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Introduction

I Report on joint work with Julien Bichon (Clermont-Ferrand):
The lazy homology of a Hopf algebra, arXiv:0807.1651

I Original motivation: The classification of Hopf Galois extensions,
which are noncommutative analogues of principal fiber bundles

The rôle of the structural group for these noncommutative bundles is
played by a Hopf algebra
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Previous work 1

I In joint work with Eli Aljadeff (Polynomial identities and noncommutative
versal torsors, Adv. Math. 218 (2008), 1453–1495), we concentrated on
a class of Hopf Galois extensions obtained from a given Hopf algebra
by twisting its product using a two-cocycle, and we constructed
“universal spaces” using polynomial identities

I The special case where the Hopf algebra is a group algebra had been
worked out by E. Aljadeff, D. Haile, M. Natapov (Graded identities of
matrix algebras and the universal graded algebra, to appear in Trans.
Amer. Math. Soc., 2008)

They make use of the second cohomology group H 2(G, k×) of a
group G and the universal coefficient theorem relating the cohomology
of G to the integral homology of G via an exact sequence of the form

1→ Ext1(H1(G), k×)→ H 2(G, k×)→ Hom(H2(G), k×)→ 1

In particular, if k is algebraically closed, then

H 2(G, k×) ∼= Hom(H2(G), k×)



Previous work 1

I In joint work with Eli Aljadeff (Polynomial identities and noncommutative
versal torsors, Adv. Math. 218 (2008), 1453–1495), we concentrated on
a class of Hopf Galois extensions obtained from a given Hopf algebra
by twisting its product using a two-cocycle, and we constructed
“universal spaces” using polynomial identities

I The special case where the Hopf algebra is a group algebra had been
worked out by E. Aljadeff, D. Haile, M. Natapov (Graded identities of
matrix algebras and the universal graded algebra, to appear in Trans.
Amer. Math. Soc., 2008)

They make use of the second cohomology group H 2(G, k×) of a
group G and the universal coefficient theorem relating the cohomology
of G to the integral homology of G via an exact sequence of the form

1→ Ext1(H1(G), k×)→ H 2(G, k×)→ Hom(H2(G), k×)→ 1

In particular, if k is algebraically closed, then

H 2(G, k×) ∼= Hom(H2(G), k×)



Previous work 2
I Our aim: Construct homology and cohomology groups for general Hopf

algebras and a similar universal coefficient theorem connecting them

I Now Sweedler (1968) constructed a cohomology theory for
cocommutative Hopf algebras extending group cohomology

I For general Hopf algebras, Schauenburg, Chen, Bichon, Carnovale et
al. recently constructed two cohomology groups

H1
` (H) and H2

` (H)

called “lazy cohomology” groups

I Lazy cohomology coincides with Sweedler cohomology when H is
cocommutative.

In particular, it extends group cohomology: for any group
algebra H = k [G]

H i
`(H) ∼= H i (G, k×) (i = 1, 2)



Previous work 2
I Our aim: Construct homology and cohomology groups for general Hopf

algebras and a similar universal coefficient theorem connecting them

I Now Sweedler (1968) constructed a cohomology theory for
cocommutative Hopf algebras extending group cohomology

I For general Hopf algebras, Schauenburg, Chen, Bichon, Carnovale et
al. recently constructed two cohomology groups

H1
` (H) and H2

` (H)

called “lazy cohomology” groups

I Lazy cohomology coincides with Sweedler cohomology when H is
cocommutative.

In particular, it extends group cohomology: for any group
algebra H = k [G]

H i
`(H) ∼= H i (G, k×) (i = 1, 2)



Previous work 2
I Our aim: Construct homology and cohomology groups for general Hopf

algebras and a similar universal coefficient theorem connecting them

I Now Sweedler (1968) constructed a cohomology theory for
cocommutative Hopf algebras extending group cohomology

I For general Hopf algebras, Schauenburg, Chen, Bichon, Carnovale et
al. recently constructed two cohomology groups

H1
` (H) and H2

` (H)

called “lazy cohomology” groups

I Lazy cohomology coincides with Sweedler cohomology when H is
cocommutative.

