A derivation of Abel’s name

by Postnikov

Abel — Abel
son of Adam and Eva

l

Brother Cain —— Cainian group

Abelian group: G = G?P; derived subgroup G’ = {1}

Cainian group: G*® = {1}; derived subgroup G’ = G
(= perfect group)

Reference: M. M. Iloctaukos, Jleknuu mo reoMeTpun
- I'pynnot u anredopot Jlu, Vizn. Hayka, Mocksa
1982 (French translation: Lecons de géométrie - Groupes
et algebres de Lie, Editions Mir, Moscou 1985).
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Quantum group <« group in non-commutative geom.
depending on a parameter h,

deformation of alg. of functions

on a group (in usual sense)

Quantum groups have applications in low-dimensional
topology: - invariants of knots

- invariants of 3-manifolds
- TQFT’s

The concept of a braided category (Joyal-Street) ex-
plains this relationship:

(i) Representations of a quantum group form a braided
category

(ii) Free braided categories are made of geometric braids
(loops in the configuration space of points in the
plane)



Braided category (Joyal-Street, 1985): Category
C with associative, commutative, unital functor

®:C xC—C (tensor product)

Associative: family of natural isomorphisms

avyw  (URV)eW —U(VeW)

Commutative: family of natural isomorphisms

cuv UV —V®U (braiding)

Unital: 4 an object I with natural isomorphisms
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U] —U—"ITU

subject to coherence conditions (such as Mac Lane’s
pentagon).

Braided cat. is symmetric if braiding is involutive:

cv.u o cuyv = ldygyv



Examples

(a) Category of vector spaces with usual tensor prod-
uct and braiding o,y given by

cuyv(u®v)=v®u (flip)

This category is symmetric. So are
- categories of representations of groups
- categories of representations of Lie algebras

(b) Categories of representations of quantum groups
are braided with non-involutive braidings such that

cuv =ouy + O(h)

(c¢) (Joyal-Street) The free braided category B on one

object X has objects I, X, X®? X®3 ... and morphisms
B, itn=m

Hompg(X®", X®™) = { .
O ifn#m

where B,, is Artin’s braid group.

Given a braided category C and an object V', there
is a unique functor F' : B — C of braided categories
such that F'(X) = V. It induces braid group actions:

F: B, = Autg(X®") — Aute (V™)

Braided categories with duality: the corresponding
free category 7 has more morphisms: not only braids,
also knots, links, tangles embedded in R?.
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Completion of a braided category

Let C be a braided category which is linear over a
commutative ring R.

Augmentation ideal of C: ideal I of morphisms
(w.r.t. o and ®) generated by all morphisms

cvu o cyyv — idygy
Quotient category C/I : same objects as C and
Home,;(V, W) = Home,;(V,W)/(INHome,;(V,W)).
The quotient category C/I is symmetric.
Inverse system of braided categories:

C=lim {---—C/I® - C/I* - C/I}

Example. Let R|7] be the linearization of the tangle
category: Ob(R[7]) = Ob(7) and

Homp(7)(X®", X®™) = R[Homy (X®", X®™)].

—_—

Then the completed category R|7| is universal for the
Vassiliev invariants of links in R>.



Drinfeld’s Grothendieck-Teichmiiller group

Elements of GT(R) are couples (A, f), where A € R*
and f = exp F(log A,log B) € R((A, B)) and F a Lie
series. These couples satisfy certain conditions.

Drinfeld (1990): There exists a group morphism
p: Gal(Q/Q) — GT(Qu).

Definition of p: Gal(Q/Q) acts on /-pro-unipotent
completion 71 of w1 (P1(C) — {0, 1, c0}).

L Y
° °
0 1

Action of ¢ € Gal(Q/Q) on generators x and y:
z—aX7 and y e fo(x,y) YN fo (2, y)
x(0) is cyclotomic character: o(¢) = (X9 if ¢ € piyn

Drinfeld: p(o) = (x(0), fo(z,y)) € GT(Qq).

6



Twisting of a braided category by an element

of GT(R)

Let C be a R-linear braided category with associativity
isomorphism a and braiding c.

For g = (A, f) € GT(R), define braided category 59
- CAg =Casa category
- same ®-product as C

- new associativity isomorphism a’
/ . .
aU7V7W — a’U,V,W O f(CV,UCU,V ® 1dW7 ldU ® CW)VCV,W)

- new braiding ¢/(= ¢*)

A—1

/
Cy,y = Cu,v © eXP( 10g(CV,UCU,V))-

e Formulas make sense in the completion w.r.t. any
ideal containing cy ycyyv — idygy.

e Coherence conditions satisfied by a’ and ¢’ because
of defining relations of GT(R).



GT(R) acts on Vassiliev invariants

Let g € GT(R). Apply twisting to linearization R|7T]
of tangle category 7.

T R[T],
I
R|T] - R|T],

—_—

GT(R) (and Gal(Q/Q) if R = Q) acts on category R[T].

(G'T-action is not trivial:

Ifg=(-1,f=1) € GT(R), then ' = a, ¢ = ¢!,
and

—

F,(K) = mirror image of knot K.
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