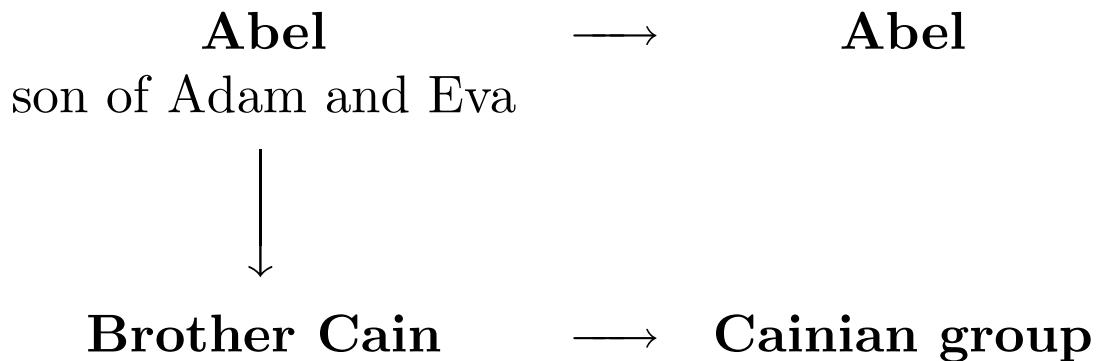


A derivation of Abel's name

by Postnikov



Abelian group: $G = G^{\text{ab}}$; derived subgroup $G' = \{1\}$

Cainian group: $G^{\text{ab}} = \{1\}$; derived subgroup $G' = G$
(= perfect group)

Reference: М. М. Постников, Лекции по геометрии
- Группы и алгебры Ли, Изд. Наука, Москва
1982 (French translation: Leçons de géométrie - Groupes
et algèbres de Lie, Editions Mir, Moscou 1985).

Action of the absolute Galois group of the rationals on knot invariants

CHRISTIAN KASSEL

Institut de Recherche Mathématique Avancée
Strasbourg

Joint work with Vladimir Turaev (IRMA, Strasbourg)

C. Kassel, V. Turaev, *Chord diagram invariants of tangents and graphs*, Duke Math. J. 92 (1998), 497–552.

Quantum group \leftrightarrow group in non-commutative geom.
depending on a parameter h ,
deformation of alg. of functions
on a group (in usual sense)

Quantum groups have applications in low-dimensional topology: - invariants of knots

- invariants of 3-manifolds
- TQFT's

The concept of a braided category (Joyal-Street) explains this relationship:

- (i) Representations of a quantum group form a braided category
- (ii) Free braided categories are made of geometric braids (loops in the configuration space of points in the plane)

Braided category (Joyal-Street, 1985): Category \mathcal{C} with associative, commutative, unital functor

$$\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C} \quad (\text{tensor product})$$

Associative: family of natural isomorphisms

$$a_{U,V,W} : (U \otimes V) \otimes W \xrightarrow{\cong} U \otimes (V \otimes W)$$

Commutative: family of natural isomorphisms

$$c_{U,V} : U \otimes V \xrightarrow{\cong} V \otimes U \quad (\text{braiding})$$

Unital: \exists an object I with natural isomorphisms

$$U \otimes I \xrightarrow{\cong} U \xrightarrow{\cong} I \otimes U$$

subject to coherence conditions (such as Mac Lane's pentagon).

Braided cat. is *symmetric* if braiding is involutive:

$$c_{V,U} \circ c_{U,V} = \text{id}_{U \otimes V}$$

Examples

(a) Category of vector spaces with usual tensor product and braiding $\sigma_{U,V}$ given by

$$\sigma_{U,V}(u \otimes v) = v \otimes u \quad (\text{flip})$$

This category is symmetric. So are

- categories of representations of groups
- categories of representations of Lie algebras

(b) Categories of representations of quantum groups are braided with non-involutive braidings such that

$$c_{U,V} = \sigma_{U,V} + O(h)$$

(c) (Joyal-Street) The free braided category \mathcal{B} on one object X has objects $I, X, X^{\otimes 2}, X^{\otimes 3}, \dots$ and morphisms

$$\text{Hom}_{\mathcal{B}}(X^{\otimes n}, X^{\otimes m}) = \begin{cases} B_n & \text{if } n = m \\ \emptyset & \text{if } n \neq m \end{cases}$$

where B_n is Artin's braid group.

Given a braided category \mathcal{C} and an object V , there is a unique functor $F : \mathcal{B} \rightarrow \mathcal{C}$ of braided categories such that $F(X) = V$. It induces braid group actions:

$$F : B_n = \text{Aut}_{\mathcal{B}}(X^{\otimes n}) \rightarrow \text{Aut}_{\mathcal{C}}(V^{\otimes n})$$

Braided categories with duality: the corresponding free category \mathcal{T} has more morphisms: not only braids, also knots, links, tangles embedded in \mathbf{R}^3 .

Completion of a braided category

Let \mathcal{C} be a *braided* category which is linear over a commutative ring R .

Augmentation ideal of \mathcal{C} : ideal I of morphisms (w.r.t. \circ and \otimes) generated by all morphisms

$$c_{V,U} \circ c_{U,V} - \text{id}_{U \otimes V}$$

Quotient category \mathcal{C}/I : same objects as \mathcal{C} and

$$\text{Hom}_{\mathcal{C}/I}(V, W) = \text{Hom}_{\mathcal{C}/I}(V, W) / (I \cap \text{Hom}_{\mathcal{C}/I}(V, W)).$$

The quotient category \mathcal{C}/I is symmetric.