In particular, it extends group cohomology: for any group
algebra H = k [G]

H i
`(H) ∼= H i (G, k×) (i = 1, 2)



Previous work 2
I Our aim: Construct homology and cohomology groups for general Hopf

algebras and a similar universal coefficient theorem connecting them

I Now Sweedler (1968) constructed a cohomology theory for
cocommutative Hopf algebras extending group cohomology

I For general Hopf algebras, Schauenburg, Chen, Bichon, Carnovale et
al. recently constructed two cohomology groups

H1
` (H) and H2

` (H)

called “lazy cohomology” groups

I Lazy cohomology coincides with Sweedler cohomology when H is
cocommutative.

In particular, it extends group cohomology: for any group
algebra H = k [G]

H i
`(H) ∼= H i (G, k×) (i = 1, 2)



Summary of joint work with Julien Bichon

I To any Hopf algebra H we associate their “lazy homology”

H`
1(H) and H`

2(H)

which are commutative Hopf algebras (not groups!)
I (i) together with a group isomorphism

H1
` (H)

∼=−→ Alg(H`
1(H), k)

(ii) and an exact sequence of groups (Universal coefficient theorem)

1 −→ Ext1(H, k) −→ H2
` (H)

κ−→ Alg(H`
2(H), k)

When the ground field k is algebraically closed, κ is an isomorphism

κ : H2
` (H)

∼=−→ Alg(H`
2(H), k)

I Moreover, if H = k [G] is a group algebra, then

H`
i (H) ∼= k [Hi (G,Z)] (i = 1, 2)
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Part One

• Part One: Sweedler and lazy cohomology

• Part Two: A homological version of Sweedler cohomology

• Part Three: Lazy homology

• References



Convolution groups
I Let H be a coalgebra over some fixed field k with coproduct

∆ : H → H ⊗ H and counit ε : H → k

The dual vector space Hom(H, k) is an associative unital algebra
whose product is the convolution product given for f , g ∈ Hom(H, k)
and x ∈ H by

(f ∗ g)(x) =
X
(x)

f (x ′) g(x ′′)

where ∆(x) =
P

(x) x ′ ⊗ x ′′ (Sweedler’s sigma notation)

The counit ε : H → k is the unit for the convolution product

I Let Reg(H) be the group of invertible elements of Hom(H, k)

The group Reg(H) is abelian if H is cocommutative, i.e., ifX
(x)

x ′ ⊗ x ′′ =
X
(x)

x ′′ ⊗ x ′

Since H⊗n = H ⊗ · · · ⊗ H (n copies of H) is a coalgebra for any n ≥ 2,
we may also consider Reg(H⊗n)
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Sweedler’s cosimplicial group
Let H be a Hopf algebra

I For any n ≥ 1 define coface maps

δ0, δ1, . . . , δn+1 : Reg(H⊗n)→ Reg(H⊗(n+1))

for f ∈ Reg(H⊗n) and x0, x1, . . . , xn ∈ H by

δi (f )(x0⊗x1⊗· · ·⊗xn) =

8><>:
ε(x0) f (x1 ⊗ · · · ⊗ xn) for i = 0
f (x0 ⊗ · · · ⊗ xi−1xi ⊗ · · · ⊗ xn) for i = 1, . . . , n
f (x0 ⊗ · · · ⊗ xn−1) ε(xn) for i = n + 1

I The maps δ0, δ1, . . . , δn+1 are group homomorphisms satisfying the
standard simplicial relations

I Consider the alternating convolution product

δn = δ0 ∗ δ−1
1 ∗ δ2 ∗ · · · ∗ δ(−1)n+1

n+1 : Reg(H⊗n)→ Reg(H⊗(n+1))

We have δn+1 ◦ δn = ε. The maps δn are group homomorphisms if H is
cocommutative
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Sweedler cohomology

I Let H be a cocommutative Hopf algebra.
The Sweedler cohomology H∗Sw(H) of H is the cohomology of the
cochain complex of abelian groups

