References

Twisted comodule algebras

Let H be a Hopf algebra

- A two-cocycle α on H is a bilinear form $\alpha : H \times H \rightarrow k$ such that

$$\sum_{(x)(y)} \alpha(x_1, y_1) \alpha(x_2 y_2, z) = \sum_{(y)(z)} \alpha(y_1, z_1) \alpha(x, y_2 z_2) \quad (x, y, z \in H)$$

We assume that α is convolution-invertible and denote its inverse by α^{-1}

- Consider the “twisted” H -comodule algebra ${}^\alpha H$ defined as follows:
 - as a right H -comodule, ${}^\alpha H = H$
 - as an algebra it is equipped with the associative product

$$x \cdot_\alpha y = \sum_{(x)(y)} \alpha(x_1, y_1) x_2 y_2$$

All cleft Galois objects of H are of the form ${}^\alpha H$

- If α is the trivial cocycle $\alpha(x, y) = \varepsilon(x)\varepsilon(y)$, then ${}^\alpha H = H$

The algebra \mathcal{B}_H^α

Let H be a Hopf algebra and α a two-cocycle on H

- For $x, y \in H$ consider the following elements of \mathcal{S}_H :

$$\sigma_\alpha(x, y) = \sum_{(x)(y)} t_{x_1} t_{y_1} \alpha(x_2, y_2) t_{x_3 y_3}^{-1}$$

and

$$\sigma_\alpha^{-1}(x, y) = \sum_{(x)(y)} t_{x_1 y_1} \alpha^{-1}(x_2, y_2) t_{x_3}^{-1} t_{y_3}^{-1}$$

- **Definition.** Let \mathcal{B}_H^α be the subalgebra of \mathcal{S}_H generated by all elements $\sigma_\alpha(x, y)$ and $\sigma_\alpha^{-1}(x, y)$

- **Remark.** If H is cocommutative or more generally if α is lazy, i.e.

$$\sum_{(x)(y)} \alpha(x_1, y_1) x_2 y_2 = \sum_{(x)(y)} \alpha(x_2, y_2) x_1 y_1$$

for all $x, y \in H$, then $\mathcal{B}_H^\alpha = \mathcal{B}_H$

Reduction to the trivial cocycle

Let H be a Hopf algebra and α a two-cocycle on H

- Consider the Hopf algebra $L = {}^\alpha H^{\alpha^{-1}}$ defined as follows:
 - as a coalgebra, $L = H$
 - as an algebra, it is equipped with the associative product

$$x * y = \sum_{(x)(y)} \alpha(x_1, y_1) x_2 y_2 \alpha^{-1}(x_3, y_3).$$

- **Proposition.** We have $\mathcal{B}_H^\alpha = \mathcal{B}_L$ inside $S(t_H)_\Theta$

- **Remark.** If α and β are cohomologous two-cocycles, then

$$\mathcal{B}_H^\alpha \cong \mathcal{B}_H^\beta$$

Hence by the remark on the previous slide, if a two-cocycle α is cohomologous to a lazy two-cocycle, then

$$\mathcal{B}_H^\alpha \cong \mathcal{B}_H$$

Note that all two-cocycles on a Taft algebra (on the Sweedler algebra) are cohomologous to lazy two-cocycles

Plan

I. The algebra \mathcal{B}_H and Condition (FP)

II. Joint results with Masuoka

III. Twisting with a cocycle

References

References

E. Aljadeff, C. Kassel, *Polynomial identities and noncommutative versal torsors*, Adv. Math. 218 (2008), 1453–1495

C. Kassel, *Generic Hopf Galois extensions*, Proc. Workshop on Quantum Groups and Noncommutative Geometry, MPIM, Bonn, 2007; arXiv:0809.0638

C. Kassel, *Hopf algebras and polynomial identities*, Proc. Conf. “Quantum Groups and Quantum Topology”, RIMS, Kyoto University, 2010; arXiv:1009.3180

C. Kassel, A. Masuoka, *Flatness and freeness properties of the generic Hopf Galois extensions*, Rev. Un. Mat. Argentina 51:1 (2010), 79–94; arXiv:0911.3719

A. Masuoka, D. Wigner, *Faithful flatness of Hopf algebras*, J. Algebra 170 (1994), 156–164

M. Takeuchi, *Free Hopf algebras generated by coalgebras*, J. Math. Soc. Japan 23 (1971), 561–582

M. Takeuchi, *Relative Hopf modules—equivalences and freeness criteria*, J. Algebra 60 (1979), 452–471

THANK YOU FOR YOUR ATTENTION