Inverse system of braided categories:

$$\widehat{\mathcal{C}} = \varprojlim \{ \cdots \rightarrow \mathcal{C}/I^3 \rightarrow \mathcal{C}/I^2 \rightarrow \mathcal{C}/I \}$$

Example. Let $R[\mathcal{T}]$ be the linearization of the tangle category: $\text{Ob}(R[\mathcal{T}]) = \text{Ob}(\mathcal{T})$ and

$$\text{Hom}_{R[\mathcal{T}]}(X^{\otimes n}, X^{\otimes m}) = R[\text{Hom}_{\mathcal{T}}(X^{\otimes n}, X^{\otimes m})].$$

Then the completed category $\widehat{R[\mathcal{T}]}$ is universal for the Vassiliev invariants of links in \mathbf{R}^3 .

Drinfeld's Grothendieck-Teichmüller group

Elements of $GT(R)$ are couples (λ, f) , where $\lambda \in R^*$ and $f = \exp F(\log A, \log B) \in R\langle\langle A, B \rangle\rangle$ and F a Lie series. These couples satisfy certain conditions.

Drinfeld (1990): There exists a group morphism

$$\rho : \mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \rightarrow GT(\mathbf{Q}_\ell).$$

Definition of ρ : $\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ acts on ℓ -pro-unipotent completion $\widehat{\pi}_1$ of $\pi_1(\mathbf{P}^1(\mathbf{C}) - \{0, 1, \infty\})$.

$$\begin{array}{ccc} x & & y \\ \bullet & & \bullet \\ 0 & & 1 \end{array}$$

Action of $\sigma \in \mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ on generators x and y :

$$x \mapsto x^{\chi(\sigma)} \quad \text{and} \quad y \mapsto f_\sigma(x, y)^{-1} y^{\chi(\sigma)} f_\sigma(x, y)$$

$\chi(\sigma)$ is *cyclotomic character*: $\sigma(\zeta) = \zeta^{\chi(\sigma)}$ if $\zeta \in \mu_{\ell^n}$

Drinfeld: $\rho(\sigma) = (\chi(\sigma), f_\sigma(x, y)) \in GT(\mathbf{Q}_\ell)$.

Twisting of a braided category by an element of $GT(R)$

Let \mathcal{C} be a R -linear braided category with associativity isomorphism a and braiding c .

For $g = (\lambda, f) \in GT(R)$, define braided category $\widehat{\mathcal{C}}_g$

- $\widehat{\mathcal{C}}_g = \widehat{\mathcal{C}}$ as a category
- same \otimes -product as $\widehat{\mathcal{C}}$
- new associativity isomorphism a'

$$a'_{U,V,W} = a_{U,V,W} \circ f(c_{V,U}c_{U,V} \otimes \text{id}_W, \text{id}_U \otimes c_{W,V}c_{V,W})$$

- new braiding $c' (= c^\lambda)$

$$c'_{U,V} = c_{U,V} \circ \exp\left(\frac{\lambda - 1}{2} \log(c_{V,U}c_{U,V})\right).$$

- Formulas make sense in the completion w.r.t. any ideal containing $c_{V,U}c_{U,V} - \text{id}_{U \otimes V}$.
- Coherence conditions satisfied by a' and c' because of defining relations of $GT(R)$.

$GT(R)$ acts on Vassiliev invariants

Let $g \in GT(R)$. Apply twisting to linearization $R[\mathcal{T}]$ of tangle category \mathcal{T} .

$$\begin{array}{ccc}
 \mathcal{T} & \xrightarrow{F_g} & \widehat{R[\mathcal{T}]}_g \\
 \downarrow & & \downarrow \text{id} \\
 \widehat{R[\mathcal{T}]} & \xrightarrow{\widehat{F}_g} & \widehat{R[\mathcal{T}]}_g
 \end{array}$$

$GT(R)$ (and $\text{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ if $R = \mathbf{Q}_\ell$) acts on category $\widehat{R[\mathcal{T}]}$.

GT -action is not trivial:

If $g = (-1, f = 1) \in GT(R)$, then $a' = a$, $c' = c^{-1}$, and

$$\widehat{F}_g(K) = \text{mirror image of knot } K.$$

References

- V. G. Drinfeld, *On quasitriangular quasi-Hopf algebras and a group closely connected with $\text{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$* , Algebra i Analiz 2:4 (1990), 149–181 (= Leningrad Math. J. 2 (1991), 829–860)
- Y. Ihara, *Braids, Galois groups, and some arithmetic functions*, Proc. I.C.M. Kyoto 1990, Math. Soc. of Japan (1991), 99–120.
- A. Joyal, R. Street, *Braided tensor categories*, Adv. Math. 102 (1993), 20–78.
- C. Kassel, *Quantum groups*, Grad. Texts in Math., vol. 155, Springer-Verlag, New York-Heidelberg, 1995.
- C. Kassel, M. Rosso, V. Turaev, *Quantum groups and knot invariants*, Panoramas et Synthèses, vol. 5, Soc. Math. France, Paris, 1997.
- C. Kassel, V. Turaev, *Chord diagram invariants of tangles and graphs*, Duke Math. J. 92 (1998), 497–552.