Reg(k) = k× → Reg(H)
δ1
−→ Reg(H ⊗H)

δ2
−→ Reg(H ⊗H ⊗H)

δ3
−→ · · ·

I Let G be a group and H = k [G] the group algebra. Equipped with the
coproduct

∆(g) = g ⊗ g (g ∈ G)

it is a cocommutative Hopf algebra

The cochain complex (Reg(H⊗∗, δ∗) coincides with the standard
complex computing the cohomology of the group G acting trivially on
k× = k − {0}

Hence,
Hn

Sw(k [G]) ∼= Hn(G, k×) (n ≥ 1)
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Sweedler cohomology in low degree

I The Sweedler cohomology groups H1
Sw(H) and H2

Sw(H) fit into the exact
sequence of abelian groups

0→ H1
Sw(H) −→ Reg(H)

δ1
−→ Z 2(H) −→ H2

Sw(H)→ 0

where
Z 2(H) = Ker(δ2)

is the group of two-cocycles, i.e., of elements α ∈ Reg(H⊗H) satisfyingX
(x),(y)

α(x ′ ⊗ y ′)α(x ′′y ′′ ⊗ z) =
X

(y),(z)

α(y ′ ⊗ z′)α(x ⊗ y ′′z′′)

for all x , y , z ∈ H

I The differential δ1 : Reg(H)→ Z 2(H) is given by

δ1(µ)(x ⊗ y) =
X

(x) (y)

µ(x ′)µ(y ′)µ−1(x ′′y ′′)

for all µ ∈ Reg(H) and x , y ∈ H
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Towards cohomology for general Hopf algebras

I When the Hopf algebra H is not cocommutative, the sequence

0→ H1
Sw(H) −→ Reg(H)

δ1
−→ Z 2(H) −→ H2

Sw(H)→ 0 (1)

may no longer be a sequence of groups

I Remedy: Replace (1) by a new exact sequence of groups (not abelian!)

1→ H1
` (H) −→ Reg`(H)

δ1
−→ Z 2

` (H) −→ H2
` (H)→ 1

where
Reg`(H) ⊂ Reg(H) and Z 2

` (H) ⊂ Z 2(H)

The differential δ1 : Reg`(H)→ Z 2
` (H) is defined by the same formula

as in the cocommutative case
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Lazy cocycles

I An element µ ∈ Reg(H) is called lazy if for all x ∈ H,X
(x)

µ(x ′) x ′′ =
X
(x)

µ(x ′′) x ′ ∈ H

The set of lazy elements of Reg(H) is an abelian subgroup Reg`(H)

I An element α ∈ Reg(H ⊗ H) is called lazy if for all x , y ∈ H,X
(x)(y)

α(x ′ ⊗ y ′) x ′′y ′′ =
X

(x)(y)

α(x ′′ ⊗ y ′′) x ′y ′ ∈ H

The set of lazy elements of Reg(H ⊗ H) is an subgroup Reg(2)
` (H)

I A lazy two-cocycle is an element of

Z 2
` (H) = Z 2(H) ∩ Reg(2)

` (H)

(Chen) The set Z 2
` (H) is a group
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Lazy cohomology groups

I The differential δ1 : Reg(H)→ Z 2(H) restricts to a homomorphism of
groups

δ1 : Reg`(H)→ Z 2
` (H)

whose image is a central subgroup of Z 2
` (H)

I Definition. The lazy cohomology groups H1
` (H) and H2

` (H) are defined
by the exact sequence of groups

1 −→ H1
` (H) −→ Reg`(H)
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−→ Z 2

` (H) −→ H2
` (H) −→ 1
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The lazy cohomology of group algebras

• If H is cocommutative, then laziness is no restriction:

Reg`(H) = Reg(H) and Z 2
` (H) = Z 2(H)

Hence, lazy cohomology coincides with the Sweedler cohomology:

H i
`(H) = H i

Sw(H) (i = 1, 2)

• In particular, if H = k [G] is a group algebra, then

H i
`(H) ∼= H i (G, k×) (i = 1, 2)



Lazy cohomology groups may be non-abelian

I The group H1
` (H) is abelian for all Hopf algebras, but H2

` (H) is not
always abelian

I Example. Let G be a finite group and H = O(G) the Hopf algebra of
k -valued functions on G (the Hopf algebra O(G) is dual to the Hopf
algebra k [G])

In the case when H = O(G)

(a) H1
` (H) is isomorphic to the center of G

(b) a method to compute H2
` (H) was obtained jointly with Pierre

Guillot

(c) there are finite groups G (in particular one of order 215) for which
the group H2

` (H) is not abelian

See P. Guillot, C. Kassel, Cohomology of invariant Drinfeld twists on
group algebras (arXiv:0903.2807)
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The lazy cohomology of the Sweedler algebra

Assume that k has characteristic 6= 2

• The Sweedler algebra is the four-dimensional algebra

H4 = k 〈 g, x | g2 = 1 , gx + xg = 0 , x2 = 0 〉

It is the smallest noncommutative noncocommutative Hopf algebra with

Coproduct: ∆(g) = g ⊗ g, ∆(x) = 1⊗ x + x ⊗ g

Coünit: ε(g) = 1, ε(x) = 0

Antipode: S(g) = g, S(x) = gx

• Lazy cohomology:

H1
` (H4) ∼= {1} and H2

` (H4) ∼= (k ,+)



Part Two

• Part One: Sweedler and lazy cohomology

• Part Two: A homological version of Sweedler cohomology

• Part Three: Lazy homology

• References



Predualizing Reg(H)

• Before constructing lazy homology, we present a homological version of
Sweedler cohomology for cocommutative Hopf algebras

•We need to associate to any coalgebra H a commutative Hopf
algebra F (H) together with a functorial group isomorphism

Alg(F (H), k) ∼= Reg(H)

where Alg(F (H), k) is the group of characters of F (H), i.e., algebra
morphisms F (H)→ k



Takeuchi’s free commutative Hopf algebra

• Takeuchi (1971) constructed such a Hopf algebra: as an algebra, it is
generated by symbols tx and t−1

x (x ∈ H) and the relations such that
(a) the maps x 7→ tx and x 7→ t−1

x : H → F (H) are linear
(b) for all x ∈ H, X

(x)

tx′ t
−1
x′′ = ε(x) 1 =

X
(x)

t−1
x′ tx′′

The coproduct ∆, counit ε, and (involutive) antipode S are given by

∆(tx ) =
X
(x)

tx′ ⊗ tx′′ , ε(tx ) = ε(x) , S(tx ) = t−1
x

The algebra F (H) is a commutative Hopf algebra

• If H is cocommutative, then F (H) is bicommutative (i.e., commutative and
cocommutative)



Predualizing Sweedler’s cochain complex

• Let H be a cocommutative Hopf algebra
There is a chain complex of bicommutative Hopf algebras

· · · ∂4−→ F (H ⊗ H ⊗ H)
∂3−→ F (H ⊗ H)

∂2−→ F (H)
∂1−→ F (k)

such that applying the functor Alg(−, k) we obtain Sweedler’s cochain
complex:

Alg(F (H⊗∗), k) ∼= (Reg(H⊗∗), δ∗)

•We have
∂1(tx ) = ε(x) t1

∂2(tx⊗y ) =
X

(x)(y)

tx′ ty′ t
−1
x′′y′′

∂3(tx⊗y⊗z) =
X

(x)(y)(z)

ty′⊗z′ tx′⊗y′′z′′ t
−1
x′′y′′′⊗z′′′ t

−1
x′′′⊗y′′′′

• By Takeuchi the category of bicommutative Hopf algebras is an abelian
category, so that we can take the homology of the above chain complex



Hopf kernels

I A Hopf algebra morphism π : H → H ′ is normal if˘
x ∈ H

˛̨ X
(x)

π(x ′)⊗ x ′′ = 1⊗ x
¯

=
˘

x ∈ H
˛̨ X

(x)

π(x ′′)⊗ x ′ = 1⊗ x
¯

(2)
Condition (2) is always satisfied if H is cocommutative

When π is normal, then we denote both sides of (2) by HKer(π): it is the
Hopf kernel of π.

I Properties. (a) The Hopf kernel HKer(π) is a Hopf subalgebra of H

(b) If u : G→ G′ is a group homomorphism, then the induced Hopf
algebra morphism k [u] : k [G]→ k [G′] is normal and

HKer(k [u]) = k [Ker(u)]
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Hopf quotients

I Let H0 ⊂ H be a Hopf subalgebra and let H+
0 = Ker(ε : H0 → k) be the

augmentation ideal of H0

If H+
0 H = H H+

0 (always satisfied if H is commutative), then we define
the Hopf quotient to be

H//H0 = H/H+
0 H

I Properties. (a) The quotient H//H0 is a Hopf algebra

(b) If G0 is a normal subgroup of G, then k [G0] is a Hopf subalgebra
of k [G] such that k [G0]+k [G] = k [G] k [G0]+, and

k [G]//k [G0] = k [G/G0]
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A homology theory for cocommutative Hopf algebras

Let H be a cocommutative Hopf algebra

• Recall the chain complex of bicommutative Hopf algebras

· · · ∂4−→ F (H ⊗ H ⊗ H)
∂3−→ F (H ⊗ H)

∂2−→ F (H)
∂1−→ F (k)

In the abelian category of bicommutative Hopf algebras we can take kernels
and quotients as above

• Definition. The Sweedler-type homology of H is given by

HSw
n (H) = HKer

`
∂n : F (H⊗n)→ F (H⊗(n−1))

´
// Im(∂n+1)

These “homology groups” are bicommutative Hopf algebras



Properties

• The homology Hopf algebras HSw
n (H) are related to Sweedler cohomology

by natural homomorphisms of abelian groups

Hn
Sw(H)→ Alg(HSw

n (H), k) (n ≥ 1)

These maps are isomorphisms if k is algebraically closed

• They extend group homology: for any group G,

HSw
∗ (k [G]) ∼= k [H∗(G,Z)] ,

where H∗(G,Z) is the homology of G with integral coefficients



Part Three

• Part One: Sweedler and lazy cohomology

• Part Two: A homological version of Sweedler cohomology

• Part Three: Lazy homology

• References



How to construct lazy homology

I We derived the homology of a cocommutative Hopf algebra H from the
chain complex of bicommutative Hopf algebras

· · · ∂4−→ F (H ⊗ H ⊗ H)
∂3−→ F (H ⊗ H)

∂2−→ F (H)
∂1−→ F (k) (3)

I We replace (3) by a short sequence of commutative Hopf algebras

H ⊗ H ⊗ H
∂3−→ F (H [2])

∂2−→ F (H [1])
∂1−→ F (k)

where H [1] and H [2] are coalgebras such that

Reg`(H) ∼= Reg(H [1]) and Reg(2)
` (H) ∼= Reg(H [2])



How to construct lazy homology
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The first lazy quotient

I Given a coalgebra H, let H [1] be the quotient of H by the subspace
spanned by the elementsX

(x)

ϕ(x ′) x ′′ −
X
(x)

ϕ(x ′′) x ′ (x ∈ H, ϕ ∈ Hom(H, k))

The projection H → H [1] turns H [1] into a cocommutative coalgebra

I Proposition. The projection H → H [1] induces a group isomorphism

Reg(H [1]) ∼= Reg`(H)

Corollary. There is a group isomorphism

Reg`(H) ∼= Alg(F (H [1]), k)
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The second lazy quotient

I Given a Hopf algebra H, let H [2] be the quotient of H ⊗ H by the
subspace spanned by the elementsX
(x)(y)

ϕ(x ′y ′) x ′′⊗y ′′−
X

(x)(y)

ϕ(x ′′y ′′) x ′⊗y ′ (x , y ∈ H, ϕ ∈ Hom(H, k))

The projection H → H [2] turns H [2] into a coalgebra

I Proposition. The projection H → H [2] induces a group isomorphism

Reg(H [2]) ∼= Reg(2)
` (H)

Corollary. There is a group isomorphism

Reg(2)
` (H) ∼= Alg(F (H [2]), k)



The second lazy quotient
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The first lazy homology Hopf algebra

Let H be a Hopf algebra

I Proposition. There are morphisms of commutative Hopf algebras

F (H [2])
∂2−→ F (H [1])

∂1−→ F (k)

induced by

∂2 : tx⊗y 7→
X

(x)(y)

tx′ ty′ t
−1
x′′y′′ and ∂1 : tx 7→ ε(x) t1

I Definition. The first lazy homology Hopf algebra of H is given by

H`
1(H) = HKer(∂1)// Im(∂2)

I Theorem. The Hopf algebra H`
1(H) is bicommutative and there is a

natural isomorphism of abelian groups

H1
` (H)

∼=−→ Alg(H`
1(H), k)
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The second lazy homology Hopf algebra
I Given a Hopf algebra H, consider the sequence of maps

H ⊗ H ⊗ H
∂3−→ F (H [2])

∂2−→ F (H [1])
∂1−→ F (k)

where ∂3(x ⊗ y ⊗ z) is the image in F (H [2]) of

ty′⊗z′ tx′⊗y′′z′′ t
−1
x′′y′′′⊗z′′′ t

−1
x′′′⊗y′′′′

I Lemma (a) The Hopf algebra morphism ∂2 is normal

(b) For all x , y , z ∈ H, ∂3(x ⊗ y ⊗ z) belongs to the Hopf kernel HKer(d2)

(c) The ideal B`2(H) of HKer(∂2) generated by the elements

∂3(x ⊗ y ⊗ z)− ε(xyz) 1 and S
`
∂3(x ⊗ y ⊗ z)

´
− ε(xyz)

is a Hopf ideal of the Hopf algebra HKer(∂2)

I Definition. The second lazy homology Hopf algebra of a Hopf
algebra H is given by

H`
2(H) = HKer(∂2)/B`2(H)
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Some computations of lazy homology

I Proposition. If H = k [G] is the Hopf algebra of a group G, then

H`
i (k [G]) ∼= k [Hi (G,Z)] (i = 1, 2)

Remark. H`
i (k [G]) is a group algebra from which we can recover the

homology group Hi (G,Z) by considering the group-like elements

I Proposition. If H = O(G) is the Hopf algebra of k-valued functions on
a finite group G, then

H`
1(O(G)) ∼= O(Z (G))

(the Hopf algebra of functions on the center of G)

Remark. When k is algebraically closed of characteristic zero, then
O(G) is a cosemisimple Hopf algebra
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The cosemisimple case
Assume that the ground field k is algebraically closed of characteristic zero

I Let H be a cosemisimple Hopf algebra: the category of H-comodules is
semisimple

Definition (Baumgärtel & Lledo, Müger, Gelaki & Nikshych, Petit).
The universal abelian grading group ΓH is the abelian group generated
by the isomorphism classes of finite-dimensional simple H-comodules
and the relations (U,V ,W simple H-comodules)

U + V = W whenever W ⊂ U ⊗ V

I Theorem. If H is a cosemisimple Hopf algebra, then

H`
1(H) ∼= k [ΓH ]

Remark. If G is a finite group, then H = O(G) is cosemisimple and

ΓH ∼= Ẑ (G)
def
= Hom(Z (G), k×) (Pontryagin dual of the center)

We recover H`
1(H) ∼= k [ΓH ] ∼= k [Ẑ (G)] ∼= O(Z (G))
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The lazy homology of the Sweedler algebra 1

I Theorem. For the Sweedler algebra H4 we have

H`1(H4) ∼= k and H`2(H4) ∼= k [X ]

where X is a primitive element, i.e., ∆(X) = 1⊗ X + X ⊗ 1

Remark. In this case H`2(H) is not a group algebra and the group of group-like
elements is trivial

I To prove the theorem, we first determine the lazy quotients H [1]
4 and H [1]

4

We have H [1]
4 = k and H [2]

4 is a five-dimensional coalgebra:

H [2]
4 = ky0 ⊕ ky1 ⊕ ky2 ⊕ ky3 ⊕ ky4

with ∆(y0) = y0 ⊗ y0 and ∆(yi ) = y0 ⊗ yi + yi ⊗ y0 (i = 1, 2, 3, 4)

Therefore, F (H [1]
4 ) = k [T , T−1] and F (H [2]

4 ) = k [Y0, Y−1
0 , Y1, Y2, Y3, Y4]
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The lazy homology of the Sweedler algebra 2

I The differential ∂2 is the Hopf algebra map

∂2 : F (H [2]
4 ) = k [Y0, Y−1

0 , Y1, Y2, Y3, Y4] −→ F (H [1]
4 ) = k [T , T−1]

given by ∂2(Y0) = T and ∂2(Yi ) = 0 if i = 1, 2, 3, 4

One deduces the first lazy cohomology group and the computation of HKer(∂2),
namely

H`1(H4) = k and HKer(∂2) = k [X1, X2, X3, X4]

where X1, X2, X3, X4 are the primitive elements Xi = Yi/Y0 (i = 1, 2, 3, 4)

I Computing the values of ∂3 : H⊗3
4 → HKer(∂2) yields the second lazy

cohomology:

H`2(H4) = k [X1, X2, X3, X4]/(X1 = X2 = −X3 = −X4) ∼= k [X ]



The lazy homology of the Sweedler algebra 2

I The differential ∂2 is the Hopf algebra map

∂2 : F (H [2]
4 ) = k [Y0, Y−1

0 , Y1, Y2, Y3, Y4] −→ F (H [1]
4 ) = k [T , T−1]

given by ∂2(Y0) = T and ∂2(Yi ) = 0 if i = 1, 2, 3, 4

One deduces the first lazy cohomology group and the computation of HKer(∂2),
namely

H`1(H4) = k and HKer(∂2) = k [X1, X2, X3, X4]

where X1, X2, X3, X4 are the primitive elements Xi = Yi/Y0 (i = 1, 2, 3, 4)

I Computing the values of ∂3 : H⊗3
4 → HKer(∂2) yields the second lazy

cohomology:

H`2(H4) = k [X1, X2, X3, X4]/(X1 = X2 = −X3 = −X4) ∼= k [X ]



Short exact sequences of Hopf algebras
To obtain a universal coefficient theorem, we need to define what short exact
sequence of Hopf algebras are and how they behave under the contravariant
functor Alg(−, k)

I Let H0 ⊂ H be a Hopf subalgebra such that H+
0 H = H H+

0 so that the
Hopf quotient H//H0 makes sense

An exact sequence of Hopf algebras is a sequence of the form

k −→ H0 −→ H −→ H//H0 −→ k (4)

I Proposition. (a) The sequence (4) induces an exact sequence of
groups

1 −→ Alg(H//H0, k) −→ Alg(H, k) −→ Alg(H0, k)

(b) If furthermore H is commutative and k is algebraically closed, then

Alg(H, k) −→ Alg(H0, k)

is surjective
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A universal coefficient theorem

I Theorem. For any Hopf algebra H there is an exact sequence of groups

1 −→ Ext1(H, k) −→ H2
` (H)

κ−→ Alg(H`
2(H), k)

If in addition k is algebraically closed, then κ is an isomorphism:

κ : H2
` (H)

∼=−→ Alg(H`
2(H), k)

I The exact sequence of commutative Hopf algebras

k −→ Im(∂2)
ι−→ HKer(∂1) −→ H`

1(H) −→ k

defining the first lazy homology group H`
1(H) induces the exact

sequence of groups

1 −→ Alg(H`
1(H), k) −→ Alg(HKer(∂1), k)

ι∗−→ Alg(Im(∂2), k)

Definition. Ext1(H, k) is defined by

Ext1(H, k) = Coker
`
Alg(HKer(∂1), k)

ι∗−→ Alg(Im(∂2), k)
´
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